
Title OMA LWM2M in a holistic architecture for the Internet of Things

Authors Tracey, David;Sreenan, Cormac J.

Publication date 2017-05

Original Citation Tracey, D. and Sreenan, C. (2017) 'OMA LWM2M in a holistic
architecture for the Internet of Things'. 2017 IEEE 14th
International Conference on Networking, Sensing and Control
(ICNSC), Calabria, Italy, 16-18 May, pp. 198-203. doi: 10.1109/
ICNSC.2017.8000091

Type of publication Conference item

Link to publisher's
version

https://ieeexplore.ieee.org/abstract/document/8000091 - 10.1109/
ICNSC.2017.8000091

Rights © 2017 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Download date 2024-04-26 23:12:50

Item downloaded
from

https://hdl.handle.net/10468/9669

https://hdl.handle.net/10468/9669

1 IP for Smart Objects (IPSO) Alliance, www.ipso-alliance.org 2www.wismote.org

OMA LWM2M in a Holistic Architecture for the
Internet of Things

David Tracey
Dept. Of Computer Science,

University College Cork,
Cork, Ireland.

Cormac Sreenan
Dept. Of Computer Science,

University College Cork,
Cork, Ireland.

Abstract—Wireless Sensor Networks (WSNs) allow
applications to interact with the physical world using nodes
deployed in an Internet of Things (IoT). Application level
protocols such as the Constrained Application Protocol (CoAP)
and data models such as IPSO Smart Objects and the Open
Mobile Alliance Lightweight Specification (OMA LWM2M) have
the potential to provide greater application interoperability and
to ease the difficulties imposed by the heterogeneous nature,
limited development environments and interfaces of existing
solutions. This paper describes an architecture using a tuple-
space based library for the flow of data from sensors to
applications with defined service abstractions. It also considers
the OMA LWM2M Information Model in comparison to the
DMTF Common Information Model. It presents a ‘C’
implementation of these models on our tuple-space running on
the Contiki3.0 OS and considers the effectiveness of our
architecture and its integration with the existing CoAP and OMA
LWM2M implementations.

Index Terms—Wireless Sensor Networks, IOT, Tuple Space,
Data Model, OMA LWM2M

I. INTRODUCTION
Definitions of IoT generally share the idea that IoT relates

to the integration of the physical world with the Internet’s
virtual world[1]. IoT uses individually addressed, constrained
devices in a distributed system, with sensing and active
devices for physical phenomena. Although deployed in a
variety of applications, such as environmental monitoring and
healthcare, deployments are often dedicated/proprietary or
specialized to optimise one particular aspect such as lifetime.

One aspect to be considered is how to store and represent
the variety of data on constrained devices so that application
software can understand data from sensors and actuators in the
way people using browsers understand information on the
Web[2]. The IP for Smart Objects (IPSO) alliance promotes
the use of IP-based technologies, defined by standard
organizations for smart objects in a range of interoperation use
cases1. The IPSO Smart Object definitions are used in this
paper and comprise mostly sensors/actuators. A broader range
of smart objects is envisaged in [3], where in addition to
sensing and logging, smart objects can act on their own and
exchange information with humans. IPSO basic smart objects
can be used to form composite objects. IPSO objects can be
accessed with a URI and encapsulate sensor data, links and
metadata. IPSO objects do not require the use of CoAP, but
can be used to develop interoperable solutions with the Open

Mobile Alliance Lightweight Machine to Machine
Specification (OMA LWM2M)[4].

Our view is that flexible, service-based interoperable
abstractions, with supporting data models such as OMA
LWM2M, are key to moving IoT beyond isolated islands of
sensor data to networks that are more easily deployed,
developed and integrated with new services, particularly at the
edges of the Internet. Hence, we think that IoT architectures
should revolve around data. Our architecture[5] was designed
to represent the node's local data and service roles for the
nodes and applications, based on their role in the flow of data
from sensor to application. This paper presents a summary of
our architecture and how its data-centric approach and tuple
based store (and templates) provide a set of abstractions to
reduce the likelihood of isolated islands of data (due to
proprietary/different standards).

This paper extends an existing implementation of the OMA
LWM2M model on the Contiki3.0 OS to integrate with our
architecture’s novel design point of a tuple-based store for
both local and remote node data with a simple API and
defined service roles. This data-centric design allows code
reuse and interoperability on constrained nodes and cloud
services. This paper also considers the issues encountered in
implementing the OMA LWM2M model.

The remainder of this paper is organised as follows. We
present prior work in section II and an overview of our
architecture in section III. Sections IV and V present and
review a prototype integration of the OMA object model into
our architecture. The paper concludes in section VI.

II. EXISTING WSN MODEL APPROACHES
WSN nodes, such as wismote2 are constrained in terms of

processing power, memory and energy consumption, making it
a challenge to deliver the sensed data to application(s) and also
support generic APIs and data models. This section considers
some approaches which are independent of the wireless
technology.

A. IPSO and OMA LWM2M
The REST architectural style represents Resources, e.g. a

sensor, in specified formats, which are accessed by their
Universal Resource Identifier (URI) using a defined set of
verbs, such as GET, POST, PUT, DELETE in HTTP[6]. The
Constrained Application Protocol (CoAP) is a RESTful
protocol for constrained devices and networks, which provides
resource discovery via the Resource Directory (RD) and an

3http://openmobilealliance.org/wp-content/uploads/2015/02/data-models-2.gif
4https://github.com/contiki-os/contiki/tree/master/apps/oma-lwm2m

“observe” flag in the CoAP GET Request to provide an
observe/notify (publish/subscribe) model.

OMA LWM2M is an example of a RESTful approach using
CoAP. In an IoT context it swaps “server” and “client” roles in
that a node runs at least a CoAP Server and LWM2M Client,
rather than being simply a client. LWM2M provides a simple
and reusable object model with a set of interfaces for
managing constrained devices, covering bootstrap,
registration, information reporting, device management and
service enablement. Figure 1 shows IPSO Smart Objects,
LWM2M, CoAP and 6LOWPAN combine to give a uniform
API and Data Model stack to provide end-to-end
interoperability between constrained devices and services.

Fig. 1. OMA Protocol Stack3

IPSO Smart Objects cover a range of entities, including
basic sensors and actuators. These basic objects are
represented using a simple common data model and resource
template in LWM2M. The model consists of Resources with a
URI of object/instance/resource to identify a resource, e.g.
3303/0/5700, represents a “Sensor Value” (resource id 5700)
in a “Temperature Sensor” (object ID 3303) instance (id of 0).
More complex objects can be composed to represent items
with multiple resources, e.g. an IPSO Thermostat(8300) may
have IPSO temperature sensors, (3303), IPSO Setpoint (3308)
and IPSO Actuation(3306) [7]. The implementation of CoAP
on Contiki in [8] is used in the LWM2M and IPSO
implementation4 OMA LWM2M-supported devices are not yet
widely available, so [9] uses a new LWM2M gateway between
an LWM2M server and legacy devices that also integrates into
the ETSI M2M architecture. A new client engine
implementation for LWM2M on Contiki-based nodes is shown
in [10].

B. Tuple Based Approaches
TeenyLIME [11] is a high level approach, built on TinyOS,

which is based on a shared memory space (tuple space),
derived from Linda[12]. TeenyLIME’s deployment in a real-
world application showed the usefulness of a tuple space
approach in WSNs[13]. This approach allows different
processes to use a limited number of simple operations to

insert, read, and withdraw tuples from a tuple space and to
provide asynchronous notifications for data of interest being
added to the shared tuple space. LighTS[14], part of the LIME
environment, provides a reduced tuple space holding context
(location) information using the same primitives. LIME
extended the local node tuple space into a federated tuple space
into which tuples can be added, removed, but only when the
nodes are in range of each other[15]. LIME is implemented in
Java, limiting its applicability to more capable nodes, whereas
TeenyLIME can run on constrained devices.

C. Other Approaches
TinyDB [16] considers the WSN as a distributed database,

with a table where each column represents a sensor reading or
node data and a SQL like query language (extended for
periodic requests) with nodes supporting aggregation of data.
While powerful, this approach can be considered limited by its
table based approach and relational queries, especially in terms
of handling events. A data-centric approach such as directed
diffusion may be more suitable in certain cases, such as a
request for information from a group of nodes or any node in a
particular region, rather than the “normal” model of a request
being made to a particular node[16]. It uses a publish and
subscribe model where a node expresses an interest in data
items using a set of attribute-value pairs. Each node keeps an
interest cache with entries for each interest and nodes which
can provide the relevant data will reply. Directed Diffusion is,
however, tightly coupled to a query on demand data model
where applications can accept aggregated data. An approach in
[3] defines metamodels at different levels of abstraction
considering functional and data perspectives to assist the
analysis, design and implementation of smart objects.

III. OUR HOLISTIC ARCHITECTURAL APPROACH
OMA LWM2M provides solutions for end-to-end

interoperability across networks and devices, but that it
provides limited higher-level service abstractions beyond
client/server. The objective of our architecture is to enable a
wider deployment of WSNs while also providing consistent
abstractions to enable the easier development of generic and
more powerful applications to take advantage of sensor data.
The key principle underlying our approach is that all WSNs are
primarily about delivering sensed data to one or more
applications (periodically, on-demand or asynchronously) or
commands to actuators from applications. The approach is
termed as holistic in that it considers the entirety of the flow of
data between sensor and service(s), supported by lower layers,
rather than being driven by each layer specifying its own
behaviour in isolation.

A. HPP Architecture
This system model is supported by our Holistic Peer to Peer

(HPP) Architecture[5]. This architecture includes a data model
(dm) service layer, an object space layer and a local
instrumentation layer. The data model service layer represents
nodes and services (on node or Cloud) and holds its data in the
object space layer. The object space layer is a data store,
modeled as a tuple space, with a simple API and leases on

5http://www.dmtf.org/standards/cim

stored objects. The local instrumentation layer hides the
platform specific sensor hardware implementations and also
uses the object space layer to hold the data for the local node.
Figure 2 illustrates the relationship of these layers with the
object space holding objects from the local node and remote
nodes. This separation of remote and local data allows data to
be transferred or stored for forwarding to another node.

Fig. 2. Node Data Architecture

1) The Data Model and Service Abstractions
The DM Service layer is independent of a particular data

model and provides a simple and flexible API for a data store
To insulate the developer from network and node specifics,
such as hardware and different node functionalities, the data
model service layer uses defined roles for services and nodes,
based on capabilities.The defined roles are:

1. DM_SINK_SRV - adds interest objects to its peers for
data it wants to receive

2. DM_SOURCE_SRV – sends it sensor data to peers
3. DM_FORWARDER_SRV - passes messages to peers
4. DM_STORE_SRV - provides intermediate storage for

data from remote peers, such as historic data
5. DM_AGGREGATOR_SRV- aggregates peer data
6. DM_MATCHER_SRV - provides advanced query

matching
A node may play several roles according to its resources and a
constrained node may only act as a DM_SOURCE_SRV, not
even storing its own data or forwarding that of others. More
capable nodes may cache or aggregate data.

2) The Object Space and Library
The object library provides resource constrained devices

with a simple shared object space and associated API, using
concepts from Linda's tuple space[11]. The object space is non-
prescriptive about how it holds classes and instances, except
that it requires the use of a template to hold the type of each
object attribute and its methods. n object structure represents an
object held in the object space, using the object's class
template. Each object has a lease, allowing for the space to
remove objects if leases are not renewed. A node adds the
template defining the information model and the names of the
properties it supports, i.e. to specify which properties of an

object are instrumented. The template and instance are kept
separately to allow for objects that represent a class. For
resource constrained devices it also allows the template (or a
reference) to be sent once to another node prior to the encoded
instance. The actual definition of the template is transparent to
the object space, although the current implementation uses a
key-value pair based definition.

Furthermore, our object space can act as a cache for local
and remote node data. The successful use of a cache enables
reduced communication and so extends the battery life of WSN
nodes. We have proposed the CacheL algorithm for WSN
nodes [18], which uses an intrinsic lease associated with cache
data in its cache replacement policy.

3) Local Instrumentation Layer
This layer hides the platform specific sensor hardware

implementations. It provides get()/set() functions and method
prototypes to access local node data and functionality. This
aligns with the hardware/vendor specific implementations on
nodes to access particular readings, e.g. a call to read a value
from a register. The local instrumentation (li) layer treats each
object attribute/property individually. Figure 3 shows these
individual li_class_property properties are stored only once in
a li_class_list and how the values of each li_instance are
stored in a separate li_value_list. It also shows how it
separates key and non-key properties, for information models
that use keys to identify object instances (or table rows). It
also allows resource constrained devices to allocate and set
keys when the class is created, whereas non-key data in an
instance changes and may be read by a dynamic getter
function.

Fig. 3. Local Instrumentation Structures

This provides the flexibility required to map a rich data
model to a resource constrained WSN device, as higher-level
data models can be built up using a local instrumentation
structure per attribute giving per attribute mapping to the
underlying node functions or data. This also allows only those
attributes supported by the node to be implemented, rather than
having to store an object's unsupported attributes. This
contrasts with how objects are normally inherited with all
attributes, even if not required. We showed previously that it is
straightforward to map this per property approach to a complex
object such as used in CIM5. This approach is also very much

in line with the per property (or Resource in IPSO terms)
approach used in OMA LWM2M.

4) The Holistic P2P Protocol (HPP)
The implementation in this paper integrates the layers from

our architecture with CoAP for use with OMA LWM2M. IPSO
objects can also be supported over our HPP protocol.

The HPP protocol is sufficiently simple for low capability
devices to exchange sensor information independent of the
underlying technology, while providing the resilience of a P2P
protocol, together with leases, to handle intermittent
connectivity. Figure 4. shows an example interaction, where a
DM_SOURCE_SRV adds its service and node classes and
instances to a DM_STORE_SRV on a node able to cache data.
A DM_SINK_SRV queries this DM_STORE_SRV for its
capabilities and then its node data, which may be returned from
the DM_SOURCE_SRV or an intermediate DM_STORE_SRV
(if cached there).

Fig. 4. Sample Service Interaction

IV. IMPLEMENTATION
We implemented the HPP data model elements comprising

the data model service layer, local instrumentation layer and
object space on Contiki3.0 and integrated them with the erbium
and CoAP implementations (er-rest-example) in [8]. In order to
demonstrate the flexibility of our architecture, we extended the
implementation to OMA LWM2M using the IPSO and OMA
applications in Contiki3.0. Note that this hpp code is not
gateway or client specific.

A. Data Model Service
The data model service uses key-value pairs to store or send

objects from/to a remote node and a local instrumentation form
to encapsulate the node functions to access sensor data. The
dm_service library helper functions, e.g. dm_add_class() and
dm_add_instance(), handle both forms of objects.

B. Local Instrumentation Adapter
Figure 3 shows how locally instrumented data is

implemented. A node allocates and sets up an li_class
structure for each class to be stored locally. The li_class
consists of a list of class_property_t, one per property of the
class. It then sets up an li_instance structure for each object

instance, e.g. a sensor. Each li_instance_property is linked to
its single li_class_property definition which reduces memory
use compared to having this in every instance. The
li_class_property structure makes no assumptions about the
object it is to be put in (it could be in several), giving the
modelling flexibility outlined above. OMA LWM2M Contiki
Implementation

The existing implementation in Contiki3.0 uses a set of
structures to represent objects and resources, with
enumerations for types and a context for parsing a request. The
LWM2M object structure contains pointers to instances, which
in turn contains pointers resources as below:

typedef struct lwm2m_object {
 uint16_t id;
 uint16_t count;
 const char *path;
 resource_t *CoAP_resource;
 lwm2m_instance_t *instances;
} lwm2m_object

The ipso-example code initialises the LWM2M engine in a
thread that calls lwm2m_engine_init(), followed by
lwm2m_engine_register_default_objects() to set up a device
object for the node, then ipso_objects_init() to initialise the
supported objects, e.g. ipso_temperature_init(). It then loops
processing events. These object init() methods have code like
the following for the temperature resource, showing the Object
Id, type and value as per above lwm2m_resource. The
callback will be a method to access the real values.

LWM2M_RESOURCES(temperature_resources,
 LWM2M_RESOURCE_CALLBACK(5700,
 {temp, NULL, NULL}),
 LWM2M_RESOURCE_STRING(5701,"Celcius"),
 // some entries not shown……. .
 LWM2M_RESOURCE_FLOATFIX_VAR(5602,
 &max_temp));

An instance will be created and included in an object by:

LWM2M_INSTANCES(temperature_instances,
 LWM2M_INSTANCE(0,temperature_resources));
 LWM2M_OBJECT(temperature,3303,
 temperature_instances);

This is followed by a call to add this object to the engine’s

static array of lwm2m_object_t pointers:
 lwm2m_engine_register_object(&temperature);

C. HPP Mapping of OMA LWM2M on Contiki
1) Mapping the relevant Object Structures

A set of header files with static definitions for IPSO
resources (properties in HPP) and objects were created, e.g.
 #define IPSO_Sensor_Value_PROP_ID 5700
 #define IPSO_Generic_Sensor_OBJECT_ID 3300

A static definition of the IPSO Classes was created in a
header file, initialised as an array of li_class_property_t to hold
the property names and types of the class. For example, a
Temperature Sensor class is defined as:

 //name,property_id,type,mode,permission
 li_class_property_t IPSO_Sensor_Value =
 {IPSO_Sensor_Value_PROP_NAME,
 IPSO_Sensor_Value_PROP_ID,

 real32, DYNAMIC, READONLY};

These properties are grouped in li_objects with valuelists of

key value pairs of property id, length, value, next (or callbacks
to set values) as in:

li_kv_entry_t tSensor_vals[] = {
 // property id, length, value, next
 {IPSO_Sensor_Value_PROP_ID,4,"0",
 &tSensor_vals[1]},
 // some entries not shown……. .
 {IPSO_Sensor_Type_PROP_ID,12,"Temperature",
 &tSensor_vals[9]},
 {LI_END_PROP_ID, 0, NULL, NULL}
};

The classes implemented in a given node are added to an array
of li_class_t to define the properties (by pointing to that list)
and the relevant callbacks as below and the getter/setter
callbacks per property must be coded to access dynamic values
such as sensor readings:
li_class_t node_classes[] = {
 {IPSO_Generic_Sensor_OBJECT_ID,
 HPP_PREFIX,
 IPSO_GenericSensor_PropCount,
 &IPSO_GenericSensor[0],
 0, NULL,&localFunctions},.......
};

Then the getter/setter callbacks per property must be coded
to access dynamic values such as sensor readings.

2) Integrating the HPP Objects into the LWM2M engine
The existing LWM2M context and REST code were

retained and the objects in the object space were available over
the existing REST interfaces. This made testing easier by
using the Copper Browser plugin and Leshan server for OMA
as for any OMA LWM2M node.

lwm2m_engine_register_default_objects() was extended to
call dm_service_initialise(), which in turn sets up a
DM_SOURCE_SRV with service_source_init(). This
initialises the li_node information and calls dm_li_add_class()
and dm_add_li_instance() to add the supported DM service,
node and local instrumentation classes and instances to the
object space. This used a call like
 rv = addInst(this_info_ptr,
 &myGenericSensorInstances[0],
 IPSO_Generic_Sensor_OBJECT_ID,
 "0", IPSO_Keys_PropCount,
 IPSO_Generic_Sensor_INDEX);

lwm2m_engine_handler() was changed to use Data Model
calls such as dm_find_instance_by_name() to get, set
LWM2M resources, returning REST responses as before.

V. REVIEW OF IMPLEMENTATION
This section considers the suitability of our architecture

based on our implementation of the OMA LWM2M model.
1) Implementation Complexity

The code extracts show the mapping of IPSO resources to
our object classes and instances to be straightforward and that
it was simple to integrate the OMA Engine with our data model
service layer and object space.

2) Memory Use
The table below indicates the memory use in bytes of our

components compared to the existing ipso, rest and coap code
on a Wismote WSN node running Contiki including IPSO
LightControl, Generic Sensor DigitalInput objects. This shows
the size of our layers is suitable to run on constrained nodes.

Component Code Size Data Size

Lwm2m and OMA 7742 3807

Rest+Coap 8278 2228

Dm_ and li_ layers 1686 1316

Object layer (and
supporting utils)

1036 139

IPSO extensions for
dm_ and li

4126 1684

Full Stack 60474 21753

Fig. 5. Memory Use on Contiki

3) Abstractions
The holistic architecture does not require specific

middleware nodes or servers such as the OMA Leshan server
used here to retrieve/set OMA data. The existing LWM2M
implementation on Contiki3.0 maps object/instance/resource
nicely using structures. The use of a static array to hold
pointers to the instances is hidden by methods like
lwm2m_engine_register_object().Similarly, the implementation
of the object space, is hidden by the object library API. The
value of the data model service role abstractions has been
shown to a limited extent as only the DM_SOURCE_SRV role
was implemented. The integration here shows a fuller
integration of the HPP protocol with the IPSO and OMA code
would take advantage of the ability of our architecture to store
and cache data from remote nodes by adding the
DM_STORE_SRV role for LWM2M data from remote nodes.
LWM2M does have the concept of registration to one or more
servers, which includes objects, but this does not appear to be
as rich as the defined DM_ roles. The use of the data model
service layer allows a much richer matching in a request than
OMA LWM2M as it can match on template or wildcards or
particular properties.

Also, LWM2M uses the URI of objectid/instance or
objectid/instance/resourceid to select a resource, whereas our
data model service distinguishes key and non-key properties in

the class, which allows the straightforward implementation of
other data models.

4) Object and Property Mapping
The implementation has shown that a per property based

approach fits naturally with how the low level functionality is
often performed on devices, e.g. with a GPIO call per property.
It also allows selection of only the implementable attributes on
a node, so saving memory per implemented class. Both
LWM2M and HPP support this approach. While REST
resources such as led and sensors generally have a few
properties, the IPSO Application Framework[19] defines
function sets as groupings of individual attributes, e.g. a device
at /dev has 12 resources, e.g. Manufacturer at /dev/mfg.

5) CIM vs OMA LWM2M
Comparing to our earlier implementation of the Common

Information Model (CIM)[5], the per property(resource) data
model of LWM2M is more suited to constrained devices, e.g.
the IPSO Generic Sensor definition is much simpler than the
inheritance involved in constructing a CIM_NumericSensor.
CIM also uses lots of strings, e.g. for names, which is
expensive in memory, even if only stored once as in HPP. The
IDs in IPSO are easier to program and more efficient in
memory. IPSO also has fewer types than CIM, as suits
constrained devices.

CIM has specific object methods, whereas IPSO uses
resources with implied actions, e.g. CIM has setAlarmState
which can be used to set a led, whereas IPSO Light Control
uses the simple On/Off (5850) boolean Actuator resource. In
this case, the IPSO approach is simpler. It is less obvious in
resources like “Reset Min and Max Measured Values”, while
the implied use of “On-Time”(5852) or “Off-Time”(5853) to
reset is not consistent with specific Reset resources elsewhere.

6) Mapping LWM2M Resources
The defines used in the HPP header files were easy to

generate from the IPSO docs by substituting “_” for “ “, but
some issues were caused by certain characters or mixed
capitalization, e.g. use of “/“ in On/Off (5850), Off-Time(5853)
and Minimum Off-time(5525). Using digits for OIDs reduces
string usage and is suitable for M2M, but it is more user
friendly to use a RESTful well-known URI, so we also allowed
names, e.g. /Device/0/Manufacturer as well as 3/0/0.

VI. CONCLUSION
This paper has shown our architecture’s novel design point

of a tuple-based object store for both local and remote node
data with a simple API allowed a data model service layer and
local instrumentation layer to hold IPSO objects without
needing special middleware nodes. From this it follows that it
would be straightforward to add objects remotely, illustrating
the potential of the architecture and service abstractions. The
object definitions used for our local instrumentation layer and
its per property approach mapped well to the resource
approach in IPSO and the underlying Contiki hardware
libraries.

Following our earlier implementation of a CIM data model,
this implementation of the OMA model on constrained nodes
running Contiki3.0 OS shows the benefit of using a data-centric

approach, such as using our architecture, for both local and
remote node data. For this reason, we strongly recommend that
IoT architectures should revolve around data, with abstractions
to represent the node’s local data and the capabilities of nodes
and applications, especially as models such as OMA LWM2M
are developed further.

This implementation of the LWM2M data model in our
architecture allows further work to consider the value of storing
remote node data in the object space and how our HPP protocol
should interact with CoAP’s observe and caching facilities.

REFERENCES
[1] S. Haller, “The Things in the Internet of Things”, Internet of

Things Conference, 2010
[2] M. Koster, “Information Models for an Interoperable Web of

Things”, Position paper for W3C Workshop on the Web of
Things–Enablers and Services for an Open Web of Devices,
June 2014.

[3] G. Fortino et al, "Towards a Development Methodology for
Smart Object-Oriented IoT Systems: A Metamodel Approach.",
IEEE International Conference on Systems, Man, and
Cybernetics (SMC), 2015

[4] Open Mobile Alliance, “Lightweight Machine-to-Machine
Technical Specification v1.0”, December 2015

[5] D. Tracey, C. J. Sreenan, “A Holistic Architecture for the
Internet of Things, Sensing Services and Big Data”, Data-
intensive Process Management in Large-Scale Sensor Systems,
CCGrid 2013

[6] R. Fielding, “Architectural Styles and the Design of
Networkbased Software Architectures”, Doctoral dissertation,
University of California, Irvine, 2000

[7] J. Jimenez, M. Koster, H. Tschofenig, “IPSO Smart Objects”,
IPSO Position paper for IOT Semantic Interoperability
Workshop, 2016

[8] M. Kovatsch, S. Duquennoy, A. Dunkels, “A Low Power CoAP
for Contiki”, IEEE 8th International Conference on Mobile
Adhoc and Sensor Systems (MASS), 2011

[9] Wei-Gang Chang, Joseph-Lin Fuchun, “Challenges of
incorporating OMA LWM2M gateway in M2M standard
architecture”, IEEE Standards for Communications and
Networking (CSCN), 2016

[10] S. Rao, D. Chendanda, C. Deshpande, V. Lakkundi,
Implementing LWM2M in Constrained IoT Devices”, IEEE
Conference on Wireless Sensors (ICWiSE), 2015

[11] P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco.
“Programming wireless sensor networks with the TeenyLIME
middleware”, Proc. of the 8th Int. Middleware Conf., 2007

[12] D. Gelernter, “Generative communication in Linda”, ACM
Transactions on Programming Languages and Systems
(TOPLAS), Volume 7 Issue 1, Jan. 1985

[13] M. Ceriotti et al, “Monitoring heritage buildings with wireless
sensor networks: The Torre Aquila deployment”, 8th Int. Conf.
On Information Processing in Sensor Networks (IPSN), 2009

[14] Gian Pietro Picco et al, "LighTS: A Lightweight, Customizable
Tuple Space Supporting Context-Aware Applications", ACM
Symposium on Applied Computing, 2005

[15] C. Scholliers, E. Boix, W. De Meuter,, "TOTAM: Scoped
Tuples for the Ambient", Proceedings of the Second

International DisCoTec Workshop on Context-aware Adaptation
Mechanisms for Pervasive and UbiquitousServices, 2009

[16] S. R. Madden, ‘The Design and Evaluation of a Query
Processing Architecture for Sensor Networks”, Ph.D. Thesis.
UC Berkeley, 2003

[17] C. Intanagonwiwat, R. Govinden, D. Estrin, J. Heidemann, F.
Silva, “Directed Diffusion for Wireless Sensor Networking”,
IEEE/ACM Transactions on Networking, Vol 11, No. 1,
February 2003

[18] D. Tracey, C. J. Sreenan, “CacheL - A Cache Algorithm using
Leases for Node Data in the Internet of Things”, IEEE Future
Internet of Things and Cloud (FiCloud) 2016

[19] Z. Shelby et al, “The IPSO Application Framework”, Internet-
Draft, draft-ipso-app-framework-04, August 2012

