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ABSTRACT 

 The allocation planning of resources in a web server cluster is accomplished nowadays by the 

administrator. Once the internet is quite dynamic, as far as the use of resources is concerned, such a task 

may be considered critical and inefficient if accomplished manually. Our approach benefits from the use 

of agents to learn from the environment and adjust automatically the behavior of the system to make a 

better use of the available resources. With this approach it is possible to help the administrator by 

minimizing your stress in moments of work overload. The conception, specification, adopted allocation 

planning strategy, modeling in Petri nets, implementation of this platform in the Java language are 

presented. Experimentations and simulations which prove the efficiency of the proposal are presented. 
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1. INTRODUCTION 

In recent years, cluster computing technology has become a cost-effective computing 

infrastructure that aggregates effectively different types of resources (such as processing, 

storage, and communication resources). It is also considered to be a very attractive platform for 

low cost super-computing. Thus, a cluster of computers is easy to build and highly scalable. 

Basically, it consists of several workstations interconnected through a high-speed network for 

information exchange and coordination among them. 

Even for experienced cluster administrators, the management of a cluster is an exhausting job as 

allocating the cluster's resources by hand can easily become unmanageable. This may occur 

because the needs of processing requirements can change very quickly in a dynamic 

environment such as the Internet. With this motivation, this paper presents a solution to increase 

the availability of services in clusters of web servers using a Multi-agent system. The objective 

of this architecture is to minimize the work of the cluster administrator and reduce the 

possibility of errors in periods of load peaks, because the load's Internet is unpredictable. The 

advantage of the agents' use is that this system [2] provides the dynamic management of 

resources because it is a solution inherently distributed. 

Presented in this paper is a Dynamic Architecture for Reconfiguration of Web servers Clusters 

(DARC) that perform a self-reconfiguration of the resources in a web server to help the 
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administrator. We integrated this architecture to the platform of Web Servers - Differentiated 

Services Admission Control (WS-DSAC) [3]. 

The main contributions of this work are: 

• Implementation of a self-reconfiguration of clusters, without the need of interference of 

the administrator; 

• Dynamic reallocation of web servers executed by agents, based on information obtained 

through interaction with the WS-DSAC platform; 

• Verification of the appropriate amount of web servers to be relocated between clusters, 

based on reconfiguration decisions of the agents. 

The rest of this paper is organized as follows. In Section 2, we present some related works to 

put our work in context. In Section 3, we describe the WS-DSAC load balancing Platform, 

which the multi-agent system is integrated. In Section 4, we present our approach for dynamic 

reconfiguration. The architecture model in Colored Petri Net (CPN) and the results of the 

simulation model are presented in section 5. The implementation and analysis of the DARC 

architecture is presented in Section 6. Finally, we present the conclusions in Section 7. 

2. RELATED WORK 

In this section, we present some relevant works that have been developed in the area of load 

balancing. 

The work presented in this paper builds upon [3], which presents the WS-DSAC platform, and so 

performs load balancing in a cluster of web servers. This platform relies on service 

differentiation to allocate available resources. Thus, the servers are grouped in different web 

clusters according to predefined service classes, and each cluster is responsible for processing 

requests from a specific service class with a certain Quality of Service (QoS). The QoS is 

measured through the concept of “reactivity coefficient", defined in [4] as a measure of the load 

on a server; more specifically, it is an estimate of the average waiting time of a task that must be 

executed (in our case, of a request that must be processed). Due to its importance for the work 

presented in this paper, we describe WS-DSAC in more detail in Section 3. 

In [1], is presented the cluster based replication architecture for load-balancing in peer-to-peer 

content distribution systems using an intelligent replica placement technique. 

Several works use agent technology to perform dynamic load balancing [5, 6, 7 & 8]. In these 

works there aren’t automatic reconfigurations of cluster. Thus, they require an administrator that 

manually inputs the configuration information. This manual work is annoying and error-prone, 

especially when the scale of clustering enlarges or the configuration changes dynamically. 

Some works propose strategies for automatic dynamic reconfiguration. See [9], where a 

proprietary operating system called Fire Phoenix is defined; although it can be installed on top 

of another operating system, having two different kernels introduces an additional overhead. 

This work is closely related to ours as it also performs a reconfiguration of clusters using agents, 

aiming at providing a scalable and highly available distributed heterogeneous platform. 

In the work presented in [10], an agent-based self-configuration mechanism is proposed, that 

allows for the automatic allocation of available resources to overloaded clusters without human 

intervention; however, this approach relies on a central server, which is a single point of failure. 

In another example [11], presents an approach to allocate a server in a cluster for the processing 

of a request and activate automatically standby servers when the cluster's load increases. 

Initially, a request is allocated to a server randomly. If this server cannot process the request, it 

is forwarded to another server, and so on, until one server is able to process it or the maximum 
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amount of time allocated for the request has been exceeded. This redirection-based approach 

can be inefficient. Moreover, no load-balancing is performed and a single cluster is considered. 

The solution presented in this paper aims at a dynamic reconfiguration of clusters of web 

servers using multi-agent systems, minimizing the task of the Cluster Administrator. In this 

architecture, the agents learn from previous information to make the best reconfiguration in the 

future. This new architecture DARC is presented in section 4. 

3. THE WS-DSAC PLATFORM: LOAD BALANCING 

In this section the WS-DSAC Platform is presented, which the DARC Architecture is 

integrated. This platform has the main objectives: to balance the imposed load, to guarantee 

different QoS levels and to use available resources in an effective way. 

The WS-DSAC platform (Figure 1) is composed by a set of elements: Class Switch, Cluster 

Gateways and Web Server Nodes. Class Switch is responsible of classification and admission 

control of client requests. It receives incoming HTTP requests, identifies the service class and 

sends each request to a specific Cluster Gateway. Cluster Gateway chooses a least loaded Web 

Server Node to process the requests sent by the Class Switch. 

 

Figure 1.  Overview WS-DSAC Platform 

The platform offers different levels of QoS based on the differentiation of services. Services are 

deployed in a number of Web Server nodes and they are composed by Internet services and 

distributed objects. Incoming requests may belong to different classes of services. The platform 

administrator associates each class of service to a maximal load value that can be achieved by 

its “class cluster” domain. The RC parameter (reactivity coefficient) is associated with each pre-

established class of services and this parameter is used in each Web server. 

The strategy adopted in [3] for resources dynamic reallocation between service classes is based 

on “class clusters” work mode changes. During a time interval, cluster resources priority 

allocated for one specific service class can be in one of three possible states: shared, exclusive 

or saturated. When a specific “class cluster” works in the shared mode, it permits the respective 

class has available resources that can be used by other service classes. They can be used without 

compromise agreements established with the native class during a predefined time interval. In 

this mode the “class cluster” also receives incoming requests of other service classes. In the 
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exclusive mode, the “class cluster” only receives requests of its native class. This signifies that 

load levels have reached established thresholds and accepting new requests of other classes can 

cause rejection of native class requests. In the saturated mode the “class cluster” will accept no 

new requests because, if new requests are accepted, resources will not be sufficient to guarantee 

the QoS assured to requests that are been processed. 

Work mode changes on the “class clusters” are based on two thresholds: a dynamic threshold 

recomputed at each time interval ρki and Remk and a threshold that limits the maximum RC of 

one specific class, Rmax and Rac, where: ρki estimates load average of servers registered on the 

class cluster “i”; Remk establishes the RC value that can be reached by the class cluster; Rmax is 

the maximum value allowed for Remk where the cluster works in shared mode and Rac is the limit 

value where the cluster works in  exclusive mode.  

When a request arrives on the platform the “class switch” identifies the request class. Given that 

a cluster is the least loaded, the “class switch” performs the hereafter algorithm: if ρki ≤ Rmax 

then the cluster works in shared mode; else if ρki > Rmax and ρki ≤ Rac the cluster works in 

exclusive mode; else the cluster works in saturated mode. 

The Rmax, Rac and ρki variables, presented in this section, control the WS-DSAC platform. The 

two main limitations of the WS-DSAC platform presented are: 1) an administrator is needed to 

manage the cluster constantly; and 2) if a cluster is in the saturated mode and there is no other 

cluster in the shared mode, then requests of the class of the saturated cluster will be rejected. In 

order to generate a better availability of resources of the system, agent based architecture was 

developed to monitor the clusters load. This new architecture is presented in section 4. 

4. THE DARC ARCHITECTURE: DYNAMIC RECONFIGURATION 

In this section, we describe the Dynamic Architecture for Reconfiguration of Web servers 

Clusters (DARC) proposed in this paper. The main objective is to perform a self-

reconfiguration of the resources in a web server to help the administrator, minimizing his stress 

in moments of work overload, using a multi-agent system. The DARC architecture enables the 

WS-DSAC to continuously meet the requests, thanks to the reconfiguration of the resources or 

threshold updates. A multi-agent system is a natural approach to perform a dynamic 

management of resources in a distributed way.  

 

Figure 2.  Agents in the DARC architecture 
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Thus, the agents are able to adapt the cluster to changing request patterns or environment factors 

(e.g., new servers can be added to the cluster -or removed from the cluster- easily). The agents 

reconfigure the system resources by interacting with the basic WS-DSAC platform described in 

the previous section. By interacting with the environment, these agents are able to learn from 

past experiences to modify, if needed, the distribution of the web server nodes in each cluster, 

allocating a host to a cluster that is overloaded and the classes' thresholds (Rmax and Rac) 

appropriately. Figure 2 shows the placement of the DARC agents on the different elements in a 

cluster. 

Initially the cluster administrator defines different classes of services as well as the 

characteristics of each class (Figure 3).  

 

Figure 3. Dynamic capacity management 

He/she also defines the clusters and hosts that are associated to such classes. While in operation, 

those features may change, requiring the intervention of the administrator to re-dimension the 

system. This work proposes an intelligent module that will learn how to interact with the 

framework, helping the administrator's work. The use of this architecture avoids the intervention 

and monitoring of the cluster administrator. Instead, the agents learn directly from the way its 

cluster operates and update the distribution of the web server nodes in each cluster and the 

classes' thresholds when is necessary, minimizing the probability of requests being rejected. 

 

Figure 4. Levels and layers in DARC 
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Figure 4 presents the different levels of the DARC architecture existing within a cluster. The 

Strategic Level corresponds to the Management Layer, which manages the interactions among 

the various agents in the proposed architecture. The Tactical Level holds both the Monitoring 

Sublayer and the Execution Sublayer. Finally, the Operational Level corresponds to the 

Communication Layer, which is responsible for the communication with the WS-DSAC. As 

shown in figure 4, the multi-agent architecture proposed in DARC is composed of different 

types of agents: 

• A Communication Agent requests the WS-DSAC platform about the value of the 

variable ρki (see Section 3) and communicates this value to the Monitoring Agent (explained 

below). 

• A Monitoring Agent keeps collecting information of the state of each server during 

specific time intervals. The monitoring rate is adjusted dynamically depending on the CPU load. 

• A Coordinator Agent manages the interactions among several agents and receives alerts 

from the monitoring agents. 

• Three Execution Agents can be distinguished according to their roles. Thus, the 

MaximumLoad Agent allocates the less loaded host to the cluster that is saturating. The 

DynamicThreshold Agent is designed to update clusters' thresholds before it saturates, acting 

only in case the action of the MaximumLoad Agent is not enough to prevent the cluster 

saturation. Finally, the UpdateManager Agent is designed to monitor the suitability of the 

update made by DynamicThreshold Agent. We will explain these mechanisms in more detail in 

the following. 

The Execution Agents receive control information from its Coordinator Agents to set 

appropriate thresholds by taking into account the whole system. To avoid wrong decisions when 

overload spikes occur, we used a variable that stores the average load of the cluster (medLoad). 

In addition, we use the variables γlow and γhigh (boundary parameters of the cluster load to work 

in exclusive mode) and δ1 (update parameter of the cluster load to work in exclusive mode) to 

control the strategy adopted by the DARC architecture. The basic aspects of this mechanism are 

summarized in Figure 5.  

 

Figure 5. Basic mechanism for DARC 

Additionally, the following must be considered: 

• There are situations that could compromise the performance of the self-reconfiguration 

approach. Thus, for example, it could happen that the DynamicThreshold Agent modifies the 

thresholds constantly, due to continuous alternate periods of overload spikes and periods of low 

overloading. The UpdateManager agent will make sure that the threshold adjustments are 

appropriate, by learning from past behaviors. Thus, if it detects several threshold updates in a 
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short period of time, it will increase the thresholds for its cluster (C1) by δ1 and decrease the 

thresholds from the less loaded cluster (C2) by δ1. 

• In order to avoid overloading a server, the overall increase due to threshold updates 

cannot exceed 50% of the thresholds' initial values; that is, we assume that accepting requests 

when the load is above 1.5 * Rac would result in overloading. 

• When the cluster load stabilizes (i.e., when the cluster switches back to shared mode) 

the thresholds will be re-initialized. 

Appropriate values of the parameters γlow, γhigh, and δ1, were chosen experimentally. 

Specifically, we set γlow and γhigh to 80% and 90% of the cluster load to work in exclusive mode, 

respectively, and the value of δ1 to 10% of the cluster load to work in exclusive mode. These 

values provided good results in a variety of experiments. 

5. MODELING AND ANALYZING OF THE ARCHITECTURE IN COLORED 

PETRI NETS 

5.1. Modeling 

This section presents the modeling of DARC described in section 4 and illustrated in Figure 4. 

The modeling was done in Colored Petri Nets (CPN) [12] using the CPNTools. CPN is an 

adequate tool for modeling, simulating and analyzing of discrete event dynamics systems, 

among which the architecture proposal fits. 

 

Figure 6. Hierarchy of Pages of the Modeling in Petri Nets 

In Figure 6, the hierarchical view of pages and sub-pages of the model (represented by the 

substitution transitions - duplicate rectangles in the figures). The Main page presents the general 

operation of the WS-DSAC/DARC architectures detailed in Figure 2, and through it runs the 

others sub-pages: WS-DSAC, Liberation, NewParameters and DARC. The WS-DSAC sub-page 

performs the load balancing and it is based on differentiated services. This sub-page is 

composed of another sub-page (ChooseGat), where the load changes are modeled from a server. 

The Liberation sub-page performs the releasing of http requests after these requests are met. The 
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NewParameters sub-page has the function to updating the parameters used by the WS-DSAC 

platform, such as the calculation of new estimated loads of the servers belonging to clusters. 

Finally, the DARC sub-page presents the message exchange among the agents and their actions. 

The modeling was done in two stages: the first based on the model of the WS-DSAC platform 

(I) and in the second the inclusion of the DARC architecture (II). 

 

Figure 7. The Main Page of the Modeling in Petri Nets 

In Figure 7, when a request arrives, the WS-DSAC platform is executed. The request and the 

load of the answering server are released. At pre-defined time intervals, the NewParameters 

sub-page is enabled and this sub-page performs the update of the parameters used by the WS-

DSAC platform. After each update a check is performed by the Monitoring Agent. If the check 

is positive, then the DARC substitution transition (Figure 8) is executed and then the 

Monitoring Agent will send an alert to the Coordinator Agent that activates the Execution 

Agents (Execution Layer transition). Otherwise, the updated parameters of the WS-DSAC return 

to be used by the network and the processing of the requests continues. 

 

Figure 8. DARC Page of the Modeling in Petri Nets 

From the model presented, several simulations were performed with different environments of 

operation of system for validation of DARC architecture. These simulations were performed 

using the CPNTools. 

5.2. Simulation of the Model and Analyzing of the Results 

The simulations were performed in two stages: first, we evaluate the WS-DSAC platform, 

without the DARC architecture, for dynamic reconfiguration, i.e., only the WS-DSAC platform 
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was simulated (CPN model I in Figure 7). In the second stage, the DARC architecture was 

added to WS-DSAC, and CPN model II was added to the Figure 7. 

For the simulations, the classes 0 and 1 have been defined in the platform whose parameters are 

described in section 3. We used architecture with two clusters (clusters 0 and 1); each one had 

two servers. The cluster 0 was associated to a native class 0 and the cluster 1 to a class 1. So in 

the simulation, using DARC, the increase of resources in a cluster, such as the removal of a 

server in a cluster and its addition to the other cluster, is represented by the increasing of the 

parameters of a class of service in the same proportion of the decreasing of the parameters of the 

other. The values of variables Rac and Rmax are 300 and 210 respectively for cluster 0. For cluster 

1, the values are respectively 600 and 420. These initial values were determined through an 

extensive experimental evaluation performed within the context of WS-DSAC [3]: They lead to 

a good performance in a variety of scenarios. 

The simulation results are compared and presented in the following sections. 

5.3. Critical Moments 

Several experiments were performed using the CPNTools to evaluate our proposal. In each 

experiment, a client sends every second, a request belonging to class”0” while another client 

sends the same amount of requests belonging to the class “1”. First, we evaluate the WS-DSAC 

platform, without the DARC architecture. We will call this approach no-DARC1-sim. For 

dynamic reconfiguration we evaluate the WS-DSAC with the DARC architecture. We will call 

this approach DARC1-sim. 

 

Figure 9. no-DARC1-sim 

Figure 9 shows the distribution of load between the two clusters along time, using no-DARC1-

sim. The simulations showed the first rejection of class 0 (RC > 300) at t=168 and, after that, 

other rejections are repeated during the simulation. This moment is signaled with the first circle 

from left to right. The simulations also showed the behavior of clusters, as in example of at 

t=785. The cluster 0 is overloaded (RC=210), changing their work mode to the exclusive mode. 

The cluster 1 will meet the requests in shared mode, RC<420. This load distribution does not 

prevent the system rejects requests because the clusters sometimes exceeded their thresholds. 

This situation is shown in Figure 9 by the second circle. The third circle presents the clusters in 

shared mode. 
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On the other hand, we evaluate the benefits of dynamic reconfiguration with the DARC 

architecture in Figure 10. The distribution of load between the two clusters along time shown in 

Figure 10, using the DARC1-sim approach with the same amounts of requests belonging to the 

two classes, the cluster 1 did not reach the saturated mode and it remained with the RC<600. To 

add, the cluster 0 exceeded less often its limit. Comparing with the results of simulation in 

Figure 9, the cluster 1 exceeds this limit causing a higher rate of rejection of requests, and the 

cluster 0 also obtained its maximum point (RC=510) against (RC=450) (see circle in Figure 10).  

 

Figure 10. DARC1-sim 

We conclude that the use of the DARC caused a dynamic reconfiguration of resources between 

the two clusters and the consequent decrease in saturation of clusters. In both cases (no-DARC1-

sim and DARC1-sim), several simulations were made with the purpose of calculating the 

rejection rate, and it was observed that in the first case, the average rejection rate of requests 

was 3.93 % while the second was 0.04%, showing a better utilization of system resources. 

5.4. Saturation Moments 

In the following simulations were sent only requests belonging to the class 0 (Figures 11, 12, 13 

and 14 show the results of simulations). Thus, the cluster 0 saturates more quickly because it 

has the lowest thresholds. The graph in Figure 11 refers to the WS-DSAC platform, without the 

DARC architecture, unlike the Figures 12, 13 and 14 where the DARC was applied. It is 

important to mention that the percentage of monitored load of clusters by agents was modified 

at several levels, being 80% in the first case (Figure 12), 85% in the second (Figure 13) and 

90% in the last (Figure 14). In addition, 10% of resources were moved from cluster 1 to cluster 

0, when needed, in all three cases. Referring to the simulation of Figure 12 as an example, it 

means that when the load of cluster 0 reached 80% of its load limit, 10% of the resources of 

cluster 1 were moved to him. 

Figure 11 shows the distribution of load between the two clusters along time of the WS-DSAC, 

without DARC. We will call this approach no-DARC2-sim. Although this distribution occurs, 

there is also a considerable rejection of requests due to the saturation of cluster 0 (RC> 300). On 

the other hand, Figure 12 shows the distribution of load between the two clusters along time of 

the WS-DSAC with DARC. We will call this approach DARC2-sim. This simulation shows that 

the cluster 1 has not changed its work mode to saturate, though its resources are allocated to 

cluster 0. This can be verified by checking the points of maximum load of cluster 1 using the 
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two referred simulations. The Figure 11 shows that cluster 1 reaches a maximum load (RC = 

530) at t= 1254, and in Figure 12 its peak load (RC=350) occurred at t=656 and the cluster 

worked until the end of the simulation below that value. Two moments of saturation of cluster 0 

are represented by circles in Figures 11 and 12. 

 

Figure 11. no-DARC2-sim 

As in the two previous situations (no-DARC1-sim and DARC1-sim), several simulations were 

made with the purpose of calculating the rejection rate. They showed that in the first case, the 

average rejection rate of requests was 9.8% (Figure 11) while the second was 0% (Figure 12). 

Thus, the cluster 1 has not changed its work mode to saturate, though its resources are allocated 

to cluster 0. Consequently, the system met all requests sent improving the use of resources. 

 

Figure 12. DARC2-sim 

In the simulation on Figure 13 the monitoring agent notifies the coordinator agent when the 

load of the cluster 0 reaches 85% of its limit and Figure 14 when it reaches 90%. We will call 

the first approach DARC3-sim and the second approach DARC4-sim. 

The rejection rate observed in the network was 0.02% on Figure 13 and 0.05% on Figure 14, 

indicating that the monitoring percentage of the threshold of the cluster is released, the rejection 
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rate also increases. It indicates that if the approach to be taken by agents is made over time, it is 

possible to get a better performance of the system. 

The comparison of the behavior of the approaches analyzed presented in Figures 12, 13 and 14 

are described below: 

 

Figure 13. DARC3-sim 

• Figure 12 shows that there are 13 load peaks (RC>=Rmax) for the cluster 0, against 15 by 

the same cluster in Figure 13, and 17 load peaks in Figure 14. This indicates that at the moment 

that the reconfiguration is made with the monitoring percentage of 80% of the cluster threshold, 

the system requires fewer adjustments. On the other hand, when the percentage of monitoring 

the load is greater (85% and 90%) the rejections of requests are greater; 

• Figure 12 shows that the load of cluster 1 was lower in most time with RC<300 and it 

was obtained less response time; 

• Figure 13 shows that the clusters behaved more irregularly than in Figure 12, reaching 

load values close to the limits set by the administrator. Indeed, the simulations showed at 

t=1164 to cluster 0, and t=748 for cluster 1. The circles in the figure indicate the location of 

these moments; 

• Figure 14 shows that the cluster 1 has reached a value of load that exceeded the limit at 

t=555, signaled by the circle. As shown, in several other moments of the simulation, values 

were very high, even more than in other simulations (Figures 12 and 13). 
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Figure 14. DARC4-sim 

With the results presented above, we can conclude that among all the simulations presented, the 

one that best behaved was the simulation that made the reallocation of resources to monitoring 

80% of the load of cluster 0 (Figure 12), which had  the most consistent proposed objectives of 

this work. In addition, we can conclude that the delay in taking actions for reconfiguration of 

resources in clusters causes an overload on their servers and their consequent rejection of 

requests. Thus, the incorporation of DARC to WS-DSAC makes the best dynamic 

reconfiguration of resources, reducing the number of rejections, and therefore significantly 

improving the use of system resources and reducing the rejection rate of requests. 

5.5. Performance Evaluation 

Figure 15 presents the response time given by the performance model of WS-DSAC without 

DARC and WS-DSAC/DARC.  

 

Figure 15. Comparison of response times 

We can observe in figure 15 that, in the simulation, the response time of the DARC architecture 

is a little larger than the WS-DSAC platform. However, the DARC architecture meets more 

requests and the rejection rate is lower, which proves the effectiveness of the solution. Figure 16 

presents the rejected rate given by the performance model of WS-DSAC/DARC. The rejection 

rate of the WS-DSAC platform is 6%. However, the DARC architecture is 0.02 %. 
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Figure 16. Comparison between rejection rates 

6. IMPLEMENTATION AND EVALUATION OF DARC ARCHITECTURE TEXT 

To evaluate our proposal, we have performed several experiments in a real environment. Each 

experiment is repeated several times and average results are reported, checking that the averages 

are significant. As Figure 17 shows, a heterogeneous scenario (with different operating systems 

and hardware configurations) and two clusters (Cluster 0 and Cluster 1) has been considered for 

experimental evaluation: 

 

Figure 17. Hardware for the experiments 

• Web server nodes 1, 2, 3 and 4 are generic PCs, with an AMD Athlon 64 Processor 3800, 

2.41 GHz CPU, 1 GB RAM, and a 100 Mb full duplex Ethernet NIC. In these nodes, the 

Apache Tomcat 5 Servlet/JSP Container (http:\\tomcat.apache.org) is installed. 

• The Class Switch and the Cluster Gateway are generic PCs with an Intel Pentium IV, 3.06 

GHz CPU, 512 MB RAM, and a 100 Mb full duplex Ethernet NIC. 

• The client node is a generic PC, with an Intel Pentium IV, 2 GHz CPU, 512 MB RAM, and 

a 100 Mb full duplex Ethernet NIC. We have used Webserver Stress Tools 7 Professional 

Edition (http://www.paessler.com/webstress) to emulate the sending of HTTP requests: The 

Class Switch domain receives one request every second. 
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For the experiments presented in this section, we consider the platform described in Figure 17. 

First, we evaluate the WS-DSAC Platform, without the DARC architecture, for dynamic 

reconfiguration. We will call this approach no-DARC. Figure 18 shows the distribution of load 

between the two clusters along time, for a scenario with an initial low load that increases 

considerably in the final moments of the simulation. Although Cluster 0 exceeds the value of 

Rac=300 at time instants 120ms and 270ms, no request was rejected because Cluster 1 was in 

shared mode. However, at time instants of 180ms, 430ms, and 830ms, Cluster 0 exceeds its 

threshold Rac and Cluster 1 was in exclusive mode, leading to rejections of requests of the class 

assigned to Cluster 0. Similarly, Cluster 1 exceeds the value of Rac=600 at the end of the 

simulation while Cluster 0 is in exclusive mode, leading to rejections of the requests for Cluster 

1. 

 

Figure 18. no-DARC 

Second, we evaluate the WS-DSAC Platform, with the DARC architecture, for dynamic 

reconfiguration but without using the DynamicThreshold Agent or any learning mechanism. We 

will call this approach DARC-1. In Figure 19, Cluster 0 exceeds the value of Rac only at time 

instant 430ms; as Cluster 1 is in exclusive mode at that time, then the requests of the class 

assigned to Cluster 0 will be rejected. However, regarding the previous experiment where 

DARC is not used (whose results are shown in Figure 18), the amount of requests rejected 

decreases. 
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Figure 19. DARC-1 

Third, we evaluate DARC-1 with the addition of the DynamicThreshold agent to improve 

fairness in the use of resources. We will call this strategy DARC-2. The results are shown in 

Figure 20. At time instants 390ms and 930ms, Cluster 0 exceeded the threshold and it was not 

possible to allocate any host from Cluster 1 (that was in exclusive mode) to Cluster 0. To solve 

this problem, the DynamicThreshold agent updated the cluster's threshold sometimes (3-5 times 

in the different repetitions of the experiments). As mentioned in Section 4, if (medLoad ≥ γhigh* 

Rac) then the DynamicThreshold Agent of the cluster in saturated mode increases the 

thresholds of that cluster by δ1. 

 

Figure 20. DARC-2 
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Figure 21. DARC-3 

Finally, we perform an experiment with our full-fledge self-reconfiguration proposal (DARC-3), 

where an UpdateManager agent (that learns from the past history) is added. The results are 

shown in Figure 21. In this experiment, there were no peak saturations for the Clusters 0 and 1. 

With the utilization of the DARC architecture we can resolve the main problems of the WS-

DSAC platform presented to meet the requests. Therefore, we reduce the peak saturation of the 

system and as consequence the rejected requests. 

7. CONCLUSIONS 

This paper has presented DARC, a dynamic architecture for self-reconfiguration of clusters of 

web servers. Our approach benefits from the use of agents to learn from the environment and 

adjust automatically the behavior of the system to make a better use of the available resources. 

With this approach, it's possible to help the administrator, minimizing your stress in moments of 

work overload. We performed the conception, specification, modeling in Colored Petri nets and 

implementation in Java of this architecture.  

Finally, we performed experiments in different situations and we saw that the DARC 

architecture decreased the rejection rates and improved the availability of resources (“fairness”). 

Therefore, with the experiments we can prove that when the monitoring percentage of the load 

increased, the rejection rate of requests also increased. 

It is important to emphasize that the main advantages of this architecture is that we can optimize 

the allocation of the resources from one cluster to another so that all requests are met. For the 

initial parameters used in our experiments, only 10% of the resources of a cluster were 

redirected to the other cluster, so that the rejection rate decreased and reached 0.  

As for future work, we plan on analyzing the possibility of applying this proposal (probably 

with some extensions) in a different domain (not in the context of web servers). 
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