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Abstract—Wireless Sensor Networks (WSNs) allow 
applications to interact with the physical world using nodes 
deployed in an Internet of Things (IoT). Application level 
protocols such as the Constrained Application Protocol (CoAP) 
and data models such as IPSO Smart Objects and the Open 
Mobile Alliance Lightweight Specification (OMA LWM2M) have 
the potential to provide greater application interoperability and 
to ease the difficulties imposed by the heterogeneous nature, 
limited development environments and interfaces of existing 
solutions. This paper describes an architecture using a tuple-
space based library for the flow of data from sensors to 
applications with defined service abstractions. It also considers 
the OMA LWM2M Information Model in comparison to the 
DMTF Common Information Model. It presents a ‘C’ 
implementation of these models on our tuple-space running on 
the Contiki3.0 OS and considers the effectiveness of our 
architecture and its integration with the existing CoAP and OMA 
LWM2M implementations.  

Index Terms—Wireless Sensor Networks, IOT, Tuple Space, 
Data Model, OMA LWM2M 

I. INTRODUCTION  
Definitions of IoT generally share the idea that IoT relates 

to the integration of the physical world with the Internet’s 
virtual world[1]. IoT uses individually addressed, constrained 
devices in a distributed system, with sensing and active 
devices for physical phenomena. Although deployed in a 
variety of applications, such as environmental monitoring and 
healthcare, deployments are often dedicated/proprietary or 
specialized to optimise one particular aspect such as lifetime. 

One aspect to be considered is how to store and represent 
the variety of data on constrained devices so that application 
software can understand data from sensors and actuators in the 
way people using browsers understand information on the 
Web[2]. The IP for Smart Objects (IPSO) alliance promotes 
the use of IP-based technologies, defined by standard 
organizations for smart objects in a range of interoperation use 
cases1. The IPSO Smart Object definitions are used in this 
paper and comprise mostly sensors/actuators. A broader range 
of smart objects is envisaged in [3], where in addition to 
sensing and logging, smart objects can act on their own and 
exchange information with humans. IPSO basic smart objects 
can be used to form composite objects. IPSO objects can be 
accessed with a URI and encapsulate sensor data, links and 
metadata. IPSO objects do not require the use of CoAP, but 
can be used to develop interoperable solutions with the Open 

Mobile Alliance Lightweight Machine to Machine 
Specification (OMA LWM2M)[4]. 

Our view is that flexible, service-based interoperable 
abstractions, with supporting data models such as OMA 
LWM2M, are key to moving IoT beyond isolated islands of 
sensor data to networks that are more easily deployed, 
developed and integrated with new services, particularly at the 
edges of the Internet. Hence, we think that IoT architectures 
should revolve around data. Our architecture[5] was designed 
to represent the node's local data and service roles for the 
nodes and applications, based on their role in the flow of data 
from sensor to application. This paper presents a summary of 
our architecture and how its data-centric approach and tuple 
based store (and templates) provide a set of abstractions to 
reduce the likelihood of isolated islands of data (due to 
proprietary/different standards). 

This paper extends an existing implementation of the OMA 
LWM2M model on the Contiki3.0 OS to integrate with our 
architecture’s novel design point of a tuple-based store for 
both local and remote node data with a simple API and 
defined service roles. This data-centric design allows code 
reuse and interoperability on constrained nodes and cloud 
services. This paper also considers the issues encountered in 
implementing the OMA LWM2M model. 

The remainder of this paper is organised as follows. We 
present prior work in section II and an overview of our 
architecture in section III. Sections IV and V present and 
review a prototype integration of the OMA object model into 
our architecture. The paper concludes in section VI. 

II. EXISTING WSN MODEL APPROACHES 
WSN nodes, such as wismote2 are constrained in terms of 

processing power, memory and energy consumption, making it 
a challenge to deliver the sensed data to application(s) and also 
support generic APIs and data models. This section considers 
some approaches which are independent of the wireless 
technology. 

A. IPSO and OMA LWM2M 
The REST architectural style represents Resources, e.g. a 

sensor, in specified formats, which are accessed by their 
Universal Resource Identifier (URI) using a defined set of 
verbs, such as GET, POST, PUT, DELETE in HTTP[6]. The 
Constrained Application Protocol (CoAP) is a RESTful 
protocol for constrained devices and networks, which provides 
resource discovery via the Resource Directory (RD) and an  
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“observe” flag in the CoAP GET Request to provide an 
observe/notify (publish/subscribe) model. 

OMA LWM2M is an example of a RESTful approach using 
CoAP. In an IoT context it swaps “server” and “client” roles in 
that a node runs at least a CoAP Server and LWM2M Client, 
rather than being simply a client. LWM2M provides a simple 
and reusable object model with a set of interfaces for 
managing constrained devices, covering bootstrap, 
registration, information reporting, device management and 
service enablement. Figure 1 shows IPSO Smart Objects, 
LWM2M, CoAP and 6LOWPAN combine to give a uniform 
API and Data Model stack to provide end-to-end 
interoperability between constrained devices and services. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  OMA Protocol Stack3 

IPSO Smart Objects cover a range of entities, including 
basic sensors and actuators. These basic objects are 
represented using a simple common data model and resource 
template in LWM2M. The model consists of Resources with a 
URI of object/instance/resource to identify a resource, e.g. 
3303/0/5700, represents a “Sensor Value” (resource id 5700) 
in a “Temperature Sensor” (object ID 3303) instance (id of 0). 
More complex objects can be composed to represent items 
with multiple resources, e.g. an IPSO Thermostat(8300) may 
have IPSO temperature sensors, (3303), IPSO Setpoint (3308) 
and IPSO Actuation(3306) [7]. The implementation of CoAP 
on Contiki in [8] is used in the LWM2M and IPSO 
implementation4 OMA LWM2M-supported devices are not yet 
widely available, so [9] uses a new LWM2M gateway between 
an LWM2M server and legacy devices that also integrates into 
the ETSI M2M architecture. A new client engine 
implementation for LWM2M on Contiki-based nodes is shown 
in [10]. 

B. Tuple Based Approaches 
TeenyLIME [11] is a high level approach, built on TinyOS, 

which is based on a shared memory space (tuple space), 
derived from Linda[12]. TeenyLIME’s deployment in a real-
world application showed the usefulness of a tuple space 
approach in WSNs[13]. This approach allows different 
processes to use a limited number of simple operations to 

insert, read, and withdraw tuples from a tuple space and to 
provide asynchronous notifications for data of interest being 
added to the shared tuple space. LighTS[14], part of the LIME 
environment, provides a reduced tuple space holding context 
(location) information using the same primitives. LIME 
extended the local node tuple space into a federated tuple space 
into which tuples can be added, removed, but only when the 
nodes are in range of each other[15]. LIME is implemented in 
Java, limiting its applicability to more capable nodes, whereas 
TeenyLIME can run on constrained devices. 

C. Other Approaches 
TinyDB [16] considers the WSN as a distributed database, 

with a table where each column represents a sensor reading or 
node data and a SQL like query language (extended for 
periodic requests) with nodes supporting aggregation of data. 
While powerful, this approach can be considered limited by its 
table based approach and relational queries, especially in terms 
of handling events. A data-centric approach such as directed 
diffusion may be more suitable in certain cases, such as a 
request for information from a group of nodes or any node in a 
particular region, rather than the “normal” model of a request 
being made to a particular node[16]. It uses a publish and 
subscribe model where a node expresses an interest in data 
items using a set of attribute-value pairs. Each node keeps an 
interest cache with entries for each interest and nodes which 
can provide the relevant data will reply. Directed Diffusion is, 
however, tightly coupled to a query on demand data model 
where applications can accept aggregated data. An approach in 
[3] defines metamodels at different levels of abstraction 
considering functional and data perspectives to assist the 
analysis, design and implementation of smart objects. 

III. OUR HOLISTIC ARCHITECTURAL APPROACH 
OMA LWM2M provides solutions for end-to-end 

interoperability across networks and devices, but that it 
provides limited higher-level service abstractions beyond 
client/server. The objective of our architecture is to enable a 
wider deployment of WSNs while also providing consistent 
abstractions to enable the easier development of generic and 
more powerful applications to take advantage of sensor data. 
The key principle underlying our approach is that all WSNs are 
primarily about delivering sensed data to one or more 
applications (periodically, on-demand or asynchronously) or 
commands to actuators from applications. The approach is 
termed as holistic in that it considers the entirety of the flow of 
data between sensor and service(s), supported by lower layers, 
rather than being driven by each layer specifying its own 
behaviour in isolation.  

A. HPP Architecture 
This system model is supported by our Holistic Peer to Peer 

(HPP) Architecture[5]. This architecture includes a data model 
(dm) service layer, an object space layer and a local 
instrumentation layer. The data model service layer represents 
nodes and services (on node or Cloud) and holds its data in the 
object space layer. The object space layer is a data store, 
modeled as a tuple space, with a simple API and leases on  
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stored objects. The local instrumentation layer hides the 
platform specific sensor hardware implementations and also 
uses the object space layer to hold the data for the local node. 
Figure 2 illustrates the relationship of these layers with the 
object space holding objects from the local node and remote 
nodes. This separation of remote and local data allows data to 
be transferred or stored for forwarding to another node. 

Fig. 2.  Node Data Architecture 

1) The Data Model and Service Abstractions 
The DM Service layer is independent of a particular data 

model and provides a simple and flexible API for a data store 
To insulate the developer from network and node specifics, 
such as hardware and different node functionalities, the data 
model service layer uses defined roles for services and nodes, 
based on capabilities.The defined roles are: 

1. DM_SINK_SRV - adds interest objects to its peers for 
data it wants to receive 

2. DM_SOURCE_SRV – sends it sensor data to peers 
3. DM_FORWARDER_SRV - passes messages to peers 
4. DM_STORE_SRV - provides intermediate storage for 

data from remote peers, such as historic data 
5. DM_AGGREGATOR_SRV- aggregates peer data 
6. DM_MATCHER_SRV - provides advanced query 

matching 
A node may play several roles according to its resources and a 
constrained node may only act as a DM_SOURCE_SRV, not 
even storing its own data or forwarding that of others. More 
capable nodes may cache or aggregate data. 

2) The Object Space and Library 
The object library provides resource constrained devices 

with a simple shared object space and associated API, using 
concepts from Linda's tuple space[11]. The object space is non-
prescriptive about how it holds classes and instances, except 
that it requires the use of a template to hold the type of each 
object attribute and its methods. n object structure represents an 
object held in the object space, using the object's class 
template. Each object has a lease, allowing for the space to 
remove objects if leases are not renewed. A node adds the 
template defining the information model and the names of the 
properties it supports, i.e. to specify which properties of an 

object are instrumented. The template and instance are kept 
separately to allow for objects that represent a class. For 
resource constrained devices it also allows the template (or a 
reference) to be sent once to another node prior to the encoded 
instance. The actual definition of the template is transparent to 
the object space, although the current implementation uses a 
key-value pair based definition.  

Furthermore, our object space can act as a cache for local 
and remote node data. The successful use of a cache enables 
reduced communication and so extends the battery life of WSN 
nodes. We have proposed the CacheL algorithm for WSN 
nodes [18], which uses an intrinsic lease associated with cache 
data in its cache replacement policy. 

3) Local Instrumentation Layer 
This layer hides the platform specific sensor hardware 

implementations. It provides get()/set() functions and method 
prototypes to access local node data and functionality. This 
aligns with the hardware/vendor specific implementations on 
nodes to access particular readings, e.g. a call to read a value 
from a register. The local instrumentation (li) layer treats each 
object attribute/property individually. Figure 3 shows these 
individual li_class_property properties are stored only once in 
a li_class_list and how the values of each li_instance are 
stored in a separate li_value_list. It also shows how it 
separates key and non-key properties, for information models 
that use keys to identify object instances (or table rows). It 
also allows resource constrained devices to allocate and set 
keys when the class is created, whereas non-key data in an 
instance changes and may be read by a dynamic getter 
function. 

Fig. 3.  Local Instrumentation Structures 

This provides the flexibility required to map a rich data 
model to a resource constrained WSN device, as higher-level 
data models can be built up using a local instrumentation 
structure per attribute giving per attribute mapping to the 
underlying node functions or data. This also allows only those 
attributes supported by the node to be implemented, rather than 
having to store an object's unsupported attributes. This 
contrasts with how objects are normally inherited with all 
attributes, even if not required. We showed previously that it is 
straightforward to map this per property approach to a complex 
object such as used in CIM5. This approach is also very much  



 

 
 

in line with the per property (or Resource in IPSO terms) 
approach used in OMA LWM2M. 

4) The Holistic P2P Protocol (HPP) 
The implementation in this paper integrates the layers from 

our architecture with CoAP for use with OMA LWM2M. IPSO 
objects can also be supported over our HPP protocol. 

The HPP protocol is sufficiently simple for low capability 
devices to exchange sensor information independent of the 
underlying technology, while providing the resilience of a P2P 
protocol, together with leases, to handle intermittent 
connectivity. Figure 4. shows an example interaction, where a 
DM_SOURCE_SRV adds its service and node classes and 
instances to a DM_STORE_SRV on a node able to cache data. 
A DM_SINK_SRV queries this DM_STORE_SRV for its 
capabilities and then its node data, which may be returned from 
the DM_SOURCE_SRV or an intermediate DM_STORE_SRV 
(if cached there).  

 
Fig. 4.  Sample Service Interaction 

IV. IMPLEMENTATION 
We implemented the HPP data model elements comprising 

the data model service layer, local instrumentation layer and 
object space on Contiki3.0 and integrated them with the erbium 
and CoAP implementations (er-rest-example) in [8]. In order to 
demonstrate the flexibility of our architecture, we extended the 
implementation to OMA LWM2M using the IPSO and OMA 
applications in Contiki3.0. Note that this hpp code is not 
gateway or client specific. 

A. Data Model Service 
The data model service uses key-value pairs to store or send 

objects from/to a remote node and a local instrumentation form 
to encapsulate the node functions to access sensor data. The 
dm_service library helper functions, e.g. dm_add_class() and 
dm_add_instance(), handle both forms of objects. 

B. Local Instrumentation Adapter 
Figure 3 shows how locally instrumented data is 

implemented. A node allocates and sets up an li_class 
structure for each class to be stored locally. The li_class 
consists of a list of class_property_t, one per property of the 
class. It then sets up an li_instance structure for each object 

instance, e.g. a sensor. Each li_instance_property is linked to 
its single li_class_property definition which reduces memory 
use compared to having this in every instance. The 
li_class_property structure makes no assumptions about the 
object it is to be put in (it could be in several), giving the 
modelling flexibility outlined above. OMA LWM2M Contiki 
Implementation 

The existing implementation in Contiki3.0 uses a set of 
structures to represent objects and resources, with 
enumerations for types and a context for parsing a request. The 
LWM2M object structure contains pointers to instances, which 
in turn contains pointers resources as below: 

 
typedef struct lwm2m_object { 
    uint16_t id; 
    uint16_t count; 
    const char *path; 
    resource_t *CoAP_resource; 
    lwm2m_instance_t *instances; 
} lwm2m_object 
 

The ipso-example code initialises the LWM2M engine in a 
thread that calls lwm2m_engine_init(), followed by 
lwm2m_engine_register_default_objects() to set up a device 
object for the node, then ipso_objects_init() to initialise the 
supported objects, e.g. ipso_temperature_init(). It then loops 
processing events. These object init() methods have code like 
the following for the temperature resource, showing the Object 
Id, type and value as per above lwm2m_resource. The 
callback will be a method to access the real values. 

 
LWM2M_RESOURCES(temperature_resources, 
   LWM2M_RESOURCE_CALLBACK(5700,  
                     {temp, NULL, NULL}), 
   LWM2M_RESOURCE_STRING(5701,"Celcius"),               
    // some entries not shown……. . 
   LWM2M_RESOURCE_FLOATFIX_VAR(5602, 
                     &max_temp)); 

 
An instance will be created and included in an object by: 
 

LWM2M_INSTANCES(temperature_instances,    
   LWM2M_INSTANCE(0,temperature_resources)); 
   LWM2M_OBJECT(temperature,3303, 
                temperature_instances); 

 
This is followed by a call to add this object to the engine’s 

static array of lwm2m_object_t pointers: 
  lwm2m_engine_register_object(&temperature); 

C. HPP Mapping of OMA LWM2M on Contiki 
1) Mapping the relevant Object Structures 

A set of header files with static definitions for IPSO 
resources (properties in HPP) and objects were created, e.g. 
  #define IPSO_Sensor_Value_PROP_ID 5700  
  #define IPSO_Generic_Sensor_OBJECT_ID 3300 

 



 

 

A static definition of the IPSO Classes was created in a 
header file, initialised as an array of li_class_property_t to hold 
the property names and types of the class. For example, a 
Temperature Sensor class is defined as: 

 
  //name,property_id,type,mode,permission 
  li_class_property_t IPSO_Sensor_Value = 
    {IPSO_Sensor_Value_PROP_NAME, 
   IPSO_Sensor_Value_PROP_ID, 

     real32, DYNAMIC, READONLY}; 
 
These properties are grouped in li_objects with valuelists of 

key value pairs of property id, length, value, next (or callbacks 
to set values) as in: 

 
li_kv_entry_t tSensor_vals[] = { 
  // property id, length, value, next 
  {IPSO_Sensor_Value_PROP_ID,4,"0", 
                         &tSensor_vals[1]}, 
  // some entries not shown……. . 
  {IPSO_Sensor_Type_PROP_ID,12,"Temperature", 
                         &tSensor_vals[9]}, 
  {LI_END_PROP_ID, 0, NULL, NULL} 
}; 

 
The classes implemented in a given node are added to an array 
of li_class_t to define the properties (by pointing to that list) 
and the relevant callbacks as below and the getter/setter 
callbacks per property must be coded to access dynamic values 
such as sensor readings: 
li_class_t node_classes[] = { 
  {IPSO_Generic_Sensor_OBJECT_ID, 
  HPP_PREFIX, 
  IPSO_GenericSensor_PropCount, 
  &IPSO_GenericSensor[0], 
  0, NULL,&localFunctions},....... 
}; 

Then the getter/setter callbacks per property must be coded 
to access dynamic values such as sensor readings. 

2) Integrating the HPP Objects into the LWM2M engine 
The existing LWM2M context and REST code were 

retained and the objects in the object space were available over 
the existing REST interfaces. This made testing easier by 
using the Copper Browser plugin and Leshan server for OMA 
as for any OMA LWM2M node.   

lwm2m_engine_register_default_objects() was extended to 
call dm_service_initialise(), which in turn sets up a 
DM_SOURCE_SRV with service_source_init(). This 
initialises the li_node information and calls dm_li_add_class() 
and dm_add_li_instance() to add the supported DM service, 
node and local instrumentation classes and instances to the 
object space. This used a call like   
  rv = addInst(this_info_ptr, 
              &myGenericSensorInstances[0], 
              IPSO_Generic_Sensor_OBJECT_ID,  
              "0", IPSO_Keys_PropCount, 
              IPSO_Generic_Sensor_INDEX);  

 

lwm2m_engine_handler() was changed to use Data Model 
calls such as dm_find_instance_by_name() to get, set 
LWM2M resources, returning REST responses as before. 

V. REVIEW OF IMPLEMENTATION 
This section considers the suitability of our architecture 

based on our implementation of the OMA LWM2M model. 
1) Implementation Complexity 

The code extracts show the mapping of IPSO resources to 
our object classes and instances to be straightforward and that 
it was simple to integrate the OMA Engine with our data model 
service layer and object space. 

2) Memory Use 
The table below indicates the memory use in bytes of our 

components compared to the existing ipso, rest and coap code 
on a Wismote WSN node running Contiki including IPSO 
LightControl, Generic Sensor DigitalInput objects. This shows 
the size of our layers is suitable to run on constrained nodes. 

Component Code Size Data Size 

Lwm2m and OMA 7742 3807 

Rest+Coap 8278 2228 

Dm_ and li_ layers 1686 1316 

Object layer (and 
supporting utils) 

1036 139 
 

IPSO extensions for 
dm_ and li 

4126 1684 

Full Stack 60474 21753 

 
Fig. 5.  Memory Use on Contiki 

3) Abstractions 
The holistic architecture does not require specific 

middleware nodes or servers such as the OMA Leshan server 
used here to retrieve/set OMA data. The existing LWM2M 
implementation on Contiki3.0 maps object/instance/resource 
nicely using structures. The use of a static array to hold 
pointers to the instances is hidden by methods like 
lwm2m_engine_register_object().Similarly, the implementation 
of the object space, is hidden by the object library API. The 
value of the data model service role abstractions has been 
shown to a limited extent as only the DM_SOURCE_SRV role 
was implemented. The integration here shows a fuller 
integration of the HPP protocol with the IPSO and OMA code 
would take advantage of the ability of our architecture to store 
and cache data from remote nodes by adding the 
DM_STORE_SRV role for LWM2M data from remote nodes. 
LWM2M does have the concept of registration to one or more 
servers, which includes objects, but this does not appear to be 
as rich as the defined DM_ roles. The use of the data model 
service layer allows a much richer matching in a request than 
OMA LWM2M as it can match on template or wildcards or 
particular properties. 

Also, LWM2M uses the URI of objectid/instance or 
objectid/instance/resourceid to select a resource, whereas our 
data model service distinguishes key and non-key properties in  



 

 

the class, which allows the straightforward implementation of 
other data models. 

4) Object and Property Mapping 
The implementation has shown that a per property based 

approach fits naturally with how the low level functionality is 
often performed on devices, e.g. with a GPIO call per property. 
It also allows selection of only the implementable attributes on 
a node, so saving memory per implemented class. Both 
LWM2M and HPP support this approach. While REST 
resources such as led and sensors generally have a few 
properties, the IPSO Application Framework[19] defines 
function sets as groupings of individual attributes, e.g. a device 
at /dev has 12 resources, e.g. Manufacturer at /dev/mfg.  

5) CIM vs OMA LWM2M 
Comparing to our earlier implementation of the Common 

Information Model (CIM)[5], the per property(resource) data 
model of LWM2M is more suited to constrained devices, e.g. 
the IPSO Generic Sensor definition is much simpler than the 
inheritance involved in constructing a CIM_NumericSensor. 
CIM also uses lots of strings, e.g. for names, which is 
expensive in memory, even if only stored once as in HPP. The 
IDs in IPSO are easier to program and more efficient in 
memory. IPSO also has fewer types than CIM, as suits 
constrained devices.  

CIM has specific object methods, whereas IPSO uses 
resources with implied actions, e.g. CIM has setAlarmState 
which can be used to set a led, whereas IPSO Light Control 
uses the simple On/Off (5850) boolean Actuator resource. In 
this case, the IPSO approach is simpler. It is less obvious in 
resources like “Reset Min and Max Measured Values”, while 
the implied use of “On-Time”(5852) or “Off-Time”(5853) to 
reset is not consistent with specific Reset resources elsewhere. 

6) Mapping LWM2M Resources 
The defines used in the HPP header files were easy to 

generate from the IPSO docs by substituting “_” for “ “, but 
some issues were caused by  certain characters or mixed 
capitalization, e.g. use of “/“ in On/Off (5850), Off-Time(5853) 
and Minimum Off-time(5525). Using digits for OIDs reduces 
string usage and is suitable for M2M, but it is more user 
friendly to use a RESTful well-known URI, so we also allowed 
names, e.g. /Device/0/Manufacturer as well as 3/0/0. 

VI. CONCLUSION 
This paper has shown  our architecture’s novel design point 

of a tuple-based object store for both local and remote node 
data with a simple API allowed a data model service layer and 
local instrumentation layer to hold IPSO objects without 
needing special middleware nodes. From this it follows that it 
would be straightforward to add objects remotely, illustrating 
the potential of the architecture and service abstractions. The 
object definitions used for our local instrumentation layer and 
its per property approach mapped well to the resource 
approach in IPSO and the underlying Contiki hardware 
libraries. 

Following our earlier implementation of a CIM data model, 
this implementation of the OMA model on constrained nodes 
running Contiki3.0 OS shows the benefit of using a data-centric 

approach, such as using our architecture, for both local and 
remote node data. For this reason, we strongly recommend that 
IoT architectures should revolve around data, with abstractions 
to represent the node’s local data and the capabilities of nodes 
and applications, especially as models such as OMA LWM2M 
are developed further. 

This implementation of the LWM2M data model in our 
architecture allows further work to consider the value of storing 
remote node data in the object space and how our HPP protocol 
should interact with CoAP’s observe and caching facilities. 
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