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Conditional Servo-compensator of an Airlaunch System*

Van Cuong Nguyen and Gilney Damm

Abstract— A Multiple Input Multiple Output (MIMO) con-
troller based on the conditional servo-compensator technique is
designed for the robust stabilization of a new satellite launching
strategy called (unmanned) airlaunch. This strategy consists in
using a two-stages launching system. The first stage is composed
of an airplane (manned or unmanned) that carries a rocket
launcher which constitute the subsequent stages. The control
objective is to stabilize the aircraft in the launch phase. It
is developed separately for two nonlinear motion modes of
the model, the longitudinal and lateral modes, and is applied
to the full multi-input multi-output model of the aircraft.
The controller is indeed able to assure system stability for
rather large disturbances. Performance of the proposed control
algorithm is illustrated through simulations.

I. INTRODUCTION

This work presents the design of a controller for the
robust stabilization of a new satellite launching strategy
called (unmanned) airlaunch. This strategy consists in using
a two-stages launching system. The first stage is composed
of an airplane that carries a rocket launcher which constitutes
the subsequent stage. The aircraft brings the rocket to a
desired drop area, consequently avoiding many costs and
risks related to land rocket launching. On the other hand,
this procedure brings up many other difficulties connected
to the instant of releasing the rocket.

Currently, several airlaunch systems are under develop-
ment (see [14], [3]). Most current airlaunch projects use
standard or lightly modified airplanes as first stage. For
example, there has been tests using F15, C17, B52, L-1011
in Rascal, QuickReach, Proteus and Pegasus projects. Unlike
those, other projects aim to develop an airlaunch system
that uses an unmanned aerial vehicle (UAV) instead of a
standard aircraft with a human pilot inboard. The objective
is then to use an UAV to fly the launcher to the desired
drop point. There are many advantages in doing so, in first
place safety since no human lives are involved during the
delicate launching phase. In addition, since there is no need
for life supporting devices, weight is restricted to the strict
minimum. Finally, mission may take as long as necessary
without human restrictions as tiredness.

The present paper addresses the stabilization of the drop
phase. It intends to introduce a robust control scheme for this
complex procedure. In fact, airlaunch may be very delicate
for many reasons. For example, since the rocket may be
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almost as heavy as the UAV, this means that the aircraft
will instantaneously lose almost half of its mass. Current air-
launch systems present a much smaller ratio launcher/aircraft
and rely on human pilot to stabilize the aircraft during
and immediately after the launching instant. The proposed
system must replace the human pilot in this stabilization
task, with a much more adverse mass ratio. In the same
way, the two-stages system is strongly nonlinear and can
even for small perturbations be brought quite far from the
initial equilibrium point. Furthermore, available models are
based on experiments for different flight conditions, with
lookup tables and polynomial interpolation between these
points. For this reason, parameters and even models are not
very well known, and need very robust control schemes like
those found in [5].

Our previous works proposed a new strategy based on
MIMO conditional integrator (see [2]) for the nonlinear
model to stabilize the airlaunch system after the launching
phase, which is modeled by the Initial conditions aproach
[12] and by Perturbation on aerodynamic force and moment
in [11]. The designed controller resulted in a better behavior
in these extreme situation that are nevertheless expected in
the unmanned airlaunch. This paper is an extension of the
previous works using the MIMO Conditional Servocompen-
sator based controller developed in a series of papers ([7],
[4] and [1]) to stabilize the airlaunch system in the case
where the launching phase is modeled by perturbation on
aerodynamic force and moment (see [11]).

The paper is organized as follows: in section II, we
describe the nonlinear mathematical system model based on
[13],[16] and [10]. The control design literature is discussed
in section III, and its application to the full nonlinear system
model in section IV. The paper is completed by some
computer simulations and conclusions.

II. MODELING

Drop phase is delicate to model, and requires a large
amount of data and previous knowledge about the real sys-
tem. It can also be represented as a hybrid system composed
by two (or three) continuous models that are switched. These
models represents the system before, (possible during) and
after the separation phase. In the present work we have
adopted this strategy, we have considered three phases, using
two aircraft models.

1) before the separation ⇒ The first aircraft model (rep-
resenting the UAV and the rocket) is in an stable
operating condition

2) during the separation ⇒ a second aircraft model
representing only the UAV, starting on the previous



operating condition is disturbed by impulses on forces
and moments. These disturbances are inside a time
interval Tint and represent a not perfect separation.
Furthermore the initial conditions, inherited from the
first phase, are not an equilibrium point for the second
aircraft model.

3) after the separation⇒ the disturbances stop (UAV and
rocket are not in physical contact anymore). It can
be shown that the effect of launching the rocket from
the UAV impacts most the lift force, and the roll and
pitch moments. We suppose that these perturbing force
and moments are constant during interval Tint, and we
represent then Fzp , Lp and Mp for the perturbations
on the lift force, on the roll moment and pitch moment
respectively. In the present work we will study a worst
case of disturbance. We consider that the separation
phase is not simultaneous in all links that attach the
rocket and the UAV. For this reason, the rocket remains
attached to one end of the UAV during Tint. We
have then studied how long the disturbance could last
and that the control algorithm could still stabilize the
aircraft back.

We have then assumed that:
• the perturbation on lift force during Tint is equal the

rocket’s mass times gravity, that means Fzp = mg.
• the perturbation on pitch moment during Tint is Mp =
mglr/2 where lr is the rocket length.

• the perturbation on roll moment during Tint is small,
because of the geometry of the rocket (thin and long).

• the model following the launch phase is that of an F-
16. Its initial condition is the equilibrium point of the
model previous the launch phase. This is taken as the
F-16 model with twice the F-16’s mass.

Fig. 1. Frames: Body fixed axes OXBYBZB , Stability axes OXSYSZS ,
Aerodynamic axes OXWYWZW

Following this procedure, the F-16 aircraft in the instant
following the dynamic airlaunch is described in the aerody-
namic axes (the aerodynamic axes OXWYWZW in the Fig.
1) i.e. the reference frame attached to the airspeed vector
(V ). The system dynamics can be expressed as (see [16]
and [17]):

In (1), Ixx, Iyy, Izz, Ixz are the moments of inertia, m
is the mass of the system (kg) and g the gravity constant.

α, β, V, p, q, r, φ, θ, ψ are the state variables of the airlaunch
aircraft model, they are the angle of attack, sideslip, airspeed,
roll rate, pitch rate, yaw rate, roll angle, pitch angle and yaw
angle respectively. α, β, φ, θ, ψ are expressed in rad, p, q, r
in rad/s and V in m/s. T is the thrust force, Fx, Fy, Fz and
L,M,N are aerodynamic forces and moments respectively.
All forces and moments are expressed in N and Nm.



α̇ = − cosα tanβp+ q − sinα tanβr
− sinα
mV cos β

(T + Fx) + cosα
mV cos β

Fz
+ g
V cos β

[sinα cos θ + cosα cosφ cos θ]

β̇ = sinαp− cosαr − cosα sin β
mV

[T + Fx] + cos β
mV

Fy
− sinα sin β

mV
Fz + g

V
[cosα sinβ sin θ

+ cosβ cos θ sinφ− sinα sinβ cosφ cos θ]

V̇ = cosα cos β
m

[T + Fx] + sin β
m
Fy

+ sinα cos β
m

Fz + g[cosα cosβ sin θ
+ sinβ sinφ cos θ + sinα cosβ cosφ cos θ]
ṗ = 1

IxxIzz−I2xz
[(IyyIzz − I2

zz − I2
xz)rq − Ixz(Ixx

+Izz − Iyy)pq + IzzL− IxzN ]
q̇ = 1

Iyy
[(Izz − Ixx)pr + Ixz(p

2 − r2) +M ]

ṙ = 1
IxxIzz−I2xz

[(−IxxIyy + I2
zz + I2

xz)pq

+Ixz(Ixx + Izz − Iyy)rq + IxxN − IxzL]

φ̇ = p+ tan θ(q sinφ+ r cosφ)

θ̇ = q cosφ− r sinφ

ψ̇ = q sinφ+r cosφ
cos θ

(1)

These aerodynamic forces and moments are function of all
the considered states. In this model, these aerodynamic forces
and moments are under look-up table from wind tunnel
data measurements as may be found in [10]. Finally, the
control inputs are respectively the aileron (δa), rudder (δr)
and elevator (δe) angles.

This model is based on wind tunnel data from NASA,
considering the following conditions:

• angle of attack is in the range of [−10◦, 45◦] and
sideslip of [−30◦, 30◦]

• flag deflection is ignored
• physical constraints for aileron (|δa| ≤ 21.5◦), rudders

(|δe| ≤ 25◦) and elevator (|δr| ≤ 30◦)
• all actuators are modeled as a first order model (τ =

1/0.0495s) with limit rates 60◦/s for aileron and ele-
vator, and 120◦/s for rudder.

In particular, we use the low quality mode of the F-
16 model, and the aerodynamic data is interpolated and
extrapolated linearly in simulation from tables found in [10].

III. CONTROL DESIGN

A. Conditional servo-compensator control design

The MIMO conditional servo-compensator controller de-
sign for the output regulation of a class of minimum-
phase nonlinear systems in case of asymptotically constant
references is studied in [7], [4] and [2]. These papers
concern a servo-compensator performing as a sliding mode
controller outside the boundary layer, and performing as a
conditional one that provides servo-compensation only inside
the boundary layer. First results have studied the SISO case
with a scalar sliding surface and the asymptotic stability
of the system inside a boundary layer. These results were



extended in [15] and [8] for linearized MIMO systems under
some additional assumptions. Our present work is dedicated
to use a nonlinear extension of these results developed in
[1], for stabilizing an unmanned aircraft after the airlaunch
phase.

Consider the system:{
ė1 = e2
ė2 = f(e1, e2) + g(e1, e2)u

(2)

where e1(t) ∈ Rn is an output error vector, e2 = ė1, u ∈ Rn

control input and f(e1, e2) ∈ Rn , g(e1, e2) ∈ Rn×n are
continuous functions.

Let us define the sliding surface as:

s = K0σ +K1e1 + e2 (3)

where σ ∈ Rn is the output of the conditional servo-
compensator

σ̇ = −K0σ + µsat(s/µ) (4)

in which µ is the boundary layer, K0 is a positive definite
matrix, K1 ∈ Rn×n is chosen such a way that K1 + sIn is
Hurwitz.

The saturation function is determined as:

sat(s/µ) =

{
s/‖s‖ if ‖s‖ ≥ µ
s/µ if ‖s‖ < µ

(5)

The previous work [2] has shown that system (2) is
exponentially stabilized by the controller called Conditional
Integrator in the case where K0 is a scalar. The paper [1]
extends the result for the case of K0 being a matrix. The
controller is called Conditional Servo-compensator controller
that we remind as below.

We denote Oµ as the region neighborhood of (e1, e2) =
(0, 0) with a radius Rµ for ‖s‖ < µ

Oµ = {e = (e1, e2) ∈ Rn ×Rn | ‖e‖ ≤ Rµ} (6)

We state the following assumptions on the forcing terms
f(e1, e2) and g(e1, e2) to design the control algorithm.

Assumption 3.1: f(e1, e2) is bounded by a function of
γ(‖e1‖ + ‖e2‖) (where γ(·) is a class K function) and a
positive constant ∆0 :

‖f(e1, e2)‖ ≤ γ(‖e1‖+ ‖e2‖) + ∆0

and as a consequence,

‖f(e1 = 0, e2 = 0)‖ = ‖f(0, 0)‖ ≤ ∆0

for (e1, e2) ∈ Rn × Rn. Inside the boundary layer, the
function f(e1, e2) is required to be Lipschitz for (e1, e2) ∈
Oµ, as a consequence

‖f(e1, e2)− f(0, 0)‖ ≤ L1‖e1‖+ L2‖e2‖

γ(‖e1‖+‖e2‖) is also required to be Lipschitz for (e1, e2) ∈
Oµ:

γ(‖e1‖+ ‖e2‖) ≤ γ1‖e1‖+ γ2‖e2‖

Assumption 3.2: Function g(e1, e2) is continuous and in-
vertible for all (e1, e2) ∈ Rn ×Rn.

Following these conditions, the controller u defined below
can be applied to (2) to stabilize the system:

{
u = −Π(e1, e2)sat(s/µ)
Π(·) = g−1(·)(Π0 + µK0 + (γ(·) + ∆0)In)

(7)

Π0 is a positive definite matrix, µ is the boundary layer
and K0 is a positive definite matrix as defined above.

The stability of the control law (7) for system (2) can be
demonstrated following the results of [1].

B. Longitudinal control design

In the longitudinal control design, we assume that all
lateral state variables are null or constant, only longitudinal
states are time varying. Moreover it is assumed that the
airspeed’s response is much slower than other states, and
that the control surface deflection has no effects on the
aerodynamic force components (lift and drag) but only on
moments.

Aerodynamic forces Fx, Fz and moment M can be
calculated by its aerodynamic coefficients (see more in [6]).
Fx = (Cx(α) + c̄Cxq (α)q/(2V ))q̄S, Fz = (Cz(α, β) +
c̄Czq (α)q/(2V ))q̄S, M = (Cm(α) + Cmq (α)qc̄/(2V ) +
Cmδe (α)δe)q̄Sc̄ . By replacing Fx, Fz , moment M and
β = 0, φ = 0, p = 0, r = 0 in (1). The model for
longitudinal dynamic can be written as:

α̇= 1
mV [− sinα(T + Cx(α)q̄S) + cosαCz(α)q̄S]

+q + ρS
4m (− sinαCxq (α)c̄+ cosαCzq (α)c̄)q

+ g
V cos (θ0 − α)

q̇=I7q̄S(Cm(α)c̄+ Cmq (α)c̄q + Cmδe (α)c̄δe)

θ̇=q

(8)

in which S is wing area, q̄ air pressure, c̄ equivalent width,
I7 = 1/Iyy, Cx(α), Cxq (α), Cz(α), Czq (α), Cm(α),
Cmq (α) Cmδe (α) are aerodynamic coefficients taken from
[9].

Equation (8) can be rearranged as: θ̇ = q
α̇ = fα11(α) + (1 + fα12(α))q + fα13(α, θ)
q̇ = fα21(α) + fα22(α)q + gα2 (α)δe

(9)

where fα11(α), fα12(α), fα13(α, θ), fα21(α), fα22(α) and gα2 (α)
represent the terms of (8) respectively.

Let us define xα1 = α, xα2 = ẋα1 = α̇ and uα = δe, which
allow us to rewrite (9) into:

θ̇ = ηα(xα1 , x
α
2 , θ) (10a)

ẋα1 = xα2

ẋα2 = Fα′ (xα1 , x
α
2 , θ) +Gα′ (xα1 , x

α
2 )uα (10b)

where

ηα(·) =(xα2 − fα11(xα1 ) − fα13(xα1 , θ))/(1 + fα12(xα1 ))

Fα
′
(·)= ∂fα11(xα1 )

∂xα1
xα2 +

∂fα13(xα1 )

∂xα1
xα2

+(1 + fα12(xα1 ))fα21(xα1 ) + (
∂(1+fα12(xα1 ))

∂xα1
xα2

+(1 + fα12(xα1 ))fα22(xα1 ))
(xα2 −fα11(xα1 )−fα13(xα1 ))

(1+fα12(xα1 ))

Gα
′
(·)=(1 + fα12(xα1 ))gα2 (xα1 )

(11)



We define now the reference for the angle of attack αref
considered as constant in this study, and the error vector of
angle of attack eα1 = xα1 −xα1ref = α−αref and the variable
eα2 = ėα1 . Equation (10b) can be transformed into (12):{

ėα1 = eα2
ėα2 = Fα(eα1 , e

α
2 , θ) +Gα(eα1 , e

α
2 )uα

(12)

Here we remark that Gα(xα1 , x
α
2 ) is invertible, and that

Fα(xα1 , x
α
2 , θ) and Gα(xα1 , x

α
2 ) are Lipschitz for the entire

domain of actuation of the system.
Applying the control algorithm presented in (7) for system

(12) (in this case a nonlinear single input single output
system) gives the controller:{

uα = −Πα(·)sat(sα/µα)
Πα(·) = (Gα)−1(·)(Πα

0 + µαKα
0 + γα(·) + ∆α

0 )
(13)

with {
sα = Kα

0 σ
α +Kα

1 e
α
1 + eα2

σ̇α = −Kα
0 σ

α + µαsat(sα/µα)
(14)

where µα, Kα
1 are positive constants. Πα

0 and Kα
0 are

positive constant.
The controller can be shown to assure the stability of

angle of attack and its derivative. For the sake of brevity
we skip the proof, that is straightforward and based on a
Lyapunov function. It can be shown to go to a residual
set that can be attenuated by higher gain. The conclusions
we can have are that all errors will be ultimately bounded,
where the remaining signals stands for the disturbance on
the aircraft speed. It is interesting to remark that variable θ
was left free, in order to allow situations as a looping, where
θ is continuously varying. Its derivative on the other hand is
bounded, and also goes to a residual set (by equation 12).

Since the airspeed control is only a secondary objective,
we design a simple PI controller for the thrust to regulate
airspeed. Its form is:

T = −kP (V − Vr)− kI(V̇ − V̇r)

where Vr is the airspeed reference, kP = 711 and kI = 6.3.

C. Lateral control design
As in the case of longitudinal control design, in the lateral

case it is considered that only lateral state variables are time
varying.



β̇= 1
mV

(− cos(α0) sin(β)(T + Cx(α0)q̄S)
+ cos(β)Cy(β)q̄S − sin(α0) sin(β)Cz(α0, β)q̄S)
+ sin(α0)p− cos(α0)r + ρS

4m
(cos(β)Cyp(α0)b̄p

+ cos(β)Cyr (α0)b̄r) + g
V

(cos(α0) sin(β) sin(θ0)
+ cos(β) cos(θ0) sin(φ) − sin(α0) sin(β) cos(φ))

φ̇=p+ cos(φ) tan(θ0)r

ṗ=I3Cl(α0, β)q̄Sb̄+ I4Cn(α0, β)q̄Sb̄+ ρV Sb̄
4

[(I3Clp(α0)
+I4Cnp(α0))p+ (I3Clr (α0) + I4Cnr (α0))r]
+q̄S[(I3Clδa (α0) + I4Cnδa (α0))δa + (I3Clδr (α0)
+I4Cnδr (α0))δr]

ṙ=I4Cl(α0, β)q̄Sb̄+ I9Cn(α0, β)q̄Sb̄+ ρV Sb̄
4

[(I4Clp(α0)
+I9Cnp(α0))p+ (I4Clr (α0) + I9Cnr (α0))r]
+q̄S[(I4Clδa (α0) + I9Cnδa (α0))δa + (I4Clδr (α0)
+I9Cnδr (α0))δr]

(15)

in which b̄ is equivalent length, I3 = Izz
(IxxIzz−I2xz)

,
I4 = Ixz

(IxxIzz−I2xz)
, I9 = Ixx

(IxxIzz−I2xz)
. Cy(α, δe), Cyp(α0),

Cyr (α0), Cl(α0, β), Cn(α0, β), Clp(α0), Cnp(α0), Clr (α0),
Cnr (α0), Clδa (α0), Cnδa (α0), Clδr (α0), Cnδr (α0) are lat-
eral aerodynamic coefficients taken from [9].

Aerodynamic force Fy and moments L, N are calculated
by their aerodynamic coefficients (see more in [6]). Fy =
(Cy(β) + (Cyp(α)p+ +Cyr (α)r)b̄/(2V ))q̄S, L = (Cl(β) +
Clp(α, β)pb̄/(2V ) + Clr (α, β)rb̄/(2V ) + Clδa (α)δa +
Clδr (α)δr)q̄Sb̄, N = (Cn(β) + Cnp(α, β)pb̄/(2V ) +
Cnr (α, β)rb̄/(2V ) + Cnδa (α)δa + Cnδr (α)δr)q̄Sb̄. By re-
placing Fy , moments L, N and α = α0, θ = θ0 in (1). The
lateral nonlinear dynamic model used for the control design
procedure is consequently reduced as (15).

Equation (15) can be rearranged as:
[
β̇

φ̇

]
=fβ11(β, φ) + fβ12(β, φ)

[
p
r

]
[
ṗ
ṙ

]
=fβ21(β, φ) + fβ22(β, φ)

[
p
r

]
+ gβ2 (β, φ)

[
δa
δr

] (16)

where fβ11(·), fβ12(·), fβ13(·), fβ21(·), fβ22(·), and gβ2 (·) repre-
sent the terms of (15) respectively. Equation (16) is mainly
used for controller design and stability analysis.

Let us define xβ1 = [β, φ]T , xβ2 = ẋβ1 = [β̇, φ̇]T and uβ =
(δa, δr)

T , that allow us to rewrite equation (16) to:{
ẋβ1 = xβ2
ẋβ2 = F β

′

(xβ1 , x
β
2 ) +Gβ

′

(xβ1 , x
β
2 )uβ

(17)

where
F β

′

(·) = (
∂fβ11(·)
∂xβ1

+ (fβ(·) + fβ12(·)fβ22(·))(fβ12(·))−1)xβ2

−(fβ(·) + fβ12(·)fβ22(·))(fβ12(·))−1fβ11(·) + fβ12(·)fβ21(·)
Gβ

′

(·) = fβ12(·)gβ2 (·)
fβ(·) [p, r]

T
=

∂(fβ12(·)[p,r]
T )

∂xβ1
(18)

We define an output error vector eβ1 = xβ1 − xβ1ref and
eβ2 = ėβ1 where xβ1ref = (βref , φref )T is the output reference
considered as constant. Equation (18) can be transformed
into (12) with two new state variables eβ1 and eβ2 .{

ėβ1 = eβ2
ėβ2 = F β(eβ1 , e

β
2 ) +Gβ(eβ1 , e

β
2 )uβ

(19)

Gβ(xβ1 , x
β
2 ) is invertible, and F β(xβ1 , x

β
2 ) and Gβ(xβ1 , x

β
2 )

are Lipschitz in the considered domain of xβ1 = [β, φ]T ,
ẋβ1 = xβ2 with β ∈ (−30◦, 30◦) and φ ∈ (−90◦, 90◦).

Application of control law (7) for system (19) leads to the
controller:{

uβ = −Πβ(·)sat(sβ/µβ)

Πβ(·) = (Gβ)−1(·)(Πβ
0 + µβKβ

0 + (γβ(·) + ∆β
0 )I2)

(20)
with {

sβ = Kβ
0 σ

β +Kβ
1 e

β
1 + eβ2

σ̇β = −Kβ
0 σ

β + µβsat(sβ/µβ)
(21)



where λβ = min(‖Gβ(·)‖) for β ∈ (−30◦, 30◦), φ ∈
(−180◦, 180◦). Πβ

0 is a constant large enough, µβ is the
boundary layer, Kβ

0 and Kβ
1 are positive definite matrices

chosen such a way that K + sI2 is Hurwitz.

IV. SIMULATION RESULTS

In section III, the design methodology of the conditional
servo-compensator controller to stabilize the angle of attack,
sideslip and roll angle is proposed when full knowledge
of the aerodynamic characteristics is available. This section
presents numerical simulation results for the controller to
demonstrate the performance of the proposed conditional
servo-compensator control laws in the drop phase.

As mentioned in section II, we have considered the launch
phase as disturbances on aerodynamic force and moments
during a time interval Tint, and that the model following the
launch phase is that of an F-16. This model is used since it
has already been applied for (manned) airlaunch, and because
its nonlinear model, wind tunnel informations and data are
widely known and used for control design. It is important to
remark that the model used in the following simulations is
even more complete than that used in the control design, for
example it includes actuator dynamics and their limitations.
As a consequence, simulations also illustrate some properties
of robustness to unmodeled dynamics.

In the following simulations, we have simultaneously
applied the SISO longitudinal controller for angle of attack,
and the MIMO lateral one for the sideslip and roll angles
in the full nonlinear F-16 aircraft model. We may note that
the control inputs are limited by their physical characteristics
introduced in section II.

The control law in (7) whose Π(·) can be written a simplier
way as:

Π(·) = (Gi)−1(Π0 + γ(·)In) (22)

in which, γ(·) = γ1‖e1‖2 + γ2‖e2‖2, γ1 and γ2 are positive
constant. n = 1 for the longitudinal case and n = 2 for the
lateral case.

Application of this control law to two motion modes
presented in subsections (III-B) and (III-C) is done by
determining the set of parameters Πi

0, γi1, γi2, µi, Ki
1 and

Ki
0 with i = α, β corresponding to longitudinal mode and

lateral mode respectively.

Πα
0 µα γα1 and γα2 kα0 Kα

1

25.0 1.0 0.001 and 0.001 1.1 1.8
Πβ

0 µβ γβ1 and γβ2 Kβ
0 Kβ

1[
4.00.0
0.05.0

]
1.0 0.001 and 0.001

[
0.80.0
0.01.1

] [
1.50.0
0.01.8

]
TABLE I

PARAMETERS FOR TWO CONTROLLERS

We will stabilize the second model following the launch
phase to its equilibrium point (V, h) = (154m/s, 5000m)
corresponding to (angle of attack αr to 4.6◦, sideslip βr to
0◦, and roll angle φr to 0◦).

Its initial condition is the final state of the first model
(α = 10.6◦, β = 0◦ and φ = 0◦) as in Section II. Moreover,

we add on its initial condition a small disturbance on system
output. That means the initial condition of second model is
(α0 = 17.5◦, β0 = 4◦ and φ0 = 15◦) for all numerical
simulations.

Fig. 2. Angle of attack, Sideslip Angle and Roll angle stabilized

Fig. 3. Aileron, Elevator and Rudder

Fig. 4. State variables: Angular rates of system

The second model is disturbed on its aerodynamic force
and moments during an interval Tint as in Section II. We
simulate three sets of time lengths:

1) Tint = 0.2s (corresponding to solid lines in Fig. 2 to
Fig. 5) produces damped oscillations (see in [11]).

2) Tint = 0.3s, (the dashed lines in Fig. 2 to Fig. 4),
it was shown in [11] that the system controlled by a
LQR controller becomes completely unstable for this
length.

3) Tint = 0.4s (corresponding to dash dotted lines in Fig.
2 to Fig. 5) one can see that the controller is still able
to stabilize the system.



Fig. 2 illustrates the convergence of the system output
to the operating point of the aircraft at the end of 5s
without static steady error for the three cases of Tint =
(0.2s, 0.3s, 0.4s). All system outputs are still under their
physical limitation.

Fig. 5. State variables: Euler’s angles of system

Fig. 6. System’s output unstable and Control surfaces

Figs. 4 shows that angular rates converge to zero in all
cases and Fig. 5 the convergence of Euler’s angles.

In Fig. 3, it can be seen that the control variables are satu-
rated by their physical limitations due to a high perturbation
on aerodynamic forces and moments.

For Tint = (0.2s, 0.3s) the system is well stabilized,
while for Tint assuming larger values the system becomes
more oscillatory and attains its limits of stability, the case
of Tint = 0.4s is an example. We show in Fig. 6 that the
system will be unstable even with the robust conditional
servo-compensator controller for an interval Tint = 0.49s.

V. CONCLUSION

This work has studied the airlaunch system at the stage
separation from the reusable airlaunch vehicle from the down
stage and the effects of the stage separation phase in the
stability of the airlaunch system. The separation phase may
produces large impulses on forces and moments, making the
system unstable. These impulses are considered to last a time
interval, that is then evaluated in simulations.

To stabilize the airlaunch system after this stage separation
phase, a conditional servo-compensator control is considered.

This controller is designed using an F-16 model representing
the aircraft just after dropping the second stage, but disturbed
by large impulses. For a perturbation on aerodynamic forces
and moments during an interval Tint, the stability of the
system after the drop stage may be assured for small time
intervals. When Tint becomes large, the system becomes
unstable even with the proposed controller.

In future works other disturbances can be considered, as
well as other control strategies for this particularly interesting
and difficult problem.
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