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Yakup Koç1 Martijn Warnier1 Robert E. Kooij2,3 Frances M.T. Brazier1

1Faculty of Technology, Policy and Management, Delft University of Technology, the Netherlands
2Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, the Netherlands

3TNO (Netherlands Organisation for Applied Scientific Research), the Netherlands

Abstract—Cascading failures are the typical reasons of black-
outs in power grids. The grid topology plays an important role
in determining the dynamics of cascading failures in power
grids. Measures for vulnerability analysis are crucial to assure a
higher level of robustness of power grids. Metrics from Complex
Networks are widely used to investigate the grid vulnerability.
Yet, these purely topological metrics fail to capture the real
behaviour of power grids. This paper proposes a metric, the
effective graph resistance, as a vulnerability measure to de-
termine the critical components in a power grid. Differently
than the existing purely topological measures, the effective graph
resistance accounts for the electrical properties of power grids
such as power flow allocation according to Kirchoff laws. To
demonstrate the applicability of the effective graph resistance,
a quantitative vulnerability assessment of the IEEE 118 buses
power system is performed. The simulation results verify the
effectiveness of the effective graph resistance to identify the
critical transmission lines in a power grid.

I. INTRODUCTION

The electric power grid is crucial for economic prosperity,
and national security. Disruptions to electrical power grids
paralyse the daily life in modern societies causing huge eco-
nomical and social costs for these societies [1]. The strong de-
pendencies of other critical infrastructures such as telecommu-
nications, transportation, and water supply on electric power
grid amplifies the severity of large scale blackouts [2], [3]. The
key importance of the electric power grid to society encourages
further research into sustaining power system reliability and
developing new methods to evaluate and mitigate the risk of
cascading blackouts.

Power grid security is traditionally assessed relying on flow-
based methods (e.g. N−x contingency analysis [4]). The flow-
based methods model the continuous and discrete dynamics
of the components and solve non-linear algebraic equations
to determine the electric power flow distribution over the
grid components. A complete security assessment based on
flow-based methods requires evaluating a combinatory number
of contingencies. However, this results in significant compu-
tational complexity and the associated computational time,
enforcing power systems analysts to seek for alternatives [4].

The strong connection between the topology and the ro-
bustness of a grid prompts a vulnerability assessment from a
topological perspective. The recent advances in the field of
complex networks [5], [6] reveal its promising potential to

investigate power grids vulnerability at the systems level from
a topological perspective.

Topological investigation of electrical power grids demon-
strates that power grids belong to the classes of small world [6]
networks, and they have scale free [5] characteristics, suggest-
ing that power grids have ”hub” components having significant
criticality compared to the rest of the network. These com-
ponents are crucial for the grid [7]. Their removal weakens
the system robustness significantly, or results in the largest
possible damage in network performance. Identifying these
critical components in a power grid is a major concern for
power system security and attracts significant attention from
the power system research community [8], [9], [10]. Identi-
fying these critical components in a power grid in advance
enables power grid operators to improve system robustness by
monitoring and protecting these components continuously.

To assess the structural vulnerability of power grids, several
studies [9], [11], [12] have proposed extended topological
approaches, while many others [13], [14], [15] have used graph
theoretical metrics including average shortest path length [16],
[17] and its derivatives such as efficiency [8]. These purely
topological metrics consider only the structure of a power
grid ignoring the electrical properties of the components in the
network. However, in a power grid, the electric power is not
governed only by the physical couplings (interconnections),
but also by the electromagnetic couplings, and it flows through
the network according to Kirchoff Laws. Therefore, the purely
topological approaches considering only the topology fail to
capture the real system behaviour. This paper proposes a
metric, effective graph resistance, as a vulnerability measure
to determine the critical lines in a power grid, while differently
than the existing topological metrics, accounting for the power
flow allocation according to Kirchoff Laws.

II. MODELLING CASCADING FAILURES IN POWER GRIDS

A power grid is a multi-layered network that is composed of
three functional parts: generation, transmission, and distribu-
tion. Power is provided from generation buses to distribution
stations through the transmission buses that are all inter-
connected via transmission lines. In a graph representation of a
power grid, nodes represent generation, transmission, distribu-
tion buses, and substations, while links model the transmission
lines and transformers. All the parallel transmission lines in the
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system are represented by an equivalent single link in a graph
representation. Additionally, the links in a graph representation
are weighted by the admittance (or impedance) value of the
corresponding transmission line.

The electrical properties of a grid including impedances,
voltage levels at each individual power station, voltage phase
differences between power stations and loads at terminal
stations control the power flow in the grid. This paper es-
timates the flow values for each component in the network
by using linear DC power flow equations [18] which is an
approximation of nonlinear AC power flow equations [19]. In
a DC model, the active power flow fij through a transmission
line lij connecting node i and node j is related to the voltage
phase values at both nodes i and j and the impedance of the
line lij as follows:

fij =
θij
xij

= bijθij (1)

where θij is the voltage phase difference between node i and
node j, xij is the reactance, and bij is the susceptance of lij .
The entire system can be modelled solely by:

Pi =

d∑
j=1

fij =

d∑
j=1

bijθij (2)

where Pi is the real power flow at node i and d is the degree
of node i. In terms of matrices, Eq. (2) can be rewritten as:

P = Bθ (3)

where P is the vector of real power injections, θ contains the
voltage phase values at each node, and B is the bus susceptance
matrix in which Bij = − 1

xij
and Bii =

∑d
j=1−Bij . Since all

the active power injections are known in advance, given the
bus susceptance matrix B, the voltage phase values at each
node can be calculated directly by using:

θ = B-1P (4)

After obtaining the voltage angle values at each node, the
power flow values through each line can be computed by using
Eq. (1).

The maximum capacity of a line is defined as the maximum
power flow that can be afforded by the line. The flow limit of
a transmission line is imposed by thermal, stability or voltage
drop constraints [20]. This paper assumes that the maximum
capacity Cl of a line l is proportional to its initial load Ll,in

by a tolerance parameter αl: Cl = αlLl,in.
In a power grid, transmission lines are protected by relays

and circuit breakers. A relay of a transmission line measures
state variables (e.g. current), and compares them with a thresh-
old value. When the threshold is violated, and this violation
lasts long enough, the relay notifies a circuit breaker to trip the
transmission line in order to prevent that the transmission line
is permanently damaged due to e.g. overloading. This paper
assumes a deterministic model for line tripping mechanism. A
circuit breaker of a line l trips at the moment the load Ll of
the line l exceeds its maximum capacity Cl: |Ll/Cl| > 1.

An initial outage of a component changes the balance of
the power flow distribution over the grid and causes a redis-
tribution of the power flow over the network. This dynamic
response of the system to this triggering event might overload
other parts in the network. The protection mechanism trips
these newly overloaded components, and the power flow is
again redistributed potentially resulting in new overloads. This
cascade of failures continues until no more components are
overloaded.

III. COMPLEX NETWORKS PRELIMINARIES

This section explains the relevant basic concepts from com-
plex networks theory, introduces the effective graph resistance,
and elaborates on how it is computed in electric power grids.

A. Complex networks basics

A network G(N,L) consisting of a set of nodes N and
links L, can fully be represented by its adjacency matrix. The
adjacency matrix A of a simple, unweighted graph G(N,L)
is an N ×N symmetric matrix reflecting the interconnection
of the nodes in the graph. aij = 0 indicates that there is no
edge between nodes i and j, otherwise aij = 1. In case of a
weighted graph, the network is represented by the weighted
adjacency matrix W where wij corresponds to the weight of
the line between nodes i and j; a weight can be a distance,
cost, or delay.

The Laplacian matrix [21] Q is another way to fully
characterize a graph, and defined as:

Q = ∆−A (5)

where ∆ is the diagonal matrix of strengths of G: δi=
∑N

j wij .
Hence, the Laplacian can be constructed as:

Qij =


δi, if i = j.

−wij , if i 6= j and (i, j) ∈ L
0, otherwise.

(6)

where δi is the strength of node i, and L is the set of links in
G.

A walk between pair of nodes i and j is a set of nodes and
links that begins at node i and ends at node j, while a path
Pij refers to a walk in which no nodes are revisited. The path
length l(Pij) is the sum of the weights of constituent edges in
the path Pij . The shortest path length l(P ∗ij) is the minimizer
of l(Pij) over all Pij . The average shortest path length lG of
a network G is defined as:

lG =
1

N(N − 1)

∑
i6=j∈G

l(P ∗ij) (7)

B. Effective graph resistance in power grids

Considering a network G(L,N) with a Laplacian matrix
constructed by the conductance values of the lines, the ef-
fective resistance [21] between a pair of nodes i and j Rij

is the potential difference between these nodes when a unit
current is injected at node i and withdrawn at node j. The
effective graph resistance is the sum of the individual effective



resistances between each pair of nodes in the network. The
effective graph resistance can be computed in two different
ways: (a) by aggregating the effective resistances between each
pair of nodes, and (b) by the eigenvalues of the Laplacian
matrix of the grid.

The required steps to compute the effective graph resistance
based on pairwise effective resistances are (i) constructing the
Laplacian matrix of the grid, (ii) determining the generalised
inverse of the Laplacian matrix, (iii) computing effective
resistances between each pair of nodes, and (iv) summing up
the effective resistances.

The Laplacian matrix of a power grid Q reflects the in-
terconnection of buses with transmission lines according to
the description in Eq. 6. The weight wij corresponds to the
susceptance [19] (i.e. inverse of reactance) value between
nodes i and j. The Laplacian matrix constructed by the
susceptance values is equivalent to the admittance matrix in
the electrical power systems theory.

The effective resistance Rij between nodes i and j is
computed as:

Rij = Q+
ii − 2Q+

ij +Q+
jj (8)

where Q+ is the generalized inverse of Q obtained by the
Penrose pseudo-inverse operator [22].

Subsequently, the effective graph resistance RG of a power
network is computed by summing up all the effective resis-
tances between all pairs in a network.

RG =

N∑
i=1

N∑
j=i+1

Rij (9)

Another way to compute the effective graph resistance of
a power grid requires computation of the eigenvalues of the
Laplacian matrix of the grid. This approach requires summing
the reciprocal of the eigenvalues:

RG = N

N−1∑
i=1

1

µi
(10)

where µi is the ith eigenvalue of the Laplacian matrix. This
methodology is computationally more efficient, but it does
not give any insight into the individual effective resistances
between pairs of buses.

In a DC model of a electrical power grid, the effective
resistance Rij between buses i and j is equal to the equivalent
impedance Zeq,ij between these buses. Fig. 1 illustrates the
case.

IV. EFFECTIVE GRAPH RESISTANCE AS A METRIC TO
ASSESS GRID VULNERABILITY

In purely topological approaches such as shortest path
length, electrical power is assumed to follow the shortest or
the most efficient path. Relying on this assumption, a shortest
path between a pair of nodes is determined. The criticality of a
transmission line is then quantified based on the impact of its
removal on the network average shortest path length. However,
electric power is not governed only by topological, but also

A"

B"

Z1" ZL"

A"

B"

Zeq"Z2" …." ZL,1"

VA"

VB" VB"

VA"

Fig. 1. Multiple L branches between nodes A and B with impedances
Z1, Z2, .., ZL can be replaced by one single branch with an impedance value
Zeq,AB . Zeq,AB is related to the potential difference between A and B as:
VA − VB = IZeq,AB . Assuming a unit electric current I , the equivalent
impedance equals the potential difference between nodes A and B, and also,
per definition, the effective resistance between nodes A and B.

by the electrical properties of the grid. The electric power
flows through all the possible paths rather than following one
single path (e.g. the shortest path). Consequently, these purely
topological approaches, that consider only the topology of
a grid and ignore the electric characteristics, fail to capture
the real behaviour of the grid in terms of robustness and
vulnerability.

In power grids, utilization of multiple paths precludes the
existence of a physical shortest path between two buses.
However, the concept of effective resistance makes it possible
to determine a distinct electrical path between two nodes by
conceptually replacing the multiple paths between two nodes
with a single equivalent path. The effective resistance between
two nodes is the total cost incurred to transfer electric power
between these nodes. Consequently, the effective resistance is
the (real) electrical path length between two nodes, and can
replace its purely topological counterpart (the shortest path
length) for a realistic vulnerability analysis of power grids.

The concept of effective resistance makes it possible to
construct the electrical topology of a power grid. An electrical
topology of a power grid shows the electrical connections
between buses, rather than the physical connections as a
physical topology does. In an electrical topology of a power
grid, the nodes represent generation, transmission, distribution
buses, and substations while a link between nodes i and j
corresponds to the effective resistance Rij . Fig. 2 shows the
physical and the electrical topology of the IEEE 14 power
system [23].

In a physical power grid topology, the existence of parallel
paths between two nodes, and a homogeneous distribution of
their impedance values result in a smaller effective resistance
between these two nodes. The number of parallel paths in
the physical topology refers to the number of redundant
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Fig. 2. The physical (left) and the electrical (right) topology of the IEEE 14 power system. In the physical topology the conductances, and in the electrical
topology the effective conductances (i.e. 1/Rij), are used as weights for a better illustration. In the physical topology, a relatively thicker and more visible
line corresponds to a stronger connection (i.e. a smaller effective resistance), while a relatively thinner and less visible line corresponds to a relatively weaker
connection (i.e. larger effective resistance).

(backup) paths. In case of a failure in one of the paths
between two nodes, the power flow carried by the rendered
path is distributed over the backup paths. Therefore, a higher
number of backup paths implies a more robust network against
cascading failures due to line overloads. On the other hand,
a relatively more homogeneous distribution of the impedance
values results in a relatively more homogeneous distribution
of power flow over these parallel paths increasing the robust-
ness of the power grid against cascading failures [24], [25].
Therefore, a power grid with a relatively smaller effective
graph resistance implies a relatively more robust power grid
with respect to cascading failures. Koç et al. [26] verifies the
relationship between RG and the robustness of a power grid.

From an electrical topology point of view, a relatively small
RG results in relatively strong local electrical connections (e.g.
electrical connection between buses 1 and 2 in the electrical
topology in Fig. 2) and relatively strong remote electrical
connections (e.g. electrical connection between buses 6 and
13 in the electrical topology in Fig. 2) between buses. The
strong local electrical connections in a part of a power grid
allows a better accommodation of power flow in that area,
increasing the local robustness [24], [25]. On the other hand,
the strong remote electrical connections between distant buses
enable transfer of electrical power flow from a region of the
grid to another region resulting in a better accommodation of
power flow over the entire power grid. In case of a congestion
in one part of the grid (e.g. as a result of a failure), the excess
power in the associated part is easily transferred to the rest of
the grid, enabling the utilization of the redundant capacity in
the rest of the grid. Accordingly, relatively stronger electrical
connections between buses (i.e. a relatively smaller effective
graph resistance) allow a better accommodation of power flow
and increase the ability of a power grid to distribute the excess
power over the rest of the network ensuring a higher tolerance

against local failures.
The effective graph resistance locates the transmission lines

that are contributing most to the electrical connections in a
power grid. Removal of these lines reduces the ability of
a power grid to better accommodate power flow, hence, the
attack tolerance of the grid. Accordingly, these lines are the
lines with the highest criticality in a power grid and a robust
operation of a power grid requires continuous monitoring and
protection of these lines.

V. USE CASE:IDENTIFYING THE CRITICAL LINES IN A
POWER GRID

This section demonstrates how the effective graph resistance
is used as a metric to asses power grid vulnerability, and to
determine the critical components for the system.

For a quantitative criticality analysis, the IEEE 118 buses
power system [23] is considered. To assess the criticality of
a transmission line based on RG, this section deploys an
analogous approach to the one given in [7], [27]: the criticality
of a transmission line l in a grid G is determined by the relative
increase in the effective graph resistance ∆Rl

G that is caused
by the deactivation of line l:

∆Rl
G =

RG−l −RG

RG
(11)

where RG(G− l) is the effective graph resistance of the grid
that is obtained from G by removing l.

The original grid RG, and the impact of each individual line
removal on RG are computed. By substituting these values
in Eq. 11, the impact of each transmission line on the grid
robustness (∆Rl

G) is assessed. At the same time, the criticality
of each transmission line is also quantified based on lG (∆llG)
by following the same approach. Fig. 3 shows the results for
all transmission lines in the IEEE 118 power system, while
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Fig. 3. Relative increase in effective graph resistance and in average shortest path for IEEE 118 test case

TABLE I
MOST CRITICAL 10 TRANSMISSION LINES IN IEEE 118 POWER SYSTEM

BASED ON RG AND lG

Line ID ∆Rl
G(%) Line ID ∆llG(%)

l65−68 18.94 l38−65 10.02
l38−65 15.70 l65−68 7.97
l23−24 11.03 l30−38 5.44
l68−81 10.94 l82−83 4.86
l30−38 10.70 l8−30 4.39
l80−81 10.57 l68−81 4.27
l70−71 9.90 l80−81 3.95
l8−30 8.30 l77−82 3.61
l82−83 7.52 l23−24 3.44
l8−5 6.22 l103−110 2.43

Table I shows the 10 most critical lines identified by RG and
lG.

In Fig. 3 and Table I, the line criticality analysis based
on RG shows that the transmission line with the ID of 104
(connecting bus 65 to bus 68) is the most critical line for
the IEEE 118 power system. Deactivation of line 104 causes
nearly a 19% increase of the effective graph resistance of the
grid. On the other hand, the analysis based on the average
shortest path length suggests that the transmission line with
the ID of 96 (connecting bus 38 to bus 65) is the most critical
line and its removal results in nearly 10% increase of average
shortest path length of the grid topology.

The top 10 most critical lines according to RG are al-
most the same as the top 10 lines based on lG. However,
these lines have different rankings in their criticality. The
purely topological lG ignores the electrical properties and
identifies the criticality of transmission lines purely based
on the centrality of their location in the grid. On the other
hand, RG incorporates the impact of the electrical properties

of transmission lines in addition to the importance of their
central locations. This makes the difference between the two
approaches and results in different ranking of importances of
these components.

To validate the results from Table I, the IEEE 118 power
system is attacked by removing the critical lines identified by
RG and lG, and the damage is quantified. The simulations are
performed by MATCASC [28], a MATLAB based cascading
failures analysis tool implementing the model in Sec. II.
The damage caused by the cascade is quantified in terms
of normalized served power demand: served power demand
divided by the total power demand in the grid. The attack
vulnerability of the grid differs under various operative states
for the same attack. To capture the vulnerability of the system
under different operative states, the normalized served power
demand is averaged over 100 random instances of power
demand, varying in the interval of [Pd, 3Pd] (Pd is the base
power demand given in [23]).

Initially, the top 10 critical lines identified by RG (see
Table I) are attacked one after the other. After each successive
attack, the served power demand in the grid is quantified. The
same analysis is performed by attacking the top 10 critical
lines based on lG (see Table I), and 10 lines based on random
removals. Fig. 4 shows how the fraction of served power
demand decreases after each successive attack. The largest
damage results after an attack strategy based on RG validating
the effectiveness of RG to identify the critical transmission
lines in a power grid.

VI. CONCLUSION AND DISCUSSION

This paper proposes the effective graph resistance RG as a
global vulnerability measure for power grids. Based on RG,
the critical transmission lines in a power grid are determined.
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Fig. 4. Effectiveness of attacks based on effective graph resistance, average
shortest path length, and random removals for IEEE 118 power system

The proposed metric RG serves as a better tool to assess the
grid vulnerability compared to traditional average shortest path
length by incorporating the electrical properties of power grids
such as power flow allocation according to Kirchoff Laws. The
proposed approach is applied on the IEEE 118 power system
to determine the critical components. Results are compared to
the traditional topological metric average shortest path length.
Simulation results verify the effectiveness of RG as a measure
to assess power grid vulnerability.
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