
Logic Programming as a Service (LPaaS):
Intelligence for the IoT

Roberta Calegari∗, Enrico Denti∗, Stefano Mariani† and Andrea Omicini∗
∗Dipartimento di Informatica, Scienza e Ingegneria (DISI) - ALMA MATER STUDIORUM–Università di Bologna

Email: {roberta.calegari, enrico.denti, andrea.omicini}@unibo.it
†Department of Sciences and Methods for Engineering – Università di Modena e Reggio Emilia

Email: stefano.mariani@unimore.it

Abstract—The widespread diffusion of low-cost computing
devices, such as Arduino boards and Raspberry Pi, along with
improvements on Cloud computing platforms, are paving the
way towards a whole new set of opportunities for Internet
of Things (IoT) applications and services. Varying degrees of
intelligence are often required for supporting adaptation and self-
management—yet, they should be provided in a light-weight, easy
to use and customise, highly-interoperable way. Accordingly, in
this paper we explore the idea of Logic Programming as a Service
(LPaaS) as a novel and promising re-interpretation of distributed
logic programming in the IoT era. After introducing the reference
context and motivating scenarios of LPaaS as a key enabling
technology for intelligent IoT, we define the LPaaS general system
architecture. Then, we present a prototype implementation built
on top of the tuProlog system, which provides the required
interoperability and customisation. We showcase the LPaaS
potential through a case study designed as a simplification of
the motivating scenarios.

Index Terms—IoT, logic programming, LPaaS, pervasive com-
puting, artificial intelligence, interoperability.

I. INTRODUCTION

The widespread adoption of the IoT perspective, according
to which sensor networks, actuator devices, and computational
resources seamlessly interact with people, is going to trans-
form urban environments into smart environments – that is,
physical environments enriched with sensing, actuating, com-
munication, and computation skills – capable of acquiring and
exploiting contextual knowledge so as to adapt to inhabitants’
preferences, habits, and requirements [1]. People are thus
continuously connected together and with their surrounding
entities, in a situation-aware and socially-aware way that is
increasingly shaping a dense ecosystem where ICT devices
and people collaborate as they were a superorganism [2]—
in particular for complex urban services, such as intelligent
transportation systems, environmental sustainability, and par-
ticipatory governance [2], [3].

Similarly to living organisms, then, which are based on
innervation as the fundamental “infrastructural” support for
delivering their functionalities, socio-technical superorganisms
require an adequate software infrastructure to enable and
support the notion of smart environment. In particular, infras-
tructures should (i) be easily customisable, both statically and
dynamically, so as to match the application needs; (ii) be pos-
sibly self-managing; (iii) govern components and applications

interaction; (iv) encapsulate intelligence in suitable forms for
their exploitation by the applications. In this context, connec-
tivity and interoperability are just the basic – yet fundamental
– bricks [4]. In order to build customised, variously-situated
services and applications, a key infrastructural feature is to
provide distributed situated intelligence on demand—that is,
the ability to spread light-weight, context-aware, and effective
intelligence chunks where and when needed, so as to locally
satisfy the specific reasoning needs of the application at hand.

The aforementioned scenario opens up novel and challeng-
ing opportunities for logic-based languages, which are a natu-
ral choice as the intelligence providers in the IoT area, where
software engineering, programming languages, and distributed
artificial intelligence need to meet [5]. However, traditional
logic programming (LP henceforth) techniques might be not
enough for IoT scenarios, where the mobility/cloud ecosys-
tem grounded upon the service-oriented computing paradigm
delivers infrastructure, platform, and software as a service
with the promise of ubiquitous information access and on-
demand computation. This is why, as the natural evolution of
distributed logic programming under a fresh IoT perspective,
we here define Logic Programming as a Service (LPaaS) as
an answer to the increasingly complex demand for distributed
situated intelligence posed by nowadays pervasive systems.

Accordingly, Section II outlines the application scenarios
envisioned for LPaaS and motivating the research effort as
well; Section III defines the LPaaS architecture focussing on
its most relevant features for the IoT business domain; Sec-
tion IV reports on the first prototype implementation emphasis-
ing tuProlog effectiveness in enabling and supporting LPaaS;
Section IV-A discusses an exemplary use case showcasing
LPaaS potential; finally Section V concludes the paper and
looks forward to future development of LPaaS vision.

II. APPLICATION SCENARIOS

LPaaS moves from the idea of providing an inference engine
in the form of a service – library service, middleware service,
network service, etc. – leveraging the power of LP resolution.

Application scenarios are not limited to the IoT landscape.
For instance, in [6] a Prolog-based Web Service providing
fuzzy search functionality on a collection of XML documents
representing publications is discussed, which could be easily

978-1- 5090-4429- 0/17/$31.00 c© 2017 IEEE.



built as a LPaaS engine, resulting in a very compact and
elegant program easy to maintain and deploy.

Other more complex scenarios could be devised i.e., in
the field of health-care infrastructure, whose purpose is the
continuous monitoring of patients affected by some disease.
In [7] pregnant women with gestational diabetes mellitus
are assisted through an e-health infrastructure: patients are
equipped with a body-area network to monitor blood pressure
and glucose levels. Sensors are connected to the patients’
smartphone, working as a hub to collect the data. Abductive
agents perform reasoning on data so as to provide a diagnosis
– a task that could be well-suited for LPaaS using abductive
LP [8] – contacting health care professionals if necessary.

Another intriguing application for LPaaS is on-demand
reasoning in sensor networks, since it offers the possibility
to inject chunks of situated intelligence locally. In fact, as
discussed in [9], implementing real-time, power-efficient, dis-
tributed signal-processing algorithms on wireless nodes that
are severely resource-limited and have to meet stringent re-
quirements in terms of wearability (including battery duration),
is still extremely challenging and complex. There, LPaaS
offers the possibility of exploiting a light-weight inference
engine to perform data reasoning on demand in a light-weight,
efficient, and decentralised way.

There are several research works in the direction of making
the next generation IoT smarter, such as agent-oriented and
event-based frameworks for the development of cooperating
smart objects [10], [11]. The baseline of works in this area
is the idea of moving from connecting things to generating
intelligence by the linking things in the real world with
information in the digital world.

III. THE LPAAS ARCHITECTURE

LPaaS provides an abstract view of an LP inference engine
in terms of service, with the goal of promoting interoperability,
encapsulation, and situatedness, thus reducing the need for
integration and coupling while promoting context-awareness.
Interoperability requires standards, which is why LPaaS de-
fines a standard interface for client applications and relies on
standard representation formats (i.e., JSON1) and interaction
protocols (i.e., REST over HTTP, or MQTT2), versatile enough
to fit a wide variety of application needs—especially in the
IoT landscape. In particular, LPaaS is designed to enable
situatedness, offering the chance to reason efficiently over data
local to situated components. Diverse computational models
can be tailored to the local needs of situated components,
exploiting LP extensions explicitly aimed at pervasive systems
such as labelled variables systems [12], [13].

In this perspective, each LP server node exposes its services
concurrently to multiple clients, via the following interfaces.
The inference engine is expected to implement SLD resolution
[14], and is configured both with a theory of axioms – its
Knowledge Base (KB) – and a set of goals – like in classic
LP – that the client can ask to be proven.

1http://www.json.org
2http://mqtt.org

Fig. 1. The LPaaS Configurator Service Architecture

The service is initialised at deployment-time on the server
machine; then, once started, it can be dynamically re-
configured at run-time whenever needed, but only by the
Configurator (a privileged agent). Applications can access the
service as either Clients or Configurators – in the latter case,
access credentials have to be provided and checked – through
the corresponding interfaces: the Client Interface exposes
methods for observation and usage, while the Configurator
Interface enables service configuration.

A. Configurator Interface

The Configurator interacts with the server via the Configu-
rator Interface (Fig. 1). Configurator methods are detailed in
Table I – with standard Prolog notation for input/output [15]
– making it possible to set the service configuration, its KB,
and the list of admissible goals.

Two main features characterise the LP service: the possibil-
ity of managing stateful and/or stateless requests, and dynamic
vs. static KB.

Since the service aims at mimicking a classical logic pro-
gramming engine using the SLD resolution [14], which means
to ask for any number of solutions, and – only then – ask for
each next solution iteratively, management of stateful requests
is required. However, since this may not be resource-effective,
and some application scenarios may not even need the feature
– for instance a temperature sensor that always needs to reason
on its latest measurement –, stateless requests are provided
as an alternative option. In the latter case no session state is
tracked by the server component, so each request must contain
all the required information—whereas for stateful requests the
server keeps track of the state of each individual client request
(i.e., of each client resolution process).

As far as the logic theory is concerned, a static KB is
immutable, while a dynamic KB can evolve during the server

TABLE I
LPAAS CONFIGURATOR INTERFACE

setConfiguration(+ConfigurationList)
getConfiguration(-ConfigurationList)

resetConfiguration()

setTheory(+Theory)
getTheory(-Theory)
setGoals(+GoalList)
getGoals(-GoalList)



Fig. 2. The LPaaS Client Service Architecture

lifetime, thus implying that clauses have a lifetime too and
can be asserted and retracted upon need—such as a clause
representing the current temperature in a room.

It is worth noting that the service can be simultaneously
stateful and stateless, as it can manage multiple kinds of
request concurrently; the knowledge base, instead, can be
either dynamic or static.

B. Client Interface

In LPaaS Client Service Architecture (Fig. 2) the server
component provides the inference service to one or more
clients via the Client Interface detailed in Table II.

The LP service offers observational methods to provide
configuration and contextual information about the service,
and usage methods to query the service for triggering compu-
tations and reasoning, and for asking solutions. Observational
methods allow querying the service about its configuration
parameters (stateful/stateless and static/dynamic), state of the
KB, and admissible goals. Usage predicates (i.e., logic predi-
cates for usage methods) allow the service to be asked for one
or more solutions—one solution, N solutions, or all solutions
available. Usage predicates are slightly different in case of
stateless or stateful requests: in the former case, the solve
operation is conceptually atomic and self-contained – always
has the Goal as its parameter – whereas in the latter case
self-containment is not necessary given that the server keeps
track of the client state and the goal can be set only once
before the first solve request is issued.

The reset primitive resets the resolution process, effec-
tively restarting resolution, with no need to reconfigure the
service (i.e., select the goal); in turn, the close primitive
actually ends communication with the server—so that the goal
must be re-set in order to restart querying the server.

Further details about methods of the Client Interface are
discussed in Table II.

C. Time Awareness

All the operations of the kind solve can also contain
a Timeout parameter – that specifies the maximum time
(server time) resolution should take – to avoid blocking the
server: if the resolution process does not complete within the
specified time, the request is cancelled and a negative response
is returned to the client. In case of stateful requests, the client
could also perform solve queries asking for one or more
solutions every time milliseconds (server time), actually

creating a stream of solutions—particularly useful in IoT
scenarios exploiting sensor devices or monitoring processes.
Furthermore, when the KB is dynamic all the methods take a
Timestamp as an additional parameter, so that each theory
has a time-bounded validity that can be used during the proof
of a goal: only clauses valid at the given Timestamp are
taken into consideration during SLD resolution process.

The service is then required to be time-aware, that is,
conscious that computation takes time, and that regardless of
whether it is computing or idle, time flows. This is why time-
sensitive methods are included. The time-awareness of the
service enables time-situatedness on the clients’ side: should
they need to perform time-related computations or inferences,
they could just ask the LP server.

IV. LPAAS IN tuPROLOG

To test the effectiveness of the proposed architecture, we
implemented a first prototype of LPaaS as a RESTful Web
Service (WS) [16]: we reused and adapted patterns commonly
used for the REST architectural style and introduced a novel
architecture supporting embedding Prolog engines into WS.
Fig. 3 shows the general architecture focussing on the Server
side and its components (access interfaces, Prolog engine, and
data store), as well as some exemplary client applications
interacting via HTTP requests and JSON objects.

The server-side inner architecture (Fig. 4) is composed by
three logical units: the interface layer, the business logic layer,
and the data store layer. The interface layer encapsulates the
Configurator and Client Interfaces. The Business Logic wraps
the Prolog engine with the aim of managing incoming requests
consistently. The Data Layer is responsible for managing the
data store tracking, i.e., all the configuration options necessary
to restore the service in case of unpredictable shutdown (i.e.,
operating parameters and security metadata such as clients’
role, username, password, . . . ).

Since these data are expected to be rather limited in size
for most scenarios, we choose to keep them in the server
application so as to offer a light-weight, self-contained service:
however, they could be easily moved to a separate persistence
layer on, i.e., an external DB application, if necessary.

Fig. 3. The LPaaS RESTful Web Service



TABLE II
LPAAS CLIENT INTERFACE. The service returns its currently configured properties when method getServiceConfiguration(-ConfigList) is

invoked, where ConfigList is [isStateful, isStateless, isDynamic]. isStateful is true if the service is configured to be stateful (thus
all the methods of the stateful interface are available), isStateless is true if the service is configured to be stateless (thus all the methods of the stateless

interface are available) and analogously isDynamic is true if the service is configured to be dynamic (thus all the methods of the dynamic interface are
available). Observational methods are getServiceConfiguration, getTheory, getGoals, isGoal, which return, respectively, configuration

parameters (stateful, stateless and static/dynamic), the KB the service relies on, the admissible goals, and whether the given input term is an admissible goal
(true/false). Usage predicates vary depending on whether the service is stateless or stateful. In the former case, solve operation always needs the Goal as

input parameter, whereas in the latter case solve is replaced by two distinct methods to be chained together: setGoal first, solve next—without
specification of the goal. Furthermore, for stateful requests the returned solutions are always sequential, whereas for stateless ones the resolution process
always restarts from the beginning. Accordingly, solveAfter methods have been introduced to enable fast-forwarding to the N+1 solution AfterN.

St
at

ic
K

B

Stateless Stateful
getServiceConfiguration(-ConfigList)

getTheory(-Theory)
getGoals(-GoalList)

isGoal(+Goal)

setGoal(template(+Template))
setGoal(index(+Index))

solve(+Goal, -Solution) solve(-Solution)
solveN(+Goal, +NSol, -SolutionList) solveN(+N, -SolutionList)

solveAll(+Goal, -SolutionList) solveAll(-SolutionList)

solve(+Goal, -Solution, within(+Time)) solve(-Solution, within(+Time))
solveN(+Goal, +NSol, -SolutionList, within(+Time)) solveN(+NSol, -SolutionList, within(+Time))

solveAll(+Goal, -SolutionList, within(+Time)) solveAll(-SolutionList, within(+Time))

solveAfter(+Goal, +AfterN, -Solution)
solveNAfter(+Goal, +AfterN, +NSol, -SolutionList)

solveAllAfter(+Goal, +AfterN, -SolutionList)

solve(-Solution, every(@Time))
solveN(+N, -SolutionList, every(@Time))
solveAll(-SolutionList, every(@Time))

reset()
close()

D
yn

am
ic

K
B

Stateless Stateful
getServiceConfiguration(-ConfigList)

getTheory(-Theory, ?Timestamp)
getGoals(-GoalList)

isGoal(+Goal)

setGoal(template(+Template))
setGoal(index(+Index))

solve(+Goal, -Solution, ?Timestamp) solve(-Solution, ?Timestamp)
solveN(+Goal, +NSol, -SolutionList, ?Timestamp) solveN(+N, -SolutionList, ?Timestamp)

solveAll(+Goal, -SolutionList, ?Timestamp) solveAll(-SolutionList, ?Timestamp)

solve(+Goal, -Solution, within(+Time), ?Timestamp) solve(-Solution, within(+Time), ?Timestamp)
solveN(+Goal, +NSol, -SolutionList, within(+Time),

?Timestamp)
solveN(+NSol, -SolutionList, within(+Time), ?Timestamp)

solveAll(+Goal, -SolutionList, within(+Time),
?Timestamp)

solveAll(-SolutionList, within(+Time), ?Timestamp)

solveAfter(+Goal, +AfterN, -Solution, ?Timestamp)
solveNAfter(+Goal, +AfterN, +NSol, -SolutionList,

?Timestamp)
solveAllAfter(+Goal, +AfterN, -SolutionList, ?Timestamp)

solve(-Solution, every(@Time), ?Timestamp)
solveN(+N, -SolutionList, every(@Time), ?Timestamp)
solveAll(-SolutionList, every(@Time), ?Timestamp)

reset()
close()

The server implementation is realised exploiting a plurality
of technologies that are commonly found in this field: in par-
ticular, the Business Logic is realised on the J2EE framework3,
exploiting EJB4, while the database interaction is implemented

3http://docs.spring.io/autorepo/docs/spring-framework/1.2.x/reference/
4http://www.oracle.com/technetwork/java/javaee/ejb/

on top of JPA5.
The Prolog engine is implemented on top of the tuProlog

system [17], which provides not only a light-weight engine,
particularly well-suited for this kind of applications, but also
a multi-paradigm and multi-language working environment,

5http://docs.oracle.com/javaee/6/tutorial/doc/bnbpz.html



Fig. 4. The LPaaS Web Service Server architecture

thus paving the way towards further forms of interaction
and expressiveness. tuProlog also supports JSON serialisation
natively, ensuring the interoperability required by a WS. The
tuProlog engine, distributed as a Java JAR or Microsoft .NET
DLL, is easily deployable and exploitable by applications as
a library service—that is, from a software engineering stand-
point, a suitably encapsulated set of related functionalities.

The service interfaces exploit the EJB architecture, but can
also be accessed as RESTful Web Services, realised using
JAX-RS Java Standard (Jersey)6. Security is based on jose.4.j7,
an open source (Apache 2.0) implementation of JWT and the
JOSE specification suite. The application was deployed using
the Payara Application Server8 (a Glassfish open source fork),
and its source code is freely available on Bitbucket9.

A. Case Study

As testbed scenario, let us consider a Smart Bathroom to
monitor physiological functions so as to deduce symptoms and
diseases, and properly alert the user. Sensors collect data and
undertake reasoning based on LPaaS provided by tuProlog, to
come up with solutions made available to the user through a
dedicated tuProlog Android application. The Smart Bathroom
system is composed by three different tuProlog-enabled LPaaS
services processing data collected by:

• toilet sensors analysing biological products, like temper-
ature, volume or glucose sensors10 (Toilet Server)

• nano sensors integrated into the toothbrush (Toothbrush
Server)

• ultrasonic bathtubs, pressure sensing toilet seats and
other devices to monitor people’s cardiovascular health
(Personal Server).

Collected data may trigger different alerts: urgent ones, such
as presence of Streptococcus infection, positive Diabetes Tests,

6http://jersey.java.net
7http://bitbucket.org/b c/jose4j/
8http://www.payara.fish
9http://tuprolog.unibo.it
10http://www.wired.co.uk/article/yaniv-j-turgeman

Fig. 5. KB extraction of LPaaS Personal Server and LPaaS Toothbrush Server.

etc. and normal ones, such as the need to drink more water,
recharge batteries, and so on. Messages are classified into
urgent ones (i.e., presence of Streptococcus infection, positive
Diabetes Tests, etc.) and less important ones (i.e., need to drink
more water, recharge batteries, and so on). An excerpt of the
knowledge base of the services is shown in Fig. 5.

The system is built on the following network configuration:

• Toilet Server: on Raspberry Pi 3 (Ubuntu Mate Arm)
• Toothbrush Server: on Lubuntu laptop
• Personal Server: on Windows 10 laptop
• Client: tablet Lenovo A10 (Android 5.0.1)
• Client: desktop application on Windows 10 laptop

Currently, all the data collected by sensors are simulated.
Fig. 6 shows some screenshots of the Android application
giving evidence of urgent messages (red box) and minor
warnings (green box).

Despite its simplicity, the case study shows the potential of
LPaaS approach, where local sensors could perform situated
reasoning, applying their local knowledge to aggregate the
raw data and produce higher level synthesised information.
Such higher-order data would both enable the creation of new
computing services that autonomously respond to a user, and
support much more accurate predictions based on situatedness.

V. CONCLUSIONS & FUTURE WORK

Pervasive and situated systems of any sort are increasingly
demanding intelligence to be scattered throughout the com-
putational devices populating the physical environment, as
clearly demonstrated by IoT scenarios where varying degrees
of intelligence are being used to support adaptation and self-
management. The LPaaS architecture aims at fitting such a
challenging context, by introducing a standard interface that
is general enough to account for both stateful and stateless
services, with both static and dynamic knowledge bases, in
a completely configurable and customisable way. Our imple-
mentation is designed on the top of tuProlog, a light-weight,
multi-platform, and multi-language engine that is well suited
for the purpose; the architecture is based on the usual SOA
infrastructure—namely, RESTful Web Services [16].

Future work will be devoted to more complete tests in perva-
sive deployment scenarios, mainly in the IoT landscape—i.e.,
testing directly LPaaS tuProlog over Bluetooth Low Energy
connections. Also, space-awareness and situatedness will be
investigated, exploring the idea to opportunistically federate
LP engines by need as a form of dynamic service composition.



Fig. 6. The LPaaS Android application: non-urgent messages are shown
in green, urgent ones in red. The user can download new messages at any
time via the download button (that forwards the request to the server). The
left screenshot shows three non urgent messages (drink more water, brush
your teeth, and toothbrush battery low), while the right one shows two non-
urgent (limit sodium intake, high blood pressure) and two urgent messages
(the possibility of diabetes and the suggestion of a colon screening).

A focal point of our forthcoming activity is the design
and implementation of a specialised tuProlog-oriented mid-
dleware, dealing with heterogeneous platforms, as well as
with distribution, life-cycle, interoperation, and coordination
of multiple, situated Prolog engines – possibly based on the
existing TuCSoN middleware – aimed at exploring the full
potential of logic-based technologies in the context of IoT
scenarios and applications.

ACKNOWLEDGEMENTS

Authors would like to thank Dipl. Eng. Andrea Muccioli for
his contribution to this project and his work on the prototype
of the LPaaS tuProlog.

REFERENCES

[1] F. Cicirelli, G. Fortino, A. Guerrieri, G. Spezzano, and A. Vinci,
“Metamodeling of smart environments: from design to implementation,”
Advanced Engineering Informatics, 2016, in press. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1474034616302063

[2] F. Zambonelli, “Engineering self-organizing urban superorganisms,”
Engineering Applications of Artificial Intelligence, vol. 41, no. C,
pp. 325–332, May 2015. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0952197614002449

[3] N. Bicocchi, D. Fontana, M. Mamei, and F. Zambonelli, “Collective
awareness and action in urban superorganisms,” in 2013 IEEE
International Conference on Communications Workshops (ICC), Jun.
2013, pp. 194–198. [Online]. Available: http://ieeexplore.ieee.org/
document/6649227/

[4] G. Aloi, G. Caliciuri, G. Fortino, R. Gravina, P. Pace, W. Russo,
and C. Savaglio, “Enabling iot interoperability through opportunistic
smartphone-based mobile gateways,” Journal of Network and Computer
Applications, vol. 81, pp. 74 – 84, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1084804516302405

[5] A. Omicini and F. Zambonelli, “MAS as complex systems: A view on
the role of declarative approaches,” in Declarative Agent Languages
and Technologies, ser. Lecture Notes in Computer Science, J. A. Leite,
A. Omicini, L. Sterling, and P. Torroni, Eds. Springer, May 2004, vol.
2990, pp. 1–17, 1st International Workshop (DALT 2003), Melbourne,
Australia, 15 Jul. 2003. Revised Selected and Invited Papers. [Online].
Available: http://link.springer.com/10.1007/978-3-540-25932-9 1

[6] B. D. Heumesser, A. Ludwig, and D. Seipel, “Web Services based
on Prolog and XML,” in Applications of Declarative Programming
and Knowledge Management, D. Seipel, M. Hanus, U. Geske, and
O. Bartenstein, Eds. Springer, 2005, pp. 245–257. [Online]. Available:
http://link.springer.com/10.1007/11415763 16

[7] S. Bromuri, M. I. Schumacher, and K. Stathis, “Towards distributed
agent environments for pervasive healthcare,” in Multiagent System
Technologies, ser. Lecture Notes in Computer Science, J. Dix
and C. Witteveen, Eds. Springer, 2010, vol. 6251, pp. 125–
137, 8th German Conference, MATES 2010, Leipzig, Germany,
September 27-29, 2010. Proceedings. [Online]. Available: http:
//link.springer.com/10.1007/978-3-642-16178-0 13

[8] A. C. Kakas, R. A. Kowalski, and F. Toni, “Abductive logic
programming,” Journal of Logic and Computation, vol. 2, no. 6, pp.
719–770, 1992. [Online]. Available: http://logcom.oxfordjournals.org/
cgi/doi/10.1093/logcom/2.6.719

[9] G. Fortino, R. Giannantonio, R. Gravina, P. Kuryloski, and R. Jafari,
“Enabling effective programming and flexible management of efficient
body sensor network applications,” IEEE Transactions on Human-
Machine Systems, vol. 43, no. 1, pp. 115–133, Jan. 2013. [Online].
Available: http://ieeexplore.ieee.org/document/6392962/

[10] G. Fortino, A. Guerrieri, W. Russo, and C. Savaglio, “Integration of
agent-based and cloud computing for the smart objects-oriented iot,”
in Proceedings of the 2014 IEEE 18th International Conference on
Computer Supported Cooperative Work in Design (CSCWD), May 2014,
pp. 493–498.

[11] G. Fortino, A. Guerrieri, M. Lacopo, M. Lucia, and W. Russo, An
Agent-Based Middleware for Cooperating Smart Objects. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 387–398. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-38061-7 36

[12] R. Calegari, E. Denti, A. Dovier, and A. Omicini, “Labelled
variables in logic programming: Foundations,” in CILC 2016 –
Italian Conference on Computational Logic, ser. CEUR Workshop
Proceedings, C. Fiorentini and A. Momigliano, Eds., vol. 1645.
Milano, Italy: CEUR-WS, 20-22 Jun. 2016, pp. 5–20, Proceedings
of the 31st Italian Conference on Computational Logic. [Online].
Available: http://ceur-ws.org/Vol-1645/paper 7.pdf

[13] R. Calegari, E. Denti, and A. Omicini, “Labelled variables in
logic programming: A first prototype in tuProlog,” in Proceedings
of the Doctoral Consortium of the 14th Symposium of the Italian
Association for Artificial Intelligence (AI*IA 2015 DC), ser. CEUR
Workshop Proceedings, E. Bellodi and A. Bonfietti, Eds., vol.
1485, AI*IA. Ferrara, Italy: Sun SITE Central Europe, RWTH
Aachen University, 23–24 Sep. 2015, pp. 25–30. [Online]. Available:
http://ceur-ws.org/Vol-1485/proceedings.pdf#page=30

[14] J. A. Robinson, “A machine-oriented logic based on the resolution
principle,” Journal of the ACM, vol. 12, no. 1, pp. 23–41, Jan. 1965.
[Online]. Available: http://dl.acm.org/citation.cfm?id=321253

[15] P. Deransart, A. E. Dbali, and L. Cervoni, Prolog: The Standard.
Reference Manual. Springer, 1996. [Online]. Available: http://link.
springer.com/10.1007/978-3-642-61411-8

[16] R. T. Fielding and R. N. Taylor, “Principled design of the
modern Web architecture,” ACM Transactions on Internet Technology,
vol. 2, no. 2, pp. 115–150, May 2002. [Online]. Available:
http://dl.acm.org/citation.cfm?id=514185

[17] E. Denti, A. Omicini, and A. Ricci, “tuProlog: A light-weight
Prolog for Internet applications and infrastructures,” in Practical
Aspects of Declarative Languages, ser. Lecture Notes in Computer
Science, I. Ramakrishnan, Ed. Springer, 2001, vol. 1990, pp.
184–198, 3rd International Symposium (PADL 2001), Las Vegas,
NV, USA, 11–12 Mar. 2001. Proceedings. [Online]. Available:
http://link.springer.com/10.1007/3-540-45241-9 13

http://www.sciencedirect.com/science/article/pii/S1474034616302063
http://www.sciencedirect.com/science/article/pii/S0952197614002449
http://www.sciencedirect.com/science/article/pii/S0952197614002449
http://ieeexplore.ieee.org/document/6649227/
http://ieeexplore.ieee.org/document/6649227/
http://www.sciencedirect.com/science/article/pii/S1084804516302405
http://link.springer.com/10.1007/978-3-540-25932-9_1
http://link.springer.com/10.1007/11415763_16
http://link.springer.com/10.1007/978-3-642-16178-0_13
http://link.springer.com/10.1007/978-3-642-16178-0_13
http://logcom.oxfordjournals.org/cgi/doi/10.1093/logcom/2.6.719
http://logcom.oxfordjournals.org/cgi/doi/10.1093/logcom/2.6.719
http://ieeexplore.ieee.org/document/6392962/
http://dx.doi.org/10.1007/978-3-642-38061-7_36
http://ceur-ws.org/Vol-1645/paper_7.pdf
http://ceur-ws.org/Vol-1485/proceedings.pdf#page=30
http://dl.acm.org/citation.cfm?id=321253
http://link.springer.com/10.1007/978-3-642-61411-8
http://link.springer.com/10.1007/978-3-642-61411-8
http://dl.acm.org/citation.cfm?id=514185
http://link.springer.com/10.1007/3-540-45241-9_13

	Introduction
	Application Scenarios
	The LPaaS architecture
	Configurator Interface
	Client Interface
	Time Awareness

	LPaaS in tuProlog
	Case Study

	Conclusions & Future Work
	References

