
Please do not remove this page

An adaptive membership management
algorithm for application layer multicast
Rong, Bin; Khalil, Ibrahim; Tari, Zahir
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/An-adaptive-membership-management-algorithm-for/99218626781013
41/filesAndLinks?index=0

Rong, B., Khalil, I., & Tari, Z. (2006). An adaptive membership management algorithm for application layer
multicast. Proceedings of the International Conference on Networking and Services (ICNS 2006), 35–35.
https://doi.org/10.1109/ICNS.2006.22

Published Version: https://doi.org/10.1109/ICNS.2006.22

Downloaded On 2024/04/19 01:18:59 +1000
© 2006 IEEE
Repository homepage: https://researchrepository.rmit.edu.au

Please do not remove this page

https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/An-adaptive-membership-management-algorithm-for/9921862678101341/filesAndLinks?index=0
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/An-adaptive-membership-management-algorithm-for/9921862678101341
http://doi.org/doi:https://doi.org/10.1109/ICNS.2006.22
https://researchrepository.rmit.edu.au


An Adaptive Membership Algorithm for Application Layer Multicast

Bin Rong, Ibrahim Khalil, and Zahir Tari
School of Computer Science and Information Technology

RMIT University, Australia
{brong, ibrahimk, zahirt}@cs.rmit.edu.au

Abstract

Due to deployment difficulty of network layer multicast,
application layer multicast is considered to be a good sub-
stitute for massive P2P video/audio streaming in large net-
works. However, in application layer multicast, the par-
ticipating users join and leave the on-going session at
will. Therefore, a scalable and reliable group membership
management algorithm is necessary due to the highly dy-
namic nature of the overlay network, built on top of the
Internet. Gossip-based algorithms seem to be a solution.
However, most gossip-based membership management al-
gorithms lack flexibility, and are unable to adapt to the ever-
changing network dynamics, imposing roughly the same
amount of overhead on the network. A new adaptive gossip-
based membership management algorithm is proposed to
bridge the gap. This algorithm captures the changes of
the network and adjusts the parameter settings dynamically,
bringing adaptivity and reducing overhead. Simulation re-
sults indicate a maximum of 50% reduction can be achieved
in terms of network overhead on core network components,
such as backbone links and attached routers, without sacri-
ficing reliability and scalability.

1 Introduction

Membership management is crucial to group communi-
cation protocols, because the participating users need cer-
tain identifiers (e.g., IP address) to communicate with each
other. In traditional IP multicast, group membership man-
agement is performed in a transparent way. Both senders
and receivers register with the routers and routers perform
membership management. However, in application layer
multicast (ALM henceforth), there is no central server and
the overlay is built on-the-fly, in a distributed way, rendering
a robust and scalable membership management algorithm.

Epidemic or gossip-based algorithms seem to be a good
candidate, and a gossip-based membership management al-
gorithm has been published [4]. However, it lacks flexibility

and imposes the same amount of overhead on the network
regardless the current characteristics of the network. Ac-
cording to Kunwadee [12], most applications in ALM are
short lived, and there are 3.3 requests from a single IP ad-
dress during a session. In such a highly dynamic environ-
ment, the major concern is how to capture and communicate
these changes among the remaining users in a timely and ef-
ficient fashion, and how to balance the network overhead,
computational complexity and network performance. To
address this problem, a new adaptive gossip-based member-
ship management algorithm is proposed. The contributions
of this paper are as follows. Firstly, an adaptive membership
management algorithm for ALM. The parameter settings of
the gossip algorithm are fine-tuned by dynamic weight set-
ting throughout the session, in terms of the length of the
gossip round and the scope of the gossip targets selection.
The tuning process is done in such a way that it reflects the
changes and the characteristics of the network. Secondly,
a simple protocol to construct a reliable multicast tree for
application layer multicast. Proactive measures are taken
to enhance the reliability. It works by allowing every node
to maintain a backup list of nodes to which they may con-
tact in case of failures, and this can minimize the impact of
failures.

The rest of the paper is organized as follows. Section
2 provides background information on ALM and gossip-
based algorithms. Section 3 describes the details of the pro-
tocol. Section 4 describes the experimental setup. Simula-
tion results are also provided. Section 5 overviews some of
the existing work and puts our work in context. Finally, we
conclude our work in section 6.

2 Background

2.1 Multicast and ALM

Multicast was proposed to overcome the shortcomings of
Internet protocol (IP) and provide efficient multipoint de-
livery [2]. It works by sending one and only one copy of
each packet along the so-called “multicast tree”, realizing

0-7695-2622-5/06/$20.00 (c) 2006 IEEE
Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 00:29 from IEEE Xplore.  Restrictions apply. 



efficient usage of network resources. However, due to de-
velopment and deployment issues, it has not been widely
used. Consequently, a new scheme called application layer
multicast has been proposed. Chu et al. [6] raised the idea
of ALM. In ALM, data packets are replicated at end hosts
rather than being replicated at routers inside the IP network.
The end hosts form a logical layer atop the IP layer. Never-
theless, the large amount of control overhead used for mem-
bership management limits its use only to a small group of
users. So, a scalable group membership management algo-
rithm is necessary for the implementation of ALM.

2.2 Group Membership Management

Group membership management protocols are crucial
to the success of multicast because they provide applica-
tions with the dynamic membership information. There are
two types of membership management mechanisms: local
group management and global multicast routing. In a tradi-
tional network layer multicast scheme, a local group man-
agement algorithm enables multicast routers to be aware
of the presence of group members within their local net-
works by letting each participating member register with
the router. Hence, it only applies to a single LAN or sev-
eral LANs. In contrast, the global multicast routing mech-
anism learns the existence of the members by exchang-
ing membership information among the routers distributed
across wide-area networks [10]. The most common local
group management mechanism is Internet Group Manage-
ment Protocol (IGMP) [5]. It periodically updates member-
ship information by using a query/reply model. However,
none of these protocols are suitable for ALM, due to either
large overhead or central point of failure.

2.3 Gossip-based algorithms

Gossip-based algorithms seem to be a good candidate
to offer scalability and reliability at the same time [3]. It
could be summarized as follows: each group member keeps
a partial membership list and updates it using message gos-
siping. In each gossip round, which is a fixed time inter-
val, each member chooses a fixed number of members, uni-
formly at random from its partial membership list, to send
a copy of its membership list. The major drawback is its
lack of flexibility, both in terms of time and space. The
algorithm is unable to adapt to the ever-changing network
dynamics, imposing roughly the same amount of overhead
on the network regardless of the current characteristics of
the network.

The proposed algorithm bridges the gap. It dynamically
changes the gossip parameter settings (such as the length of
the gossip round and the scope of gossip targets selection)
in a way such that it reflects the changes in the network. It is

adaptive and reduces the overhead by a maximum of 50%,
not at the cost of reliability and scalability.

3 Protocol Details

A detailed description of the protocol is given in this
section. The proposed algorithm works in control plane,
decoupled from data delivery and manages the membership
information in a distributed fashion. In order to make it self-
contained, some terminology explanations are necessary.

3.1 Terminology and Metric

For simplicity, an ALM session with a single sender is
considered here. Each node keeps partial membership in-
formation. Similar to the idea of [4], two separate lists are
used. InView contains the nodes who know it and OutView
contains the nodes it knows. As an example, in Figure 1,
node 4’s InView contains node 1, 2 and 3; it has node 5, 6
and 7 in its OutView.

1

2 4

5

6

73

Figure 1. An example of membership list.

Nodes disseminate membership information to their
neighbors periodically using message gossiping, and the
gossip round is adjusted dynamically. In each round, nodes
gossip to others in a pseudo-random way by choosing the
targets preferentially, according to the metric defined later.
Upon receipt of an update message, each node picks some
nodes in a pseudo-random way from its OutView to propa-
gate the message, just like the way in which some infectious
disease spreads. Eventually, most of the nodes will get this
message. However, it is not expected that all nodes will
have the same view after several rounds of gossiping. The
reason is the network is in a highly dynamic state through-
out the multicast session. The overhead generated to let all
the nodes have very accurate and the most up-to-date view
about the entire network is too high. From another point of
view, it is inefficient to get the data from other nodes who
are very far away. For example, a user in Australia is more
willing to get data locally, rather than from another user in
Europe. So, the membership information contained in the
gossiping message has different meaning for different users,
and only part of the population may be interested in a partic-
ular piece of information. In order to count for this varying
importance, the “goodness” of a node is defined as follows:

m = C × Bi × Bj

D2
(1)

0-7695-2622-5/06/$20.00 (c) 2006 IEEE
Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 00:29 from IEEE Xplore.  Restrictions apply. 



where C is the number of “children” it has, i.e., the num-
ber of nodes that are currently receiving data from it; Bi and
Bj stand for the residual bandwidth of node i and j respec-
tively, and D is the delay, or simply the network distance.
The actual usage of this metric will be discussed later in
this section. This metric of “goodness” is borrowed from
physics. The idea is very simple: the goodness or desir-
ability of a node is proportional to its available bandwidth,
and is reverse to its network distance. That is to say, a
“good” node should have high bandwidth and/or low delay.
The rationale behind this metric is two-fold. Firstly, it has
been proven that the scale-free property of the network is in
favor of the information dissemination, especially if those
nodes with higher degree, or named as hubs, are reached
by the gossip message, and the gossip message will propa-
gate through the network at a very high speed [9]. This has
also been observed in Gnutella network. The proposed al-
gorithm makes use of this property. By directing the gossip
message to the perspective nodes who might be interested
in the information, it achieves faster convergence and re-
duce overhead without sacrificing reliability. Secondly, it
has been pointed out that nodes connected by a 56Kbps
modem are unable to handle more than 20 queries per sec-
ond, corresponding to a network of about 1000 nodes [1].
If these nodes fail, the network may become fragmented.
Therefore, the control overhead has to be distributed un-
evenly according to nodes’ different capacities, reflecting
the heterogeneity of the network.

This metric will be used in two places as follows. One
is in the time domain, the metric is used to dynamically ad-
just the length of the gossip round. Each node calculates
its so called “energy” or “goodness” periodically, accord-
ing to the defined metric. Bi is its “download bandwidth”,
and it is the smaller one chosen between the multicast rate
and its residual download bandwidth. For example, a node
with a download speed of 512Kbps joins a multicast ses-
sion running at 2Mbps, the “download bandwidth” is there-
fore min(512K, 2M) = 512Kbps. Bj is its residual up-
load bandwidth. D is the network distance from the sender
to this node itself. A node with a higher “energy” can be
interpreted as having high bandwidth and/or low delay, and
can potentially offer better service to more nodes. It means
that potentially more nodes will be interested in the infor-
mation about this node. Therefore, it should have a shorter
time interval between consecutive gossip rounds. At the
same time, desynchronizing the length of the gossip rounds
among all the participating nodes avoids the “synchroniza-
tion” problem as well. The other use of the metric is in the
space domain, adjusting the scope of the gossip targets se-
lection. Upon receipt of the gossiping message, each node
picks up some nodes from its OutView to disseminate the
message. The metric will act as an index to direct the mes-
sage to the nodes for which this message might be useful.

In Eq.1 C is the “children” account, the more nodes it is
serving now, the more responsibility it should take, i.e., it
needs to have more information to cope with the potential
failure; Bi is the residual upload bandwidth of the neigh-
boring node; Bj is the residual download bandwidth of that
node. D is the delay between itself and the neighboring
node. It indicates the desirability of the potential path. As
stated before, the gossiping message has different meaning
for different nodes. For example, when an event is mul-
ticasted at 512Kbps, a node with a download bandwidth
of 1Mbps may not be interested to know the information
about another node with an available upload bandwidth of
just 56Kbps. The idea is to direct the gossip message to
those nodes with lower delay, higher bandwidth and higher
children count. It has been shown once the highly connected
nodes, which are called hubs, have received the message,
the message will spread over the entire network at a very
high speed [9].

Two assumptions are considered in the protocol design.
Firstly, certain information about one or several on-tree
nodes will be provided, by some out-of-band mechanism
like bootstrap, to the newcomers. Secondly, each node has
a rough idea of what is the current multicast rate and the
magnitude of the delay between the sender and itself. These
assumptions are also used in other protocols, and delay can
be measured actively by pinging, or passively by checking
the timestamps of the received packets.

3.2 Protocol details

The proposed protocol consists of three building blocks:

1. Join: The newcomer sends a JOIN message contain-
ing its own quality of service (QoS) demands (e.g.,
bandwidth and/or delay) to the target node (chosen
based on the bootstrap assumption). If this joining
process succeeds, the new comer will begin to receive
data, and a confirm message (ACK) will be sent back
as well, either piggybacked or sent as an independent
packet. All the intermediate nodes will update the en-
try associated with the contacted node. If this joining
process fails, a reply packet will be sent back as well,
all the intermediate nodes will check this packet and
decide whether to update or not (depending on whether
the delay and residual bandwidth have changed or not).
If necessary, some data packets will be sent back as
well, to reduce the joining latency. Normally, the join-
ing nodes will be given several nodes to contact by the
bootstrap algorithm; it selects the best one among the
nodes who respond its JOIN request.

2. Gossip: Each node periodically calculates its current
“energy” and adjusts the gossip interval correspond-
ingly. With an initial gossip interval t, the next gossip

0-7695-2622-5/06/$20.00 (c) 2006 IEEE
Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 00:29 from IEEE Xplore.  Restrictions apply. 



Algorithm 1 Gossip Algorithm
1: if it is time to gossip then
2: for every node ni ∈ OutView do
3: pi = Ei

i Ei

4: Send(ni, pi)
5: end for
6: t

′
= t

E
N

E
7: adjust the gossip interval
8: end if

Algorithm 2 Gossip Forward
1: if receipt the gossip then
2: update its membership list
3: for every node ni ∈ OutView do
4: pi = Ei

i Ei

5: Send(ni, pi)
6: end for
7: end if

interval is calculated using a normalization t
′
= t

E
N

E .
In which E represents the calculated “energy”, and it
is normalized over N rounds. When next gossip round
comes, it sends a gossip message containing its current
QoS attributes to some nodes chosen pseudo-randomly
according to the probability as p = E

E , in which “en-
ergy” is normalized over all the members in the list.
Upon receiving the message, the receiving nodes will
update its neighboring list if necessary and propagate
the message to some nodes chosen based on the met-
ric as well. A hop count is associated with the gossip-
ing message, representing how many nodes have saved
and spread this message. On one hand, it is important
to make sure this message has been processed by sev-
eral nodes already. On the other hand, it can be used
as a last resort for scope control to reduce the amount
of gossiping messages. The algorithm is summarized
in Algorithm 1 and 2.

3. Cope with failure: By sending and receiving these
gossip messages, each node updates its neighboring
list. When random failure happens, the affected nodes
can select the most suitable parent-to-be from its up-
dated neighboring list, and resume the service quickly
without huge service disruption.

The idea is to reduce the membership management re-
lated overhead by adjusting the gossip interval and the scope
of gossip targets selection dynamically.

4 Simulation Results

Simulation was conducted by using OMNet++, and we
also compared our algorithm with SCAMP [4].

In terms of network dynamics, peer-to-peer networks are
quite different from the traditional network, since most of
the nodes are expected to get data from others, instead of
from the data source directly. Hence, the nodes are not re-
ally independent of each other. Behavior of some nodes
will affect that of others, such as the nodes who are taking
the responsibility to forward data. The definition of net-
work dynamics have to be redefined, taking the properties
of peer-to-peer network into account. Half-life, which is
the time taken by the system to change half of the nodes,
has been raised to solve this issue [7].

Because data forwarding job is taken by nodes, so the
average hop count and the delay of the data packets were
measured. As can be seen from Figure 2 the average hop
count and delay increase with half-life time. In other words,
they decrease with the network dynamics. This can be ex-
plained as when the network are more stable, more nodes
will take the responsibility to replicate and relay the data,
consequently, more nodes will get data locally rather than
from the source directly. On the other hand, when the net-
work is highly dynamic, it is difficult for the nodes to get
data locally, and they have no choice, so they are forced to
turn to the source directly. It is noticeable that when the av-
erage hop counter equals one, i.e., all or most of the nodes
will contact the data source directly, the corresponding half-
life time is around 60 seconds, that represents a very highly
dynamic network, in reality, we would expect a network has
more stable behavior.

 0.31

 0.315

 0.32

 0.325

 0.33

 0.335

 0.34

 0.345

 0.35

 0.355

 0.36

 50  100  150  200  250  300  350  400  450  500  550

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

D
el

ay
(s

ec
on

ds
)

S
er

vi
ce

 C
ro

ss
 T

im
es

Half-life Time(Network Dynamics) in seconds

Average Hop and Delay

Service Cross Times
Delay

Figure 2. Average hop and delay.

Figure 3 shows the link stress (the number of duplicate
packets traversing the same physical link) for data packets.
It is necessary to point out that the curve labeled as tier1,
tier2 and tier3 routers represents core network, local re-
gion network and local access network respectively. The
trend is very clear, link stress for local access networks re-
mains relatively constant. This can be interpreted as the

0-7695-2622-5/06/$20.00 (c) 2006 IEEE
Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 00:29 from IEEE Xplore.  Restrictions apply. 



 0

 5

 10

 15

 20

 25

 30

 35

 50  100  150  200  250  300  350  400  450  500

Li
nk

 S
tr

es
s

Half-life Time(Network Dynamics) in seconds

Link Stress for Data Packets

Tier1 Router
Tier2 Router
Tier3 Router

Figure 3. Link stress of data packets.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 50  100  150  200  250  300  350  400  450  500

Li
nk

 S
tr

es
s

Half-life Time(Network Dynamics) in seconds

Link Stress for Gossip Packets

Tier1 Router
Tier2 Router
Tier3 Router

Figure 4. Link stress of gossip overhead.

stress is in proportion to the number of nodes participat-
ing the session, so it is relatively constant. Link stress of
local region network decreases slightly when the network
becomes more stable, compared with the link stress of core
networks, which has decreased approximately 44%. The
explanation for this phenomenon is that when the network
becomes more stable, more nodes will get data locally in-
stead of from the data source, thus some of the data packets
will bypass the core network.

Figure 4 displays the link stress of the gossip messages.
We investigate the link stress of core, local region and lo-
cal access networks respectively. The link stress of local
access networks remains roughly the same except for some
small fluctuations, and this can be viewed as the fluctuation
of the number of participating nodes. It is interesting to see
there is a crossover point corresponding to a half-life time
of around 180 seconds. At first, when the network is highly
dynamic, the link stress for local region networks is twice
that of the local access network. This indicates that when
the network is not very stable, in order to exchange infor-
mation, the gossip messages have to propagate through the
local region network. When the network becomes more sta-
ble, the link stress of local access network outgrows that of
local region core network after the crossover point. This
can be interpreted as the nodes only changing information

locally in a more stable network. That means our algorithm
is adaptive, and it can confine the gossip messages overhead
to local regions, reducing the load of the core networks, and
scalability is achieved.

 0

 5

 10

 15

 20

 25

 30

 35

 50  100  150  200  250  300  350  400  450  500

Li
nk

 S
tr

es
s

Half-life Time(Network Dynamics) in seconds

Link Stress for Data Packets

Tier1 Router
Tier2 Router
Tier3 Router

Figure 5. SCAMP: Link stress of data packets.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 50  100  150  200  250  300  350  400  450  500

Li
nk

 S
tr

es
s

Half-life Time(Network Dynamics) in seconds

Link Stress for Gossip Packets

Tier1 Router
Tier2 Router
Tier3 Router

Figure 6. SCAMP: Link stress of gossip over-
head.

When it comes to the link stress for data packets, Fig-
ure 5 shows the same pattern with that of our algorithm,
except for the slight differences in tier2 and tier3 routers.
This can be explained as our algorithm can make use of the
hierarchical structure and discover the local resource more
efficiently. Hence the nodes can get data locally instead of
from the nodes which are far away, preserving the back-
bone bandwidth. However, there is a big difference in the
link stress for gossiping message overhead. Compare Fig-
ure 4 with Figure 6, it can be concluded that our algorithm
can use the network resource more efficiently. When the
network becomes more stable, all the nodes can capture
this change and exchange information locally. However,
in the case of SCAMP, this change can not be sensed by
the nodes, and consequently, the communication overhead
remains roughly constant, in proportion to the number of
nodes presenting in the network .

0-7695-2622-5/06/$20.00 (c) 2006 IEEE
Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 00:29 from IEEE Xplore.  Restrictions apply. 



5 Related Work

The emergence of P2P applications stimulated many de-
centralized protocols targeting P2P routing and object lo-
cating [13]. They build the multicast tree or the overlay
mesh decentralized. But they all relied on a P2P routing
overlay to work properly, and messages were even flooded
within the mesh [11]. Reliability was achieved reactively
by retransmission or tree repairing, rendering high over-
head and poor reliability. On the other end of the design
spectrum, gossip-based algorithms combine simplicity and
reliability[3]. In these algorithms, each node forwards the
messages it received to other randomly chosen nodes, and
the decision is made independently. These randomized or
pseudo-randomized methods offer redundancy proactively,
ensuring reliability even in the face of random network fail-
ures. Nevertheless, the simplicity comes at the price of
more traffic on the network and these algorithms relied on a
non-scalable group membership algorithm.

Directional gossip [8] was proposed to reduce the com-
munication overhead by deliberately choosing nodes with
low connectivity to communicate with. However, it differs
with our algorithm in the sense that our algorithm works in
control plane and handles membership management only,
i.e., it is decoupled from data delivery. The size of a normal
membership management message is in the order of several
hundred kilo bytes, compared with a size of several hun-
dred mega bytes of data packets. Our algorithm achieves a
significant reduction in communication overhead.

Several gossip-based membership management algo-
rithms have been proposed, and the most similar one is
SCAMP [4]. Scalability is achieved by letting each node
have only partial view of the network, and nodes periodi-
cally communicate with the nodes chosen at random from
this partial, but it lacks flexibility and adaptability. It op-
erates using fixed parameter settings, without taking the
changes of the network into account. Our contribution is a
simple, adaptive gossip-based membership management al-
gorithm, taking the network heterogeneity (bandwidth and
network delay) into account. It enhances the ALM reliabil-
ity without sacrificing the scalability.

6 Conclusion

An adaptive gossip-based application layer multicast
membership management algorithm is proposed. It adapts
to changes in the network, confining the communication
overhead mainly within local regions. Therefore, it can
use the network resource more efficiently. Furthermore, it
builds the tree according to the link capacity of the node,
i.e., let the node with lower capacity attach to the node with
higher capacity, maximizing the capacity of the application
layer multicast or peer-to-peer network.

Reliability comes with the redundance of the randomized
algorithm, and nodes may have some proactive measures
for failures. Scalability relies on choosing gossip targets
preferentially; a faster converge and less overhead will be
achieved. To conclude, this adaptive gossip-based member-
ship management algorithm is simple and efficient.

Acknowledgement

This project is funded by the ARC linkage grant un-
der contract No. LP0347217. Many thanks to Mr Graeme
White to read the draft version of this paper.

References

[1] Clip2. Gnutella: To the bandwidth barrier and beyond.,
2000.

[2] S. E. Deering and D. R. Cheriton. Multicast routing in data-
gram internetworks and extended lans. ACM Transactions
on Computer Systems (TOCS), 8(2):85–110, May 1990.

[3] A. Demers, D. Greene, C. Houser, W. Irish, and J. Lar-
son. Epidemic algorithms for replicated database mainte-
nance. ACM SIGOPS Operating Systems Review, 22(1):8–
32, 1998.

[4] A. Ganesh, A.-M. Kermarrec, and L. Massouli. Peer-to-peer
membership management for gossip-based protocols. IEEE
Transactions on Computers, 52(2), 2003.

[5] B. Haberman and J. Martin. Igmpv3 and multicast routing
protocol interaction. In IETF Internet Draft, July 2001.

[6] Y. hua Chu, S. Rao, S. Seshan, and H. Zhang. A case for
end system multicast. IEEE Journal on Selected Areas in
Communication (JSAC), Special Issue on Networking Sup-
port for Multicast, 20(8):1456–1471, Oct. 2002.

[7] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analy-
sis of the evolution of peer-to-peer systems. In ACM Conf.
on Principles of Distributed Computing (PODC), Monterey,
CA, July 2002.

[8] M.-J. Lin and K. Marzullo. Directional gossip: Gossip in a
wide area network. In Proceedings of the Third European
Dependable Computing Conference on Dependable Com-
puting, pages 364–379, 1999.

[9] R. P.-S. M. Barthelemy, A. Barrat and A. Vespignani. Veloc-
ity and hierarchical spread of epidemic outbreaks in scale-
free networks. Physical Review Letters, 92:1–4, 2004.

[10] D. F.-V. J. C. L. S. Deering, D. Estrin and L. Wei. An archi-
tecture for wide-area multicast-routing. In ACM SIGCOMM,
pages 126–135, Oct. 1994.

[11] S.Ratnasamy, P.Francis, M.Handley, R.Karp, and S.Shenker.
A scalable content-addressable network. In Proc. of ACM
Sigcomm, Aug. 2001.

[12] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang.
The feasibility of supporting large-scale live streaming ap-
plications with dynamic application end-points. In Proceed-
ings of ACM SIGCOMM, Portland,OR,USA, Aug. 2004.

[13] B. Zhang, S. Jamin, and L. Zhang. Host multicast: A frame-
work for delivering multicast to end users. In INFOCOM
2002. Twenty-First Annual Joint Conference of the IEEE
Computer and Communications Societies, June 2002.

0-7695-2622-5/06/$20.00 (c) 2006 IEEE
Authorized licensed use limited to: RMIT University. Downloaded on January 5, 2010 at 00:29 from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


