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Stackelberg Equilibria for Discrete-Time Dynamic Games

Part II: Stochastic Games with Deterministic Information Structure

Kateřina Staňková, Bart De Schutter

Abstract— We consider a two-person discrete-time dynamic
game with a prespecified fixed duration. Each player maximizes
her profit over the game horizon, taking decisions of the
other player into account. Our goal is to find the Stackelberg
equilibria for such a game. After having discussed deterministic
Stackelberg games in the companion paper (Stackelberg Equi-
libria for Discrete-Time Dynamic Games – Part I: Deterministic
Games), in this paper we focus on stochastic games with
a deterministic information structure. While for the stochas-
tic game with open-loop structure the solution procedure is
straightforward and already reported in the literature, the
problem with the closed-loop problem information structure
for stochastic games remains a challenge. After discussing a
rather standard approach to solve the open-loop stochastic
game, we propose an approach to find (sub)optimal solutions of
the closed-loop game. Moreover, we discuss solution approach
for generalized games in which the leader has access to the
follower’s past actions, the so-called inverse Stackelberg games.

Keywords: stochastic games, discrete-time infinite dynamic
games, Stackelberg games, information structure, team prob-
lems

I. INTRODUCTION & LITERATURE OVERVIEW

This paper extends results of the companion paper (Stack-

elberg Equilibria for Discrete-Time Dynamic Games – Part

I: Deterministic Games) into the realm of stochastic games

with a deterministic information structure. In such a game

there is a noise in the state equation, but the players do not

have a biased perception of the states of the game. The game

is referred to as infinite, because the decision spaces of the

players comprise an infinite number of alternatives. We focus

on the noncooperative variant of this game [1], [2], in which

the goals of individual players might be conflicting. More

specifically, we deal with Stackelberg problems [1]–[6] as

opposed to Nash problems [7], [8].

The open-loop Stackelberg solution concept in the infinite

discrete-time dynamic games was first treated in [9]. Some

other references that discuss the open-loop and the feedback

Stackelberg solutions in discrete-time infinite dynamic games

are [3], [10], [11]. Applications of this concept in microe-

conomics can be found in [12]. In this paper we show a

standard method how to solve open-loop stochastic games.

This paper extends the theory of Stackelberg equilibria

for stochastic games presented in [2], [11] under a closed-

loop information pattern. Not much attention has been given

to such problems. The difficulties encountered when dealing

with the closed-loop stochastic variant of the game were first
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pointed out in [13] and are stated in [2], without proposing

a solution strategy. In [14] the feedback strategy solutions

in linear-quadratic stochastic dynamic games with noisy

observations are discussed. However, stochastic games with

a closed-loop information structure remain a challenge. In

this paper we suggest a methodology to find a suboptimal

solution of such games. Moreover, we propose a solution

procedure for a generalized variant of the game in which the

leader has access to the follower’s past actions.

This paper is composed as follows. In Section II basic

notions used in this paper are introduced. In Section III the

open-loop variant of the stochastic game is dealt with. In

Section IV we study the closed-loop variant of the game.

In Section V the generalized variant of the stochastic game,

also referred to as the inverse (or reverse) Stackelberg game,

is considered. In Section VI the conclusions and possibilities

for future research are discussed.

II. PRELIMINARIES

Let us consider a two-player Stackelberg game, in which

P1 is the leader and P2 is the follower. Let K = {1, . . . ,K}
denote the stages of the game, where K is the maximal

number of moves the player Pi (i∈{1,2}) is allowed to make.

Let X (1) ⊂ R and X (2) ⊂ R be nonempty closed intervals

and let X
def
= X (1)×X (2) be the state space of the game. The

state of the game for the k-th stage is then referred to as

xk =
(

x
(1)
k ,x

(2)
k

)T
, where x

(1)
k is P1’s state and x

(2)
k is P2’s state.

Let U
(1)
k ⊂R (for each k∈K ) be a closed interval called P1’s

decision space. Its elements are P1’s permissible decisions

u
(1)
k at stage k, announced by P1 at the beginning of the stage.

Let U
(2)
k ⊂ R (for each k ∈ K ) be P2’s decision space. Its

elements are P2’s permissible decisions u
(2)
k at stage k.

In this paper we will extend the game to the stochastic

infinite discrete-time dynamic game by adding an additional

player, the so-called “nature”, into the set of players. The

nature acts randomly, but according to an a priori known

probability law. The state of the game evolves according to

the difference equation

xk+1 ∼ Fk

(

xk,u
(1)
k ,u

(2)
k ,θk

)

, k ∈ K , (1)

with Fk : X ×U
(1)
k ×U

(2)
k × Θ → X . Here θk ∈ Θ is the

decision variable of the nature at stage k. The initial state

x1 is then also a random variable and the joint probability

distribution function of (x1,θ1, . . . ,θK) is assumed to be

known. For the sake of simplicity, in this paper we will

consider a situation with

Fk

(

xk,u
(1)
k ,u

(2)
k

) def
= fk

(

xk,u
(1)
k ,u

(2)
k

)

+θk.



Then (1) becomes

xk+1 ∼ fk

(

xk,u
(1)
k ,u

(2)
k

)

+θk, k ∈ K , (2)

with state function

fk : X ×U
(1)
k ×U

(2)
k → X ,

where θ1, . . . ,θK is a sequence of statistically i.i.d. Gaussian

vectors with values in R
2 and with cov(θk)> 0, k ∈ K .

Let the information gained and recalled by Pi (i∈{1,2}) at

stage k of the game be determined by η
(i)
k , an a priori known

selection from
(

x
(1)
1 , . . . ,x

(1)
k ; x

(2)
1 , . . . , x

(2)
k

)

. Specifications

of η
(i)
k for all k ∈ K characterize the information structure

of the game for Pi. Let N
(i)
k

def
=

{(

η
(i)
k

)T}
. Let Γ

(i)
k be a

prespecified class of measurable mappings γ
(i)
k : N

(i)
k →U

(i)
k ,

called Pi’s permissible strategies at stage k. The aggregate

mapping γ(i) =
(

γ
(i)
1 ,γ

(i)
2 , . . . ,γ

(i)
K

)

is Pi’s strategy, and the

class Γ(i) of all such mappings γ(i) so that γ
(i)
k ∈ Γ

(i)
k , k ∈K ,

is Pi’s strategy set. We will refer to a P2’s strategy based on

the P1’s strategy as the P2’s response to the P1’s strategy.

Definition 2.1: (Information structure) In a 2-person dis-

crete time dynamic game, we say that Pi’s (i ∈ {1,2})

information has (for all k ∈ K )

(a) an open-loop structure if η
(i)
k = x1,

(b) a closed-loop structure if η
(i)
k =

(

x1, . . . ,xk

)

,

(c) a feedback structure if η
(i)
k = xk.

In this paper we will consider cases (a) and (b), case (c) is

a subject of the future research.

Let L(i) :
(

X ×U
(1)
1 ×U

(2)
1

)

×
(

X ×U
(1)
2 ×U

(2)
2

)

× . . . ×
(

X ×U
(1)
k ×U

(2)
k

)

→ R be called Pi’s profit function. Each

player maximizes L(i), taking into account possible actions

of the other player.

A. Assumptions on state and profit functions

In order to simplify the analysis, we will mostly as-

sume (unless stated differently), the following: The functions

fk

(

·,u
(1)
k ,u

(2)
k

)

, fk

(

xk, ·,u
(2)
k

)

, and fk(·,u
(1)
k , ·) are continu-

ously differentiable on R
2
+, U

(1)
k , and U

(2)
k , respectively, The

profit functions are assumed to be stage-additive, i.e., there

exists g
(i)
k : X ×X ×U

(1)
k ×U

(2)
k →R, for all k ∈K , so that1

L(i)
(

u(1),u(2)
)

=
K

∑
k=1

g
(i)
k

(

xk,u
(1)
k ,u

(2)
k ,xk+1

)

, (3)

i ∈ {1,2}, and continuously differentiable on U (1) ×U (2).

Furthermore, g
(i)
k

(

·,u
(1)
k ,u

(2)
k , ·

)

and g
(i)
k

(

xk,u
(1)
k , ·,xk+1

)

are

continuously differentiable on R
2 and U

(2)
k , respectively.

B. Stochastic game formulation

An extensive form description of the game contains the

set of players, the index set defining the stages of the

game, the state space and the decision spaces, the state

equation, the observation sets, the state-observation equation,

1For the sake of notation convenience we refer to the profit functions as

L(i)
(

u(1),u(2)
)

, with u(i)
def
=

(

u
(i)
1 , . . . ,u

(i)
K

)T
.

the information structure of the game, the information spaces,

the strategy sets, and the profit functionals.

Similarly as it is done in [2] for a general N-person

discrete-time game, we can transform the game into a

normal-form game. For each fixed initial state x1 and for each

pair
(

γ(1),γ(2)
)

, where γ(i) ∈ Γ(i), i ∈ {1,2}, the extensive

form description leads to a unique vector

u
(i)
k

def
= γ

(i)
k

(

η
(i)
k

)

, i ∈ {1,2}, k ∈ K , (4)

because of the causal nature of the information structure and

because the state evolves according to a stochastic difference

equation (2). Then, substitution of (4) into L(1) and L(2) leads

to a pair of functions reflecting the corresponding profits of

the players. This further implies existence of a composite

mapping

J(i) : Γ(1)×Γ(2) → R

for each i ∈ {1,2}, which is the strategy-dependent profit

function. Then the permissible strategy spaces
(

Γ(1),Γ(2)
)

together with

(

J(1)(γ(1),γ(2)),J(2)(γ(1),γ(2))
)

constitute the normal form description of the game for each

fixed initial state x1. If the game can be expressed in the

normal form, techniques used for finding solutions of finite

games can be adopted [2].

III. OPEN-LOOP GAME

This section summarizes results presented in [2], [14].

Consider that the system evolves according to

xk+1 ∼ fk

(

xk,u
(1)
k ,u

(2)
k

)

+θk, k ∈ K , (5)

where θ1, . . . ,θK is a sequence of statistically i.i.d. Gaussian

vectors with values in R
2 and with cov(θk)> 0, k ∈K . The

profit functionals for P1 and P2 are given by (3).

A. Open-loop information pattern for both players

If the information has an open-loop structure for both

players and is known a priori, the solution can be found

by converting the game into equivalent static normal form

and by consequent utilizing methods used for finding the

deterministic open-loop Stackelberg solution. Indeed, we can

recursively substitute (5) into (3) and take expected values of

L(i) over the random variables θ1, . . . ,θK to obtain functionals

L(i) depending only on the players’ decisions u(1) and u(2)

and on x1. The game can be then treated as a static game.

The solution depends on the statistical moments of the

random disturbances in the state equation – unless the system

equation is linear and the profit functions are quadratic [11].

In such a case the solution may be independent of the

disturbances.



B. Open-loop information pattern for the leader and closed-

loop information pattern for the follower

For the deterministic Stackelberg games dealt with in

the companion paper the optimal open-loop Stackelberg

equilibrium strategy of P1 does not change if P2 has an

additional state information. The optimal strategy of P2 then

becomes any closed-loop representation of the open-loop

response on the equilibrium trajectory associated with the

open-loop Stackelberg solution; hence, the optimal strategy

of P2 is nonunique.

However, for the stochastic Stackelberg game with an

open-loop information structure for both P1 and P2 the

solution does not coincide with the solution of the game

in which P1 has an open-loop information structure and P2

has a closed-loop information structure and the latter has to

be obtained independently of the former. The steps to solve

the game with the open-loop information structure for P1 and

closed-loop information structure for P2 are (see [2] for its

derivation):

1) For any
(

u
(1)
k ∈U

(1)
k |k ∈ K

)

maximize

E
(

K

∑
k=1

g
(2)
k

(

xk,u
(1)
k ,u

(2)
k ,xk+1

)∣

∣u
(2)
k = γ

(2)
k

(

x1, . . . ,xk

))

subject to (2) and over Γ(2). We will denote the

maximizing strategy of P2 by γ(2)o. Following [15],

[16], we can see that with η
(2)
k

def
= (xl , l ≤ k) any γ(2)o

satisfies the dynamic programming principle

V (k,x) = max
u
(2)
k

∈U
(2)
k

E
[

g
(2)
k

(

xk,u
(1)
k ,u

(2)
k , fk

(

xk,u
(1)
k ,u

(2)
k

)

+θk

)

+V
(

k+1, fk

(

xk,u
(1)
k ,u

(2)
k

)

+θk

)]

= E
[

g
(2)
k

(

xk,u
(1)
k ,γ

(2)o
k

(

η
(2)
k

)

,

fk

(

xk,u
(1)
k ,γ

(2)o
k

(

η
(2)
k

))

+θk

)

+V
(

k+1, fk

(

xk,u
(1)
k ,γ

(2)o
k

(

η
(2)
k

))

+θk

)]

, (6)

with

V (k,x)
def
= max

u
(2)
k

∈U
(2)
k

E
[

K

∑
i=k

g
(2)
i

(

xi,u
(1)
k ,u

(2)
k ,xi+1

)]

.

2) Maximize

J(1)
(

γ(1),γ(2)o
)

= E
[

L(1)
(

u(1),u(2)
)

|u
(1)
k = γ

(1)
k (x1),

u
(2)
k = γ

(2)o
k

(

η
(2)
k

)

,k ∈ K
]

over Γ(1), subject to (6) and the state equation (2)

with u
(2)
k replaced by γ(1)-dependent γ

(2)o
k

(

η
(2)
k

)

.2 The

solution of this optimization problem constitutes the

Stackelberg strategy of the leader in the stochas-

tic dynamic game under consideration, provided that

the maximization of V provides a unique solution
(

γ
(2)o
1 , . . . ,γ

(2)o
K

)

for each
(

u
(1)
1 , . . . ,u

(1)
K

)

.

2Note that γ
(2)o
k (·) is dependent on γ(1), but this dependence cannot be

in general written in the closed-form.

Steps 1) and 2) provide a straightforward procedure for

finding Stackelberg equilibrium of the game defined by (2),

(3).

IV. CLOSED-LOOP STOCHASTIC GAME

If P1 has access to dynamic information, but does not

have direct access to decisions of P2, a direct approach to

find the solution cannot be applied, as any optimal response

of P2 to a strategy announced by P1 cannot be expressed

analytically in terms of strategy of P1, even in the case

of linear-quadratic games. Moreover, the indirect method

proposed in the companion paper solving the deterministic

game cannot be used here, since for stochastic game each

strategy has a unique representation as opposed to the in-

finitely many closed-loop representations of a given strategy

in a deterministic system. Consequently, derivation of closed-

loop solutions of stochastic dynamic games remains a chal-

lenge. If, however, we make some structural assumptions on

possible strategies of P1 - which means seeking suboptimal

solutions instead of optimal solutions, then the problem

may become tractable. In particular, if, under the structural

assumptions on Γ(1), restricting Γ(1) to a certain function

set, the class of the permissible strategies of P1 can be

described by a finite number of parameters, and if P2’s

optimal response can be determined as a function of these

parameters, then the original game may transform into the

static one in which P1 selects her strategy from an Euclidian

space of the corresponding dimension; such a static game is,

in general, solvable [17], although more likely numerically

than analytically. The following example illustrates such an

approach and shows that even with very simple stochastic

dynamic games and very restrictive assumptions on Γ(1),

the corresponding (sub-optimal) solution methodology is not

trivial.

Example 4.1 (Two-stage stochastic game): Let

L(1) =−x3
2 −2

(

u
(1)
2

)2
−
(

u
(2)
1

)2
,

L(2) =−x3
2 −

(

u
(2)
1

)2
,

x2 = x1 −u
(2)
1 +θ1, x3 = x2 −u

(1)
2 +θ2, (7)

where θ1 and θ2 are i.i.d. random variables with zero mean

and variances σ1, σ2 and x1 is known a priori, and assume

that the strategies of P1 are linear in x2, i.e., we restrict

ourselves to the strategies

Γ(1) = {γ(1)|γ(1)
(

x1,x2

)

= ρ2 x1 +ρ1 x2}. (8)

Player P2 acts at the stage 2 and has access to x1 and x2,

player P2 acts at stage 1 and has only access to x1. Player

P2 maximizes

J(2) = E
{

−
(

x2 − γ(1)
(

x2,x1

))2
−
(

γ(2)
(

x1

))2}
,

over γ(2) ∈ Γ(2) in order to determine her optimal response

to any γ(1) ∈ Γ(1) chosen by P1.

With Γ(1) defined by (8), the problem is equivalent to

the problem of finding optimal ρ1 and ρ2, which are x1-



dependent. Under such restriction J(2) has a unique maxi-

mum, leading to the optimal strategy for P2

γ(2),o =
(1−ρ1 −ρ2)(1−ρ1)x1

ρ2
1 −2ρ1 +2

.

By substituting γ(1) and γ(2),o into J(1)
(

γ(1),γ(2)
)

, together

with the corresponding values of x3 and x2, we obtain

F(ρ1,ρ2) =−

(

1−ρ1 −ρ2

)2
x2

1

1+
(

1−ρ1

)2
−
((

1−ρ1

)2
+ρ2

1

)

σ1

−
2
(

ρ1 +2ρ2 −ρ1 ρ2

)2
x2

1
(

1+
(

1−ρ1

)2)2
−σ2,

which has to be maximized over ρ1 and ρ2 for fixed x1. Note

that:

• F is continuous in both ρ1 and ρ2, F(ρ1,ρ2) ≤ 0 for

all ρ1,ρ2 ∈ R, and F(ρ1,ρ2) → −∞ if |ρ1|, |ρ2| → ∞.

Consequently (by the Weierstrass theorem [18]), there

exists at least one pair (ρ∗
1 ,ρ

∗
2 ) maximizing F for any

given (x1,σ1).
• The optimal (ρ∗

1 ,ρ
∗
2 ) depends on

(

x1,σ1

)

, but not on

σ2. Hence, for each fixed
(

x1,σ1

)

the function F(ρ1,ρ2)
can be maximized using classical optimization methods

[19].

• γ(1)
(

x1,x2

)

= ρ∗
2 x1 +ρ∗

1 x2 is a suboptimal strategy, i.e.,

it does not lead to the team maximum of the game for

P1.

V. GENERALIZED STOCHASTIC STACKELBERG GAME

Let us now assume that P1 has information about the past

states of the game and the past decisions of P2. With such

extended information structure a given strategy of P1 will

have multiple representations, thus it might be possible to

enforce her team maximum

J(1)
(

γ(1)§,γ(2)§
)

= max
γ(1)∈Γ(1)

max
γ(2)∈Γ(2)

J(1)
(

γ(1),γ(2)
)

.

The goal of P1 is to find an optimal representation of

the team-optimal strategy, i.e., the strategy which enforces

the team maximum. Such a strategy may be dependent on

decisions made by P2.

Example 5.1: Let

L(1) =−x3
2 −2

(

u
(1)
2

)2
−
(

u
(2)
1

)2
,

L(2) =−x3
2 −

(

u
(2)
1

)2
,

x2 = x1 −u
(2)
1 +θ1, x3 = x2 −u

(1)
2 +θ2. (9)

Let P1 has access to u(2), in addition to x1 and x2. By

this way, the game is generalized into a so-called inverse

Stackelberg game [20]–[22].

The best outcome that P1 can achieve is the team maxi-

mum

J(1)
(

γ(1)§,γ(2)§
)

= max
γ(1)∈Γ(1)

max
γ(2)∈Γ(2)

J(1)
(

γ(1),γ(2)
)

,

with

J(1)
(

γ(1),γ(2)
)

= E
{

−
(

x2 − γ(1)(x2,x1)−θ2

)2

+2
(

γ(1)
(

x2,x1

))2
−
(

γ(2)
(

x1

))2}
.

Note that the profit shows dependence on u
(2)
1 = γ(2)

(

x1

)

not

only directly, but also through x2. This team problem is in

fact a linear-quadratic stochastic control problem [14] and

the team-optimum strategies are

γ(1)§ =
x2

3
, γ(2)§ =

5x1

14
, (10)

which is the unique maximizing pair on Γ(1)×Γ(2). It is not,

however, unique in the extended strategy space of P1, as (for

example) the following parametrized strategy also constitutes

an optimal solution, with κ ∈ R :

γ
(1)
κ

(

x2,x1,u
(2)
1

)

=
x2

3
+κ

(

u
(2)
1 −

5

14
x1

)

,

γ
(2)
κ =

5x1

14
, (11)

which characterizes the class of optimal strategies linear

in x2, x1, and u(2), all leading to the same maximum

expected value for P1. We will refer to these strategies as

“representations of γ(1)§” under the team-optimum solution
(

γ(1)§,γ(2)§
)

. Among this family of strategy pairs we are

looking for the one with the additional property: If P1

maximizes her expected profit function, then the strategy

in Γ(2) that leads to this maximum is still γ(2)§, resp. γ
(2)
κ .

The corresponding strategy for P1 would then correspond to

the global inverse Stackelberg solution, yielding the (team)

maximum profit for P1.

Let us now focus on linear representations (11), which

leads to the quadratic maximization problem:

E
(

−
(

x2 − γ
(1)
α (x2,x1,u

(2)
1 )−θ2

)2
+
(

u
(2)
1

)2)
,

with x2 = x1 − u
(2)
1 +θ1. Since x1 is independent of θ1 and

θ2, which have both zero mean, this problem is equivalent

to the following deterministic optimization problem:

max
u
(2)
1 ∈R

(

−
(2

3

(

u
(2)
1 − x1

)

−α
(

u
(2)
1 −

5

14
x1

))2
−
(

u
(2)
1

)2)

The solution to this problem is the pair

γ(1)†
(

x2,x1,u
(2)
)

=
x2

3
+

8

27

(

u(2)−
5

14
x1

)

,

γ(2)†
(

x1

)

=
5

14
x1,

which constitutes a global inverse Stackelberg solution. This

is, in fact, the unique solution within the class of linear

strategies.

Remark 5.1: In Example 5.1 P1 has access to all informa-

tion that P2 has access to. However, in stochastic inverse

Stackelberg problems the information may not always be

nested for the leader. If in this example P1 had access to

x2 and u
(2)
1 , then the problem would be of a nonnested

information structure. To such problems the methodology



shown in the example does not apply, since the dynamic

information for P1 no longer exhibits redundancy. While such

problems have not been so far studied in detail, they were

discussed in [23], [24] and are also a subject of our future

research. For stochastic inverse Stackelberg problems with

nested information the approach used in Example 5.1 can be

generalized as follows.

Consider a two-person stochastic inverse Stackelberg

problem with the profit functions L(1)
(

u(1),u(2),θ
)

and

L(2)
(

u(1),u(2),θ
)

for P1 and P2, respectively, where θ is

some random vector with a known probability distribution

function. Let y(1) = h(1)(θ) be the estimate of P1 on Θ and

y(2) = h(2)(θ) be the estimate of P2 on Θ, with the property,

that what P2 knows is also known by P1, i.e., the sigma-field

generated by y(1) includes the sigma-field generated by y(2).

Let Γ(i) be the set of all measurable strategies of the form

u(i) = γ(i)
(

y(i)
)

, i = 1,2, and Γ̂(1) be the set of all measurable

policies of the form u(1) = γ(1)
(

y(1),u(2)
)

. Let us introduce

the pair of policies

(

γ(1),∗,γ(2),∗
) def
= arg max

γ(1)∈Γ(1),γ(2)∈Γ(2)
Eθ

{

L(1)
(

γ(1)
(

h(1)
(

θ
))

,

γ(2)
(

h(2)
(

θ
))

,θ
)}

,

assuming that the underlying team problem admits a max-

imizing solution. Then an optimal representation of P1’s

strategy γ(1),∗ is γ̂(1) ∈ Γ̂(1) satisfying

γ̂(1)
(

h(1)(θ),γ(2),∗
(

h(2)
(

θ
)))

= γ(1),∗
(

h(1)(θ)
)

a.s. (12)

The following result now follows.

Proposition 5.1: For the stochastic inverse Stackelberg

problem with nested information as formulated above, the

pair
(

γ̂(1),γ(2),∗
)

constitutes the team maximum outcome for

P1. Equivalently, if a strategy γ̂(1) ∈ Γ̂(1) satisfies (12), the

optimum of the underlying stochastic decision problem for

the leader exists.

VI. CONCLUSIONS & FUTURE RESEARCH

In this paper we have introduced a stochastic variant of

discrete-time infinite dynamic games and have dealt with

finding their Stackelberg equilibrium solutions. Such solu-

tions depend on the information patterns of the games and

vary with the characteristics of the individual problems.

We have reviewed classical approaches used to solve the

games with open-loop information structure and proposed

an approach to find a suboptimum of the games with closed-

loop information structure. Moreover, we have shown how to

find a solution to a generalized variant of the game with the

closed-loop information structure, in which the leader has

access to the follower’s past actions, the so-called inverse

Stackelberg game.

The main subjects of future research are finding solu-

tions of the generalized stochastic game with a nonnested

information structure and study of the stochastic games with

feedback information structure.
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[6] K. Staňková, “On Stackelberg and Inverse Stackelberg Games &
Their Applications in the Optimal Toll Design Problem, the Energy
Market Liberalization Problem, and in the Theory of Incentives,” Ph.D.
dissertation, Delft University of Technology, Delft, The Netherlands,
2009.

[7] J. Nash, “Noncooperative games,” Annals of Mathematics, vol. 54, pp.
286–295, 1951.

[8] G. Olsder, “Adaptive Nash strategies for repeated games resulting
in Pareto solutions,” Delft University of Technology, Department of
Mathematics and Informatics, Reports of the Department of Mathe-
matics and Informatics 86-09, 1986.

[9] M. Simaan and J. B. Cruz, “Additional aspects of the Stackelberg
strategy in the nonzero sum games,” Journal of Optimization Theory

and Applications, vol. 11, pp. 613–626, 1973.

[10] J. B. Cruz, “Leader-follower strategies for multilevel systems,” IEEE

Transactions on Automatic Control, vol. AC-23, pp. 244–255, 1978.
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