
International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.3, May 2011

DOI : 10.5121/ijcnc.2011.3308 113

A DYNAMIC ARCHITECTURE FOR

RECONFIGURATION OF WEB SERVERS CLUSTERS

Carla Marques
1
, Isabel Oliveira

2
, Giovanni Barroso

2
 and Antonio Serra

3

1
Universidade do Estado do Rio Grande do Norte (UERN)

BR 110 Km 46,59600-900,Mossoró-RN-Brasil
 carla.katarina@gmail.com

2
Universidade Federal do Ceará(UFC)

Campus do Pici, Fortaleza-CE, 60455 760 – Brasil
 isabelregio@gmail.com, gcb@fisica.ufc.br

3
Instituto Federal de Educ. Ciencia e Tecnologia

Av. 13 de Maio, 2081, Fatima, Fortaleza – CE, 60040-531 - Brasil
prof.serra@gmail.com

ABSTRACT

 The allocation planning of resources in a web server cluster is accomplished nowadays by the

administrator. Once the internet is quite dynamic, as far as the use of resources is concerned, such a task

may be considered critical and inefficient if accomplished manually. Our approach benefits from the use

of agents to learn from the environment and adjust automatically the behavior of the system to make a

better use of the available resources. With this approach it is possible to help the administrator by

minimizing your stress in moments of work overload. The conception, specification, adopted allocation

planning strategy, modeling in Petri nets, implementation of this platform in the Java language are

presented. Experimentations and simulations which prove the efficiency of the proposal are presented.

KEYWORDS

Cluster of Web server, Dynamic Reconfiguration, Multiagent system, Petri Nets

1. INTRODUCTION

In recent years, cluster computing technology has become a cost-effective computing

infrastructure that aggregates effectively different types of resources (such as processing,

storage, and communication resources). It is also considered to be a very attractive platform for

low cost super-computing. Thus, a cluster of computers is easy to build and highly scalable.

Basically, it consists of several workstations interconnected through a high-speed network for

information exchange and coordination among them.

Even for experienced cluster administrators, the management of a cluster is an exhausting job as

allocating the cluster's resources by hand can easily become unmanageable. This may occur

because the needs of processing requirements can change very quickly in a dynamic

environment such as the Internet. With this motivation, this paper presents a solution to increase

the availability of services in clusters of web servers using a Multi-agent system. The objective

of this architecture is to minimize the work of the cluster administrator and reduce the

possibility of errors in periods of load peaks, because the load's Internet is unpredictable. The

advantage of the agents' use is that this system [2] provides the dynamic management of

resources because it is a solution inherently distributed.

Presented in this paper is a Dynamic Architecture for Reconfiguration of Web servers Clusters

(DARC) that perform a self-reconfiguration of the resources in a web server to help the

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.3, May 2011

114

administrator. We integrated this architecture to the platform of Web Servers - Differentiated

Services Admission Control (WS-DSAC) [3].

The main contributions of this work are:

• Implementation of a self-reconfiguration of clusters, without the need of interference of

the administrator;

• Dynamic reallocation of web servers executed by agents, based on information obtained

through interaction with the WS-DSAC platform;

• Verification of the appropriate amount of web servers to be relocated between clusters,

based on reconfiguration decisions of the agents.

The rest of this paper is organized as follows. In Section 2, we present some related works to

put our work in context. In Section 3, we describe the WS-DSAC load balancing Platform,

which the multi-agent system is integrated. In Section 4, we present our approach for dynamic

reconfiguration. The architecture model in Colored Petri Net (CPN) and the results of the

simulation model are presented in section 5. The implementation and analysis of the DARC

architecture is presented in Section 6. Finally, we present the conclusions in Section 7.

2. RELATED WORK

In this section, we present some relevant works that have been developed in the area of load

balancing.

The work presented in this paper builds upon [3], which presents the WS-DSAC platform, and so

performs load balancing in a cluster of web servers. This platform relies on service

differentiation to allocate available resources. Thus, the servers are grouped in different web

clusters according to predefined service classes, and each cluster is responsible for processing

requests from a specific service class with a certain Quality of Service (QoS). The QoS is

measured through the concept of “reactivity coefficient", defined in [4] as a measure of the load

on a server; more specifically, it is an estimate of the average waiting time of a task that must be

executed (in our case, of a request that must be processed). Due to its importance for the work

presented in this paper, we describe WS-DSAC in more detail in Section 3.

In [1], is presented the cluster based replication architecture for load-balancing in peer-to-peer

content distribution systems using an intelligent replica placement technique.

Several works use agent technology to perform dynamic load balancing [5, 6, 7 & 8]. In these

works there aren’t automatic reconfigurations of cluster. Thus, they require an administrator that

manually inputs the configuration information. This manual work is annoying and error-prone,

especially when the scale of clustering enlarges or the configuration changes dynamically.

Some works propose strategies for automatic dynamic reconfiguration. See [9], where a

proprietary operating system called Fire Phoenix is defined; although it can be installed on top

of another operating system, having two different kernels introduces an additional overhead.

This work is closely related to ours as it also performs a reconfiguration of clusters using agents,

aiming at providing a scalable and highly available distributed heterogeneous platform.

In the work presented in [10], an agent-based self-configuration mechanism is proposed, that

allows for the automatic allocation of available resources to overloaded clusters without human

intervention; however, this approach relies on a central server, which is a single point of failure.

In another example [11], presents an approach to allocate a server in a cluster for the processing

of a request and activate automatically standby servers when the cluster's load increases.

Initially, a request is allocated to a server randomly. If this server cannot process the request, it

is forwarded to another server, and so on, until one server is able to process it or the maximum

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.3, May 2011

115

amount of time allocated for the request has been exceeded. This redirection-based approach

can be inefficient. Moreover, no load-balancing is performed and a single cluster is considered.

The solution presented in this paper aims at a dynamic reconfiguration of clusters of web

servers using multi-agent systems, minimizing the task of the Cluster Administrator. In this

architecture, the agents learn from previous information to make the best reconfiguration in the

future. This new architecture DARC is presented in section 4.

3. THE WS-DSAC PLATFORM: LOAD BALANCING

In this section the WS-DSAC Platform is presented, which the DARC Architecture is

integrated. This platform has the main objectives: to balance the imposed load, to guarantee

different QoS levels and to use available resources in an effective way.

The WS-DSAC platform (Figure 1) is composed by a set of elements: Class Switch, Cluster

Gateways and Web Server Nodes. Class Switch is responsible of classification and admission

control of client requests. It receives incoming HTTP requests, identifies the service class and

sends each request to a specific Cluster Gateway. Cluster Gateway chooses a least loaded Web

Server Node to process the requests sent by the Class Switch.

Figure 1. Overview WS-DSAC Platform

The platform offers different levels of QoS based on the differentiation of services. Services are

deployed in a number of Web Server nodes and they are composed by Internet services and

distributed objects. Incoming requests may belong to different classes of services. The platform

administrator associates each class of service to a maximal load value that can be achieved by

its “class cluster” domain. The RC parameter (reactivity coefficient) is associated with each pre-

established class of services and this parameter is used in each Web server.

The strategy adopted in [3] for resources dynamic reallocation between service classes is based

on “class clusters” work mode changes. During a time interval, cluster resources priority

allocated for one specific service class can be in one of three possible states: shared, exclusive

or saturated. When a specific “class cluster” works in the shared mode, it permits the respective

class has available resources that can be used by other service classes. They can be used without

compromise agreements established with the native class during a predefined time interval. In

this mode the “class cluster” also receives incoming requests of other service classes. In the

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.3, May 2011

116

exclusive mode, the “class cluster” only receives requests of its native class. This signifies that

load levels have reached established thresholds and accepting new requests of other classes can

cause rejection of native class requests. In the saturated mode the “class cluster” will accept no

new requests because, if new requests are accepted, resources will not be sufficient to guarantee

the QoS assured to requests that are been processed.

Work mode changes on the “class clusters” are based on two thresholds: a dynamic threshold

recomputed at each time interval ρki and Remk and a threshold that limits the maximum RC of

one specific class, Rmax and Rac, where: ρki estimates load average of servers registered on the

class cluster “i”; Remk establishes the RC value that can be reached by the class cluster; Rmax is

the maximum value allowed for Remk where the cluster works in shared mode and Rac is the limit

value where the cluster works in exclusive mode.

When a request arrives on the platform the “class switch” identifies the request class. Given that

a cluster is the least loaded, the “class switch” performs the hereafter algorithm: if ρki ≤ Rmax

then the cluster works in shared mode; else if ρki > Rmax and ρki ≤ Rac the cluster works in

exclusive mode; else the cluster works in saturated mode.

The Rmax, Rac and ρki variables, presented in this section, control the WS-DSAC platform. The

two main limitations of the WS-DSAC platform presented are: 1) an administrator is needed to

manage the cluster constantly; and 2) if a cluster is in the saturated mode and there is no other

cluster in the shared mode, then requests of the class of the saturated cluster will be rejected. In

order to generate a better availability of resources of the system, agent based architecture was

developed to monitor the clusters load. This new architecture is presented in section 4.

4. THE DARC ARCHITECTURE: DYNAMIC RECONFIGURATION

In this section, we describe the Dynamic Architecture for Reconfiguration of Web servers

Clusters (DARC) proposed in this paper. The main objective is to perform a self-

reconfiguration of the resources in a web server to help the administrator, minimizing his stress

in moments of work overload, using a multi-agent system. The DARC architecture enables the

WS-DSAC to continuously meet the requests, thanks to the reconfiguration of the resources or

threshold updates. A multi-agent system is a natural approach to perform a dynamic

management of resources in a distributed way.

Figure 2. Agents in the DARC architecture

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.3, May 2011

117

Thus, the agents are able to adapt the cluster to changing request patterns or environment factors

(e.g., new servers can be added to the cluster -or removed from the cluster- easily). The agents

reconfigure the system resources by interacting with the basic WS-DSAC platform described in

the previous section. By interacting with the environment, these agents are able to learn from

past experiences to modify, if needed, the distribution of the web server nodes in each cluster,

allocating a host to a cluster that is overloaded and the classes' thresholds (Rmax and Rac)

appropriately. Figure 2 shows the placement of the DARC agents on the different elements in a

cluster.

Initially the cluster administrator defines different classes of services as well as the

characteristics of each class (Figure 3).

Figure 3. Dynamic capacity management

He/she also defines the clusters and hosts that are associated to such classes. While in operation,

those features may change, requiring the intervention of the administrator to re-dimension the

system. This work proposes an intelligent module that will learn how to interact with the

framework, helping the administrator's work. The use of this architecture avoids the intervention

and monitoring of the cluster administrator. Instead, the agents learn directly from the way its

cluster operates and update the distribution of the web server nodes in each cluster and the

classes' thresholds when is necessary, minimizing the probability of requests being rejected.

Figure 4. Levels and layers in DARC

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.3, May 2011

118

Figure 4 presents the different levels of the DARC architecture existing within a cluster. The

Strategic Level corresponds to the Management Layer, which manages the interactions among

the various agents in the proposed architecture. The Tactical Level holds both the Monitoring

Sublayer and the Execution Sublayer. Finally, the Operational Level corresponds to the

Communication Layer, which is responsible for the communication with the WS-DSAC. As

shown in figure 4, the multi-agent architecture proposed in DARC is composed of different

types of agents:

• A Communication Agent requests the WS-DSAC platform about the value of the

variable ρki (see Section 3) and communicates this value to the Monitoring Agent (explained

below).

• A Monitoring Agent keeps collecting information of the state of each server during

specific time intervals. The monitoring rate is adjusted dynamically depending on the CPU load.

• A Coordinator Agent manages the interactions among several agents and receives alerts

from the monitoring agents.

• Three Execution Agents can be distinguished according to their roles. Thus, the

MaximumLoad Agent allocates the less loaded host to the cluster that is saturating. The

DynamicThreshold Agent is designed to update clusters' thresholds before it saturates, acting

only in case the action of the MaximumLoad Agent is not enough to prevent the cluster

saturation. Finally, the UpdateManager Agent is designed to monitor the suitability of the

update made by DynamicThreshold Agent. We will explain these mechanisms in more detail in

the following.

The Execution Agents receive control information from its Coordinator Agents to set

appropriate thresholds by taking into account the whole system. To avoid wrong decisions when

overload spikes occur, we used a variable that stores the average load of the cluster (medLoad).

In addition, we use the variables γlow and γhigh (boundary parameters of the cluster load to work

in exclusive mode) and δ1 (update parameter of the cluster load to work in exclusive mode) to

control the strategy adopted by the DARC architecture. The basic aspects of this mechanism are

summarized in Figure 5.

Figure 5. Basic mechanism for DARC

Additionally, the following must be considered:

• There are situations that could compromise the performance of the self-reconfiguration

approach. Thus, for example, it could happen that the DynamicThreshold Agent modifies the

thresholds constantly, due to continuous alternate periods of overload spikes and periods of low

overloading. The UpdateManager agent will make sure that the threshold adjustments are

appropriate, by learning from past behaviors. Thus, if it detects several threshold updates in a

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.3, May 2011

119

short period of time, it will increase the thresholds for its cluster (C1) by δ1 and decrease the

thresholds from the less loaded cluster (C2) by δ1.

• In order to avoid overloading a server, the overall increase due to threshold updates

cannot exceed 50% of the thresholds' initial values; that is, we assume that accepting requests

when the load is above 1.5 * Rac would result in overloading.

• When the cluster load stabilizes (i.e., when the cluster switches back to shared mode)

the thresholds will be re-initialized.

Appropriate values of the parameters γlow, γhigh, and δ1, were chosen experimentally.

Specifically, we set γlow and γhigh to 80% and 90% of the cluster load to work in exclusive mode,

respectively, and the value of δ1 to 10% of the cluster load to work in exclusive mode. These

values provided good results in a variety of experiments.

5. MODELING AND ANALYZING OF THE ARCHITECTURE IN COLORED

PETRI NETS

5.1. Modeling

This section presents the modeling of DARC described in section 4 and illustrated in Figure 4.

The modeling was done in Colored Petri Nets (CPN) [12] using the CPNTools. CPN is an

adequate tool for modeling, simulating and analyzing of discrete event dynamics systems,

among which the architecture proposal fits.

Figure 6. Hierarchy of Pages of the Modeling in Petri Nets

In Figure 6, the hierarchical view of pages and sub-pages of the model (represented by the

substitution transitions - duplicate rectangles in the figures). The Main page presents the general

operation of the WS-DSAC/DARC architectures detailed in Figure 2, and through it runs the

others sub-pages: WS-DSAC, Liberation, NewParameters and DARC. The WS-DSAC sub-page

performs the load balancing and it is based on differentiated services. This sub-page is

composed of another sub-page (ChooseGat), where the load changes are modeled from a server.

The Liberation sub-page performs the releasing of http requests after these requests are met. The

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.3, May 2011

120

NewParameters sub-page has the function to updating the parameters used by the WS-DSAC

platform, such as the calculation of new estimated loads of the servers belonging to clusters.

Finally, the DARC sub-page presents the message exchange among the agents and their actions.

The modeling was done in two stages: the first based on the model of the WS-DSAC platform

(I) and in the second the inclusion of the DARC architecture (II).

Figure 7. The Main Page of the Modeling in Petri Nets

In Figure 7, when a request arrives, the WS-DSAC platform is executed. The request and the

load of the answering server are released. At pre-defined time intervals, the NewParameters

sub-page is enabled and this sub-page performs the update of the parameters used by the WS-

DSAC platform. After each update a check is performed by the Monitoring Agent. If the check

is positive, then the DARC substitution transition (Figure 8) is executed and then the

Monitoring Agent will send an alert to the Coordinator Agent that activates the Execution

Agents (Execution Layer transition). Otherwise, the updated parameters of the WS-DSAC return

to be used by the network and the processing of the requests continues.

Figure 8. DARC Page of the Modeling in Petri Nets

From the model presented, several simulations were performed with different environments of

operation of system for validation of DARC architecture. These simulations were performed

using the CPNTools.

5.2. Simulation of the Model and Analyzing of the Results

The simulations were performed in two stages: first, we evaluate the WS-DSAC platform,

without the DARC architecture, for dynamic reconfiguration, i.e., only the WS-DSAC platform

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.3, May 2011

121

was simulated (CPN model I in Figure 7). In the second stage, the DARC architecture was

added to WS-DSAC, and CPN model II was added to the Figure 7.

For the simulations, the classes 0 and 1 have been defined in the platform whose parameters are

described in section 3. We used architecture with two clusters (clusters 0 and 1); each one had

two servers. The cluster 0 was associated to a native class 0 and the cluster 1 to a class 1. So in

the simulation, using DARC, the increase of resources in a cluster, such as the removal of a

server in a cluster and its addition to the other cluster, is represented by the increasing of the

parameters of a class of service in the same proportion of the decreasing of the parameters of the

other. The values of variables Rac and Rmax are 300 and 210 respectively for cluster 0. For cluster

1, the values are respectively 600 and 420. These initial values were determined through an

extensive experimental evaluation performed within the context of WS-DSAC [3]: They lead to

a good performance in a variety of scenarios.

The simulation results are compared and presented in the following sections.

5.3. Critical Moments

Several experiments were performed using the CPNTools to evaluate our proposal. In each

experiment, a client sends every second, a request belonging to class”0” while another client

sends the same amount of requests belonging to the class “1”. First, we evaluate the WS-DSAC

platform, without the DARC architecture. We will call this approach no-DARC1-sim. For

dynamic reconfiguration we evaluate the WS-DSAC with the DARC architecture. We will call

this approach DARC1-sim.

Figure 9. no-DARC1-sim

Figure 9 shows the distribution of load between the two clusters along time, using no-DARC1-

sim. The simulations showed the first rejection of class 0 (RC > 300) at t=168 and, after that,

other rejections are repeated during the simulation. This moment is signaled with the first circle

from left to right. The simulations also showed the behavior of clusters, as in example of at

t=785. The cluster 0 is overloaded (RC=210), changing their work mode to the exclusive mode.

The cluster 1 will meet the requests in shared mode, RC<420. This load distribution does not

prevent the system rejects requests because the clusters sometimes exceeded their thresholds.

This situation is shown in Figure 9 by the second circle. The third circle presents the clusters in

shared mode.

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.3, May 2011

122

On the other hand, we evaluate the benefits of dynamic reconfiguration with the DARC

architecture in Figure 10. The distribution of load between the two clusters along time shown in

Figure 10, using the DARC1-sim approach with the same amounts of requests belonging to the

two classes, the cluster 1 did not reach the saturated mode and it remained with the RC<600. To

add, the cluster 0 exceeded less often its limit. Comparing with the results of simulation in

Figure 9, the cluster 1 exceeds this limit causing a higher rate of rejection of requests, and the

cluster 0 also obtained its maximum point (RC=510) against (RC=450) (see circle in Figure 10).

Figure 10. DARC1-sim

We conclude that the use of the DARC caused a dynamic reconfiguration of resources between

the two clusters and the consequent decrease in saturation of clusters. In both cases (no-DARC1-

sim and DARC1-sim), several simulations were made with the purpose of calculating the

rejection rate, and it was observed that in the first case, the average rejection rate of requests

was 3.93 % while the second was 0.04%, showing a better utilization of system resources.

5.4. Saturation Moments

In the following simulations were sent only requests belonging to the class 0 (Figures 11, 12, 13

and 14 show the results of simulations). Thus, the cluster 0 saturates more quickly because it

has the lowest thresholds. The graph in Figure 11 refers to the WS-DSAC platform, without the

DARC architecture, unlike the Figures 12, 13 and 14 where the DARC was applied. It is

important to mention that the percentage of monitored load of clusters by agents was modified

at several levels, being 80% in the first case (Figure 12), 85% in the second (Figure 13) and

90% in the last (Figure 14). In addition, 10% of resources were moved from cluster 1 to cluster

0, when needed, in all three cases. Referring to the simulation of Figure 12 as an example, it

means that when the load of cluster 0 reached 80% of its load limit, 10% of the resources of

cluster 1 were moved to him.

Figure 11 shows the distribution of load between the two clusters along time of the WS-DSAC,

without DARC. We will call this approach no-DARC2-sim. Although this distribution occurs,

there is also a considerable rejection of requests due to the saturation of cluster 0 (RC> 300). On

the other hand, Figure 12 shows the distribution of load between the two clusters along time of

the WS-DSAC with DARC. We will call this approach DARC2-sim. This simulation shows that

the cluster 1 has not changed its work mode to saturate, though its resources are allocated to

cluster 0. This can be verified by checking the points of maximum load of cluster 1 using the

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.3, May 2011

123

two referred simulations. The Figure 11 shows that cluster 1 reaches a maximum load (RC =

530) at t= 1254, and in Figure 12 its peak load (RC=350) occurred at t=656 and the cluster

worked until the end of the simulation below that value. Two moments of saturation of cluster 0

are represented by circles in Figures 11 and 12.

Figure 11. no-DARC2-sim

As in the two previous situations (no-DARC1-sim and DARC1-sim), several simulations were

made with the purpose of calculating the rejection rate. They showed that in the first case, the

average rejection rate of requests was 9.8% (Figure 11) while the second was 0% (Figure 12).

Thus, the cluster 1 has not changed its work mode to saturate, though its resources are allocated

to cluster 0. Consequently, the system met all requests sent improving the use of resources.

Figure 12. DARC2-sim

In the simulation on Figure 13 the monitoring agent notifies the coordinator agent when the

load of the cluster 0 reaches 85% of its limit and Figure 14 when it reaches 90%. We will call

the first approach DARC3-sim and the second approach DARC4-sim.

The rejection rate observed in the network was 0.02% on Figure 13 and 0.05% on Figure 14,

indicating that the monitoring percentage of the threshold of the cluster is released, the rejection

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.3, May 2011

124

rate also increases. It indicates that if the approach to be taken by agents is made over time, it is

possible to get a better performance of the system.

The comparison of the behavior of the approaches analyzed presented in Figures 12, 13 and 14

are described below:

Figure 13. DARC3-sim

• Figure 12 shows that there are 13 load peaks (RC>=Rmax) for the cluster 0, against 15 by

the same cluster in Figure 13, and 17 load peaks in Figure 14. This indicates that at the moment

that the reconfiguration is made with the monitoring percentage of 80% of the cluster threshold,

the system requires fewer adjustments. On the other hand, when the percentage of monitoring

the load is greater (85% and 90%) the rejections of requests are greater;

• Figure 12 shows that the load of cluster 1 was lower in most time with RC<300 and it

was obtained less response time;

• Figure 13 shows that the clusters behaved more irregularly than in Figure 12, reaching

load values close to the limits set by the administrator. Indeed, the simulations showed at

t=1164 to cluster 0, and t=748 for cluster 1. The circles in the figure indicate the location of

these moments;

• Figure 14 shows that the cluster 1 has reached a value of load that exceeded the limit at

t=555, signaled by the circle. As shown, in several other moments of the simulation, values

were very high, even more than in other simulations (Figures 12 and 13).

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.3, May 2011

125

Figure 14. DARC4-sim

With the results presented above, we can conclude that among all the simulations presented, the

one that best behaved was the simulation that made the reallocation of resources to monitoring

80% of the load of cluster 0 (Figure 12), which had the most consistent proposed objectives of

this work. In addition, we can conclude that the delay in taking actions for reconfiguration of

resources in clusters causes an overload on their servers and their consequent rejection of

requests. Thus, the incorporation of DARC to WS-DSAC makes the best dynamic

reconfiguration of resources, reducing the number of rejections, and therefore significantly

improving the use of system resources and reducing the rejection rate of requests.

5.5. Performance Evaluation

Figure 15 presents the response time given by the performance model of WS-DSAC without

DARC and WS-DSAC/DARC.

Figure 15. Comparison of response times

We can observe in figure 15 that, in the simulation, the response time of the DARC architecture

is a little larger than the WS-DSAC platform. However, the DARC architecture meets more

requests and the rejection rate is lower, which proves the effectiveness of the solution. Figure 16

presents the rejected rate given by the performance model of WS-DSAC/DARC. The rejection

rate of the WS-DSAC platform is 6%. However, the DARC architecture is 0.02 %.

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.3, May 2011

126

Figure 16. Comparison between rejection rates

6. IMPLEMENTATION AND EVALUATION OF DARC ARCHITECTURE TEXT

To evaluate our proposal, we have performed several experiments in a real environment. Each

experiment is repeated several times and average results are reported, checking that the averages

are significant. As Figure 17 shows, a heterogeneous scenario (with different operating systems

and hardware configurations) and two clusters (Cluster 0 and Cluster 1) has been considered for

experimental evaluation:

Figure 17. Hardware for the experiments

• Web server nodes 1, 2, 3 and 4 are generic PCs, with an AMD Athlon 64 Processor 3800,

2.41 GHz CPU, 1 GB RAM, and a 100 Mb full duplex Ethernet NIC. In these nodes, the

Apache Tomcat 5 Servlet/JSP Container (http:\\tomcat.apache.org) is installed.

• The Class Switch and the Cluster Gateway are generic PCs with an Intel Pentium IV, 3.06

GHz CPU, 512 MB RAM, and a 100 Mb full duplex Ethernet NIC.

• The client node is a generic PC, with an Intel Pentium IV, 2 GHz CPU, 512 MB RAM, and

a 100 Mb full duplex Ethernet NIC. We have used Webserver Stress Tools 7 Professional

Edition (http://www.paessler.com/webstress) to emulate the sending of HTTP requests: The

Class Switch domain receives one request every second.

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.3, May 2011

127

For the experiments presented in this section, we consider the platform described in Figure 17.

First, we evaluate the WS-DSAC Platform, without the DARC architecture, for dynamic

reconfiguration. We will call this approach no-DARC. Figure 18 shows the distribution of load

between the two clusters along time, for a scenario with an initial low load that increases

considerably in the final moments of the simulation. Although Cluster 0 exceeds the value of

Rac=300 at time instants 120ms and 270ms, no request was rejected because Cluster 1 was in

shared mode. However, at time instants of 180ms, 430ms, and 830ms, Cluster 0 exceeds its

threshold Rac and Cluster 1 was in exclusive mode, leading to rejections of requests of the class

assigned to Cluster 0. Similarly, Cluster 1 exceeds the value of Rac=600 at the end of the

simulation while Cluster 0 is in exclusive mode, leading to rejections of the requests for Cluster

1.

Figure 18. no-DARC

Second, we evaluate the WS-DSAC Platform, with the DARC architecture, for dynamic

reconfiguration but without using the DynamicThreshold Agent or any learning mechanism. We

will call this approach DARC-1. In Figure 19, Cluster 0 exceeds the value of Rac only at time

instant 430ms; as Cluster 1 is in exclusive mode at that time, then the requests of the class

assigned to Cluster 0 will be rejected. However, regarding the previous experiment where

DARC is not used (whose results are shown in Figure 18), the amount of requests rejected

decreases.

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.3, May 2011

128

Figure 19. DARC-1

Third, we evaluate DARC-1 with the addition of the DynamicThreshold agent to improve

fairness in the use of resources. We will call this strategy DARC-2. The results are shown in

Figure 20. At time instants 390ms and 930ms, Cluster 0 exceeded the threshold and it was not

possible to allocate any host from Cluster 1 (that was in exclusive mode) to Cluster 0. To solve

this problem, the DynamicThreshold agent updated the cluster's threshold sometimes (3-5 times

in the different repetitions of the experiments). As mentioned in Section 4, if (medLoad ≥ γhigh*

Rac) then the DynamicThreshold Agent of the cluster in saturated mode increases the

thresholds of that cluster by δ1.

Figure 20. DARC-2

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.3, May 2011

129

Figure 21. DARC-3

Finally, we perform an experiment with our full-fledge self-reconfiguration proposal (DARC-3),

where an UpdateManager agent (that learns from the past history) is added. The results are

shown in Figure 21. In this experiment, there were no peak saturations for the Clusters 0 and 1.

With the utilization of the DARC architecture we can resolve the main problems of the WS-

DSAC platform presented to meet the requests. Therefore, we reduce the peak saturation of the

system and as consequence the rejected requests.

7. CONCLUSIONS

This paper has presented DARC, a dynamic architecture for self-reconfiguration of clusters of

web servers. Our approach benefits from the use of agents to learn from the environment and

adjust automatically the behavior of the system to make a better use of the available resources.

With this approach, it's possible to help the administrator, minimizing your stress in moments of

work overload. We performed the conception, specification, modeling in Colored Petri nets and

implementation in Java of this architecture.

Finally, we performed experiments in different situations and we saw that the DARC

architecture decreased the rejection rates and improved the availability of resources (“fairness”).

Therefore, with the experiments we can prove that when the monitoring percentage of the load

increased, the rejection rate of requests also increased.

It is important to emphasize that the main advantages of this architecture is that we can optimize

the allocation of the resources from one cluster to another so that all requests are met. For the

initial parameters used in our experiments, only 10% of the resources of a cluster were

redirected to the other cluster, so that the rejection rate decreased and reached 0.

As for future work, we plan on analyzing the possibility of applying this proposal (probably

with some extensions) in a different domain (not in the context of web servers).

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.3, May 2011

130

REFERENCES

[1] Ayyasamy S.; Sivanandam S.N. A Cluster Based Replication Architecture for Load Balancing in

Peer-to-Peer Content Distribution. In: International Journal of Computer Networks &

Communications (IJCNC). v. 2, n. 5, p. 158-172, September 2010

[2] M. Wooldridge, (2002) An Introduction to MultiAgent Systems, John Wiley and Sons Ltd.

[3] A. Serra, D. Gati, G. Barroso, R. Ramos, and J. Boudy, (2005) “Assuring QoS diferentiation and

load balancing on web servers clusters”, International Conference on Control Aplications, pp.

885-890.

[4] R. Olejnik, A. Bouchi, and B. Toursel, (2002) “An object observation for a java adaptative

distributed application platform”, International Conference on Parallel Computing in Electrica

Engineering, pp. 171-176.

[5] J. Wang, Y. Ren, D. Zheng, and Q. Wu, (2007) “Agent based load balancing middleware for

service- oriented applications”, International Conference on Computational Science, Part II, pp.

974-977.

[6] P. Herrero, J. L. Bosque, M. Salvadores, and M. S. Perez, (2007) “An agents-based cooperative

awareness model to cover load balancing delivery in grid environments”, Lecture Notes in

Computer Science, pp. 64-74.

[7] N. Nehra and R. B. Patel, (2007) “Towards dynamic load balancing in heterogeneous cluster

using mobile agent”, International Conference on Computational Intelligence and Multimedia

Applications, pp. 15-21, December.

[8] N. Nehra, R. B. Patel, and V. K. Bhat, (2006) “A multi-agent system for distributed dynamic load

balancing on cluster”, International Conference on Advanced Computing and Communications,

pp. 135-138.

[9] Z. H. Zhang, D. Meng, J. F. Zhan, L. Wang, L. P. Wu, and W. Huang, (2006) “Easy and reliable

cluster management: The self-management experience of Fire Phoenix”, International Parallel

and Distributed Processing Symposium, p. 8pp..

[10] H. Sung, B. Choi, H. Kim, J. Song, S. Han, C. W. Ang, W. C. Cheng, and K. S. Wong, (2007)

“Dynamic clustering model for high service availability”, International Symposium on

Autonomous Decentralized Systems, pp. 311-317.

[11] C. Adam and R. Stadler, (2005) “Adaptable server clusters with QoS objectives”, International

Symposium on Integrated Network Management, pp. 149-162.

[12] K. Jensen, L. Kristensen, L. Wells (2007) Coloured Petri Nets and CPN Tools for modelling and

validation of concurrent systems. Springer, vol. 9.

International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.3, May 2011

131

Authors

Carla Katarina de Monteiro Marques is an

assistant professor at the Computer Science

Department of the University do Estado do Rio

Grande do Norte, where she teaches computer

networks. She is a Master Degree in Computer

Science, PhD student in Federal University of

Ceara, and works in reconfiguration system,

Agent based Simulation and Coloured Petri

Nets.

Isabel Cristina Régio de Oliveira is a Masters

Student at the Engineering Teleinformatica

Department of the Federal University of Ceara,

where she works in Clusters Web based

Simulation and Modelling, Agent based

Simulation and Modelling, and Coloured Petri

Nets

Antônio de Barros Serra is a professor at the

Telematica Engineer Computer Science

Department of the Federal Institute of Educ.

Ciencia e Tecnologia, where he teaches

computer networks. He is a PhD in Réseaux

Avancés de Connaissances et Organisations pela

Institut National des Télécommunications, and

works in Cluster Computing.

Giovanni Cordeiro Barroso is an adjunct

professor at the Physics Department of the

Federal University of Ceara, where he teaches

modeling hybrid systems. He is a Pós-PhD in

Teleinformatica pelo Institut National des

Télécommunications - INT, Evry-France and

works in Petri nets, modeling and analysis,

coloured petri nets, distributed systems and

discrete event systems.

