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Abstract

As renewable power generation gains importance, balancing of power
demand and supply becomes more and more challenging. This paper
addresses this challenge by exploring the potential of individually-owned
storage units in decentralised power systems with a high share of renew-
ables. The focus is on the influence of coordination and peak-shaving
operation of these individual units in realistic urban areas. Currently
extensive amount of research exits on specific applications related to stor-
age coordination. However, in these studies often simplified consumer
models are used. This study considers a representative mixed residential
and commercial neighbourhood in Amsterdam. The influence of storage
coordination and peak-shaving operation on the neighbourhood’s energy
autonomy and on the peakiness of the power exchanged with the main grid
are addressed. Results show that, compared to individual storage opera-
tion, coordinated storage operation increases renewable energy utilisation
by 39%, decreases the excess energy transferred to the grid by almost
threefold and increases the neighbourhood self-sufficiency by 21%. Peak-
shaving operation reduces the highest power peak of the year by 55%.
These results are statistically significant (p-value < 10−4). Thus, in re-
alistic urban areas storage coordination improves local energy autonomy,
while peak-shaving operation reduces peaks in power flows exchanged with
the main grid.

1 Introduction

Renewable resources gain importance in power generation. Their output is
variable and non-dispatchable, making balancing of power supply and demand
increasingly a challenge. This paper addresses this challenge by exploring the
potential of individually-owned batteries, such as in electrical vehicles. The
impact of coordination and peak-shaving operation of individual units in decen-
tralised urban power systems with a high penetration of renewables is addressed.

Although considerable amount of literature on storage coordination and
operation already exists, very few studies focus on the context of real urban
environments with mixed residential, commercial and/or industrial customers.
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Figure 1: Geographical location (left) and customer distribution and annual demand
(right) of the selected representative mixed urban neighbourhood in Amsterdam, the
Netherlands [14].

Most studies adhere a simplified demand-side view with only a single type of
customers, often households (e.g., [1, 2, 3, 4]), although a few (e.g., [5]) target
commercial users. The primary focus of most existing modelling studies is not
storage integration in realistic environments, but specific technical and econom-
ical applications, such as voltage management (e.g., [1, 6, 2, 7, 5]) and local
energy cost minimisation (e.g., [3, 4]).

The question how coordination and operation of individual units influences
local renewable energy utilisation metrics in real urban neighbourhoods remains
largely unanswered. This paper addresses this question by comparing individual
and coordinated use of individually-owned batteries such as in electrical vehicles
or small stand-alone units. The paper further studies how the algorithm type
employed by these storage units influences the peakiness of the power exchanged
with the main grid, comparing the performance of a greedy and a peak-shaving
algorithm. The focus is on urban environments with mixed household and
commercial customers. Industry is left out of scope as it is typically located
outside of urban centres. Only solar panels are included as renewable power
resources, since wind turbines are less suitable for dense urban areas. A mixed
urban area in the centre of Amsterdam, the Netherlands (Fig. 1 left) is chosen
as case study.

This paper seeks to contribute to the development and real-world emer-
gence of (semi-)autonomous local energy communities. Increasing importance
of renewables for power generation is expected to drive the transition from the
current centralised to a future decentralised power system. This future system
can be seen as an interconnected smart grid consisting of local microgrids [8, 9].
The core concept of the smart grid is its bidirectional information exchange
capability [10, 11]. Microgrids are often defined through their ability to decou-
ple (“island”) from the main grid during contingencies, becoming autonomous
portions of the grid (e.g., [12, 13]). This paper considers microgrids during
normal operation, i.e. while they remain connected to the main grid. Their
ability to internally balance demand and generation on a neighbourhood-level
scale by taking over local grid operation and control tasks is key. In particu-
lar, microgrids can coordinate and operate individually-owned batteries in the
neighbourhood.

The aim of this paper is to study how coordination and operation of individually-
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owned batteries influences (1) local energy autonomy and (2) microgrid be-
haviour towards the main grid. Local energy autonomy is defined as a high
degree of self-sufficiency (demand is satisfied by local generation) and self-
consumption (locally generated power is used by own demand). Microgrid be-
haviour towards the main grid is addressed as the microgrid ability to avoid
peaks in power flows exchanged with the main grid. Such peaks are both costly
to manage during grid operation as well as costly to account for during grid de-
sign [15]. In the past, power flow peaks occurred solely due to demand surges.
Renewable generation also causes power flow peaks, exacerbating their occur-
rence in the power system. The peak-shaving potential of storage as addressed
in this paper, can help decrease grid operation costs and grid reinforcement
investments.

The main contributions of this paper are the following:

1. Modelling of a realistic urban environment with mixed residential and
commercial consumers.

2. A quantitative assessment of the increase in local energy utilisation with
coordinated operation of individually-owned batteries, as compared to in-
dividual operation.

3. A quantitative assessment of the decrease in peak power flows if a peak-
shaving charging/discharging algorithm is used, as compared to a greedy
algorithm.

The remainder of this paper is organised as follows. Section 2 describes the
used storage coordination assumptions, the charging/discharging algorithms,
the metrics considered, and the data used in model development. In Section 3
the modelling results are presented. Section 4 discusses these results. Conclusion
and an overview of future work are given in Section 5.

2 Methods

This paper studies (1) the influence of individual and coordinated operation
of individually-owned batteries on local renewable energy utilisation, and (2)
the influence of greedy and a peak-shaving battery operation on power flow
peak occurrence. A realistic model of a mixed urban area with households and
commercial customers is presented. The number and annual demand of the
considered customers are shown on Fig. 1 (right). It is assumed that 50% of the
customers have solar photovoltaic (PV) panels and 50% have batteries.

2.1 Individual versus Coordinated Operation

The first research question addressed in this paper concerns the influence of
storage coordination. Two scenarios are compared: individual and coordinated
operation of individually-owned storage and PV units. In case of individual
operation, each PV and/or storage owner uses only the individual capacity of
her own installation. Excess or shortage of power is exchanged with the main
grid. In the coordinated case, all PV and storage capacities of the microgrid
are pooled together and used jointly. Residual power excesses or shortages are
exchanged with the main grid.
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Figure 2: Comparison of cumulative annual metrics for individual and coordinated
storage operation. Results are shown relative to the total annual microgrid renewable
generation (for positive mismatch and renewable energy utilisation) and total annual
demand (for negative mismatch).

2.2 Naive versus Peak-Shaving Algorithms

The second research question deals with the influence of the charging/discharging
algorithm on the behaviour of the microgrid towards the main grid. Two al-
gorithms are compared: a greedy and a peak-shaving algorithm. Both schedule
charging and discharging in discrete timesteps (here: one hour).

At the beginning of timestep t, the greedy algorithm takes into account the
(forecast) load and renewable generation of timestep t, as well as the current
state of charge (SoC) of the battery. If any generation excess occurs, it is
stored entirely, to the degree that storage capacity is available. Similarly, if any
generation shortage occurs, demand is met entirely, or until all stored energy is
used.

Contrarily, at the beginning of timestep t, the peak-shaving algorithm takes
into account the (forecast) load and renewable generation of timesteps t through
t+h (with h the forecastable time horizon, here h = 5), as well as the current SoC
of the battery. Assume there is a generation excess (i.e. positive mismatch) in
each of the timesteps up to t + h. The peak-shaving algorithm first sorts these
mismatches according to their magnitude. Next, storage capacity is reserved
for the difference between the largest and the second largest mismatch. This
is repeated for all subsequent differences, until all differences (i.e. all excess) is
stored or until no remaining storage capacity is available. A similar procedure
is followed when demand exceeds generation. When mixed mismatches occur in
the forecast period, only the subsequent mismatches with the same sign as the
mismatch of timestep t are taken into account.

The use of the peak-shaving algorithm enables the adaptation of charging
and discharging schedules to forecast demand, generation and SoC such that,
given enough storage capacity is available, all foreseeable excess is stored or de-
mand is met, while peaks in generation and load excess power flows are limited.
The algorithm assumes increasing forecast uncertainty, from 5% for the current
timestep t to 20% for t + h [16, 17].

2.3 Metrics

The performance of storage operation and implemented algorithm is assessed by
four metrics. First three metrics reflect local energy autonomy. The last metric
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relates to the behaviour of the microgrid towards the main grid.

� Positive Mismatch. Generation excess transferred to the main grid.

� Negative Mismatch. Remaining demand supplied by the main grid.

� Renewable Energy Utilisation. Share of renewable energy which is
utilised locally. Renewable energy utilisation for each time step is calcu-
lated as the sum of direct consumption and energy stored.

� Power Flow Peaks. Maxima in power flow due to either high net gen-
eration or high net demand.

2.4 Data and Assumptions

The case study neighbourhood in this paper is selected from the neighbourhoods
defined by Statistics Netherlands [14] and is assumed to be a representative
mixed urban area. Detailed measured consumption data for urban areas are
scarce. This is also the case for the selected area. Therefore the simulation
model developed in this study combines three databases to estimate hourly
power consumption in the selected mixed area:

1. The number of households and different commercial customers types in
the mixed area in the centre of Amsterdam [14]. This is measured data.

2. Measured hourly profiles of 61 households elsewhere in the Netherlands
for the period between May 1st, 2012 and April 30th, 2013.

3. Modelled hourly commercial consumption profiles. These data are based
on the United States Department of Energy commercial reference models
[18, 19], adapted for the Dutch context as described in [20] for the same
period as the household data.

Based on the number of customers of each type (dataset 1), the correspond-
ing number of household (dataset 2) and commercial (dataset 3) profiles are
matched to the considered area. The result is a realistic mixed microgrid con-
sumption profile. This approach is validated by calculating the annual cumula-
tive consumption simulated by the model and comparing this to the measured
annual cumulative consumption as reported in [21]. The deviation between the
modelled and the measured cumulative annual consumption is 16%.

Renewable power in this model is assumed to be generated by PV. Their
output is modelled using weather data [22] for the same period and the same
location as the demand profiles. Insolation data are converted into power gener-
ation data using the model developed by Walker [23] and technical specifications
of the Solarex MSX-60 panels [24]. Storage is modelled as lithium-ion batteries
with battery-to-grid and grid-to-battery efficiencies of each 90%. The model
assumes a 50% penetration of both PV and storage. However, PV and storage
owners do not necessarily overlap, although the model errs on the conservative
side by assuming that PV owners have a higher probability of having their own
storage. PV and storage units are assigned at random at each model run. Both
PV and storage unit capacity are proportional to the owners’ annual power con-
sumption (PV size of 1 kWp per MWh annual consumption and battery size of
1 kWh per MWh [25, 26]).
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The results presented are obtained from 25 simulation runs. Differences be-
tween the runs lie in variations in the ownership of PV and storage. Results from
the simulations are analysed using non-parametric tests as underlying values are
found not to be normally distributed.

3 Results

This section presents the results of a case study in a realistic mixed urban
area in the centre of Amsterdam. Two research questions are addressed: (1)
what is the influence of individual versus coordinated operation of individually-
owned storage units, and (2) what is the influence of the charging/discharging
algorithm employed by these storage units?

3.1 Individual versus Coordinated Operation

In this paper, storage is assumed to consist of individual units at the consumers’
premises. Two scenarios are compared: individual and coordinated operation of
these units. Fig. 2 shows cumulative annual results for three metrics: positive
mismatch (energy excess, transferred to the main grid), negative mismatch (en-
ergy shortage, supplied from the main grid) and renewable energy utilisation.
The results presented are relative to the total local renewable generation (for
positive mismatch and renewable energy utilisation) and to the total annual
load (for negative mismatch).

With individual storage operation, 38% of the generated renewable energy
is transported to the main grid, while 62% is used locally. With coordinated
operation, only 14% is transported to the main grid, i.e. 86% is used locally.
This represents a relative increase of 39% in self-consumption. Increase in self-
consumption also results in an almost threefold decrease of energy excess which
is transferred to the main grid. Further, with individual storage operation,
69% of the annual microgrid demand needs to be satisfied by the main grid,
compared to 57% with coordinated storage. This is a relative increase of 21%
in self-sufficiency.

The statistical significance of these results is assessed using the Wilcoxon
signed-rank test. For each of the three considered metrics, the sets of individual
and coordinated storage operation results from 25 runs are compared. Thus,
three comparisons of 25 value pairs are made. Each of the three comparisons
yielded a p-value of 1.23 ∗ 10−5, from which can be concluded that the above
described differences between individual and coordinated storage operation are
statistically significant. Thus, for all three metrics, storage coordination signif-
icantly outperforms individual storage operation.

3.2 Naive versus Peak-Shaving Algorithm

The second research question addressed in this paper is the influence of the
charging/discharging algorithm on the behaviour of the microgrid towards the
remainder of the grid. Fig. 3 shows mismatches (i.e. power exchanges with
the grid) and renewable energy utilisation for a period of seven days (May 7th

- 13th, 2012). Left panels represent results obtained with the greedy algorithm
and right panels those obtained with the peak-shaving algorithm. Both are
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Figure 3: Comparison of mismatches (i.e. power exchanges with the grid) and renew-
able energy utilisation metrics for greedy (left panels) and peak-shaving (right panels)
algorithms. In both cases individual and coordinated storage operation are compared.
Additionally, original mismatch (i.e. without storage) is shown on the top panels. The
period shown is May 7th - 13th, 2012. The peak at hour 156 is the highest power peak
of the modelled year (May 1st, 2012 - April 30th, 2013).

applied to individual as well as to coordinated storage operation. For reference,
original mismatches (i.e. without storage) are also shown on the upper panels.
Note that each upward peak represents daytime (solar generation), while the
valleys in between are nighttimes.

On the last day shown in Fig. 3 the largest power peak (43 MW) of the
modelled year occurs (at t = 156). With the greedy algorithm, either with in-
dividual or coordinated storage operation, the residual peak equals the original
peak. With the peak-shaving algorithm the height of the peak decreases to 23
MW with individual storage operation, and to 18 MW with coordinated storage
operation. Note that with the greedy algorithm, mismatch is zero for the first
three hours of high solar generation (t = [151, 153]). At that point, all available
storage capacity is used and excess renewable energy is transferred to the main
grid (i.e. residual mismatch follows original mismatch). With the peak-shaving
algorithm, storage is not used at the onset of the peak, thus initially mismatch
follows the original mismatch, leaving storage capacity available to store energy
during the highest generation hours (t = [152, 156]). Note further that, for the
same period, the increase in renewable energy utilisation is less steep for the
peak-shaving algorithm than for the greedy algorithm. Recall that renewable
energy utilisation at timestep t is defined as the sum of direct utilisation and
energy stored during that timestep. Since demand is independent of the charg-
ing/discharging algorithm, the difference in renewable energy utilisation can be
attributed to the different use of storage by the two algorithms.

Finally, the use of the peak-shaving algorithm does not always result in a de-
crease of demand peaks (e.g., at t = 112). The largest demand peak of the year
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is 22 MW, irrespective of storage operation or algorithm. This peak occurs on
January 6th, 2013 (not shown on Fig. 3). This winter demand peak is approxi-
mately half of the highest generation peak in the modelled system (respectively
22 MW and 43 MW). The inability of the peak-shaving algorithm to reduce
demand peaks can be attributed to the insufficient local generation capacity to
meet all microgrid demand (annually only 31% to 43% of the microgrid demand
is supplied by local generation, see Fig. 2). This is in particular the case in
periods of low solar power generation (such as in the hours preceding t = 112).

To test the statistical significance of the differences in mismatches between
the greedy and the peak-shaving algorithms the Wilcoxon signed-rank test is
used for both individual and coordinated storage operation. For each hour of
the year, the mismatch values obtained after application of the greedy algorithm
in 25 simulation runs are compared to the corresponding values obtained with
the peak-shaving algorithm. Statistically significant differences between the two
algorithms are found for both individual and coordinated storage operation. For
example, the p-values for the difference between the two algorithms for both
individual and coordinated storage operation are 1.23∗10−5 at both t = 11 and
t = 156. Thus, the peak-shaving algorithm significantly outperforms the greedy
algorithm, irrespective of storage coordination.

4 Discussion

This paper shows significant benefits of coordination and peak-shaving opera-
tion of individually-owned storage units in a realistic mixed urban area. Storage
coordination improves local energy autonomy and renewable energy utilisation,
and is thus advantageous for local prosumers. Peak-shaving algorithm imple-
mentation is of particular importance to the distribution system operator (DSO)
as it governs the occurrence of peak power flows, which in their turn determine
grid operation and investment costs.

Currently battery penetration in urban power grids is low, however this
is expected to change as costs drop [4]. Nevertheless it remains unclear how
local storage will be organised in future high-renewables decentralised power
systems. In the literature two main perspectives on storage organisation exist:
neighbourhood-level storage either consists of centrally located MW-scale bat-
teries (e.g., at a substation), or it is the collection of distributed smaller-scale
units along the feeders, which are networked together [6]. This paper adheres to
the latter view, although the results obtained for coordinated storage are also
applicable to the MW-scale battery approach.

Coordination of individually-owned storage units is an important advantage
for local energy autonomy. In a microgrid context, coordinated operation can
be achieved both through central and decentralised control, assuming bidirec-
tional communication channels are in place. A microgrid is expected to have a
microgrid central controller (MCC) that acts as an interface for the DSO and/or
other responsible third party. Each controllable unit in the microgrid, including
storage units, has a local controller (LC). In a centralised operation each LC
receives setpoints from the MCC. In a decentralised operation, LCs have a more
advanced degree of intelligence and make decisions locally [13, 27]. However, in
addition to the technical ability to coordinate individually-owned storage units,
also incentive mechanisms inciting owners to allow coordination are needed.
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Despite increasing penetration of renewables and expected similar trends for
storage, it is likely that not all individuals within a microgrid will own PV and/or
storage units. In this study the penetration of PV and storage is assumed to be
50%. Thus, generation and storage capacities are expected to be shared between
microgrid members. Their mutual use therefore requires adequate remuneration
schemes. For instance, as batteries only have a limited number of charge cycles
[7], community use of individually-owned units is only economically viable if
lifetime reduction due to community use is offset by payments to the storage
owner. Thus, successful deployment of storage coordination requires both the
right control as well as the right incentive scheme.

Similarly, implementation of the peak-shaving operation of individually-
owned units will require adequate remuneration from the DSO or another grid
responsible third party. This study compares a greedy and a peak-shaving al-
gorithm. Cumulative annual metrics such as positive and negative mismatch,
and renewable energy utilisation are equal for both of these algorithms. How-
ever, the algorithm type does influence the timing of power exchanges with the
grid, and thus the occurrence of peak power flows. Therefore, the use of the
peak-shaving algorithm is primarily of importance to the DSO. Reducing peak
power flows can for instance lead to deferral or avoidance of grid reinforcement
investments. While the incentive scheme for coordination of local storage units
is expected to be based on mutual payments between microgrid members, is the
remuneration mechanism for peak-shaving based on DSO payments to storage
owners. A similar case is addressed by Sugihara et al. [5], who propose an ini-
tial subsidy for individual storage purchase paid by the DSO to (commercial)
consumers in exchange for partial control of their storage units. These consider-
ations show that implementation of both storage coordination and peak-shaving
operation in real urban power systems require a multi-disciplinary approach to
succeed.

5 Conclusion and Future Work

This paper focuses on the context of future urban power systems with a high
penetration of distributed renewable generation resources and assesses the im-
pact of coordination and operation of decentralised storage. The realistic urban
focus is a first contribution of this paper. The second contribution is the quanti-
tative comparison between individual and coordinated operation of individually-
owned storage units on local energy autonomy. The third contribution is the
quantitative comparison between a greedy and a peak-shaving algorithm im-
plementation on the behaviour of the microgrid towards the main grid. The
results obtained show considerable and statistically significant benefits of both
coordinated storage operation as well as of the use of a peak-shaving algorithm.

This paper thus seeks to contribute to the development and deployment of
decentralised power systems in real urban environments. However, a number
of issues remain to be addressed, including the development of technical con-
trol approaches, communication protocols and adequate remuneration schemes
to incentivise storage coordination and peak-shaving operation. As shown in
this paper, storage coordination and peak-shaving operation is beneficial for,
respectively, the microgrid prosumers and the DSO. However, as long as con-
trol, communication and remuneration agreements do not exist, implementation
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of these results in reality is unlikely.
Although considerable work for future research remains, current results show

promising prospects of storage coordination and peak-shaving operation in real
urban environments.
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[25] G. Merei, J. Moshövel, D. Magnor, and D. U. Sauer, “Optimization of
self-consumption and techno-economic analysis of PV-battery systems in
commercial applications,” Applied Energy, vol. 168, pp. 171–178, 2016.

[26] J. Weniger, T. Tjaden, and V. Quaschning, “Sizing of residential PV bat-
tery systems,” Energy Procedia, vol. 46, pp. 78–87, 2014.

[27] R. Zamora and A. K. Srivastava, “Controls for microgrids with storage
: Review , challenges , and research needs,” Renewable and Sustainable
Energy Reviews, vol. 14, pp. 2009–2018, 2010.

12


	Introduction
	Methods
	Individual versus Coordinated Operation
	Naive versus Peak-Shaving Algorithms
	Metrics
	Data and Assumptions

	Results
	Individual versus Coordinated Operation
	Naive versus Peak-Shaving Algorithm

	Discussion
	Conclusion and Future Work

