
11/05/2024 09:57

Agent abstractions for engineering IoT systems: A case study in smart healthcare / Vargiu, Eloisa;
Zambonelli, Franco. - (2017), pp. 667-672. (Intervento presentato al convegno 14th IEEE International
Conference on Networking, Sensing and Control, ICNSC 2017 tenutosi a ita nel 2017)
[10.1109/ICNSC.2017.8000170].

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

Institute of Electrical and Electronics Engineers Inc.

This is the peer reviewd version of the followng article:

Agent Abstractions for Engineering IoT Systems:
a Case Study in Smart Healthcare

Eloisa Vargiu∗ and Franco Zambonelli†
∗ Eurecat Technology Center, eHealth Unit

Barcelona, Spain
eloisa.vargiu@eurecat.org

† Dipartimento di Scienze e Metodi dell’Ingegneria
Università di Modena e Reggio Emilia, Italy

franco.zambonelli@unimore.it

Abstract—Despite the rapid progresses in IoT research, a
general principled software engineering approach for the sys-
tematic development of IoT systems and applications is still
missing. In this article, we show that agent-oriented concepts and
abstractions can play a key role in the design and development
of IoT systems and applications, and could represent the ground
on which to shape a new IoT-oriented software engineering
discipline. A case study in the area of smart healthcare is adopted
as a running example to ground the discussion.

I. INTRODUCTION

Despite the great deal of worldwide researches in the area
of the Internet of things (IoT) [9], the technologies to make
it a systematic reality are far form being assessed. Early
researchers in the IoT area have mostly focussed on com-
munication issues and on enabling interoperability [3]. More
recently, great efforts has been devoted at promoting means to
facilitate the integration of resources and services towards the
provisioning of software-defined distributed services for the
IoT. For instance, as in the “Web of Things” (WoT) vision
[8], by promoting the provisioning of resources in an IoT
network in term of Web Services, and thus making it possible
to develop distributed and coordinated IoT services by using
standard Web technologies.

WoT is definitely promising and will most likely represent
a keystone technology in the future of IoT. Indeed, along
the WoT lines, a number of different approaches (in terms
of, e.g., supporting middleware [16], [12] and programming
approaches [4]) are being proposed to support the development
of IoT systems and applications. Yet, a common unifying
approach supporting their design and development, grounded
on a common set of abstractions, models, and methodologies,
is still missing. Also, relying on WoT concepts only for the
design and development of IoT systems, one can miss identify-
ing some key characteristics that will necessarily characterize
many IoT services, such goal-oriented and autonomous be-
haviors [10]. Overall, this limits the possibility of promoting
a systematic and disciplined approach for the development
of complex IoT systems, and thus limits unfolding the full
potentials of the IoT vision.

This article attempts at framing some key general charac-
teristics related to the engineering of complex IoT systems

and applications, by synthesizing the common features of
existing proposals and application scenarios, and by bringing
in the lessons of agent-based computing and agent-oriented
software engineering. The so analyzed common characteristics
are then used to identify some key software engineering
abstractions around which the process of developing IoT
systems and applications could revolve. Such abstractions –
due to the inherent presence in IoT systems and applications of
autonomous and goal-oriented behaviours – will exploit some
key concept of agent-based computing and agent-oriented
software engineering [17], and can be used to define a set
guidelines for IoT-oriented software engineering.

To exemplify the analysis, we refer a specific case study,
representative of a larger class of IoT scenarios, in the smart
helthcare area: IoT enriched houses to support smart health
monitoring and care. We assume houses are densely enriched
with connected sensors and actuators: light and heat con-
trollers, gas and smoke detectors, presence and motion sensors,
door (main doors, internal doors, fridge, kitchen furniture)
sensors, electric consume sensors, shutter/curtain controller,
as well as sensorized everyday objects (e.g, cup, fork, cane).
Moreover, also medical devices (e.g., pulse-oximetry, smart
scale) may be provided to patients in order to automatically
send health status information and measures. In such a sce-
nario, different actors (from medical doctors to patients and
their family members) can contribute to set up a variety of IoT
services to support both medical doctors in the monitoring and
care activities of individuals, and to help individuals and their
family members in their everyday self-managed healthcare
activities.

II. BACKGROUND

The definition of general software engineering principles
requires identifying the general features and issues that char-
acterize most current approaches to IoT systems design and
development.

A. Things

The “things” in the IoT vision may encompass a large
number of physical objects, and also include places and
persons.

Physical objects and places can be made trackable and
controllable by connecting them to low-cost wireless electronic
devices. At the lower end of the spectrum, RFID tags or
bluetooth beacons, based on low-cost and short-range com-
munication protocols, can be attached to any kind of objects
to enable tracking their positions and status, and possibly to
associate some digital information with them. More advanced
devices integrating environmental or motion sensors (i.e., ac-
celerometers) can detect the present and the past activities as-
sociated with objects or with some place. In addition, one can
make objects actuable – enabling the remote control of their
configuration/status via proper digitally-controller actuators –
and possibly autonomous – delegating them of autonomously
direct their activities. In this perspective, autonomous robots
and autonomous objects [1] are components that will increas-
ingly populate the IoT universe.

To exemplify, in the smart healthcare scenario: attach RFID
to everyday objects in houses, such as a glass to detect the
quantity of ingested water; integrate some kind of remote
controller (e.g., Arduino-based) to turn on/off the light in
a specific room, in order to enable controlling via, e.g., a
mobile phone its turning on/off; automatically open and close
the shutter/curtain depending on the performed activities, the
context (the hour, the day), and/or user’s habits; last but not
least, robots for home assistance are gaining momentum (e.g.,
the Giraff plus [?]).

Concerning persons, other than simply users of the tech-
nology, they can also be perceived at first-class entities of
the overall IoT vision. Simply for the fact of having a mobile
phone, they can be sensed in their activities and positions, and
they can be asked to act in the environment or supply sensing.
In the smart healthcare scenario, beside continuously detecting
the position and activities of people in order to get ready to
manage any possible emergency situation (e.g., fall detection
[13]), one can also think at involving them in self-monitoring
and supply information to the overall health monitoring system
[?].

B. Software Infrastructures

To make “things” usable and capable of serving purposes,
there is need of software infrastructures (that is, of IoT
middleware [14]) capable both of supporting the “gluing” of
different things and of providing some means for stakeholders
and users to access the IoT system and take advantage of its
functionalities.

Concerning the “glue”, this involves a variety of technical
issues.

There are interoperability issues, to enable a variety of very
heterogeneous things to interact with each other, via a set of
common name spaces, uniform communication protocols and
data representation schemes; and semantic issues, because a
common semantics for concepts must be defined to enable
cooperation and integration of things. For both these issues,
however, a large body of proposals (dating back to the early
years of IoT research) exists. Thus, for our purposes in this
article, we assume the existence of proper technical solutions.

Rather, key open “gluing” issues of relevance for soft-
ware engineering include discovery, Group Formation, and
Coordination. IoT systems functionalities derive from the
orchestrated exploitation of a variety of things, possibly in-
volving a variety of users and stakeholders. In the smart
healthcare scenario, it is desirable to automatically configure
a given room (e.g. bedroom) for a given context (e.g., time
to go to sleep). This requires involving the lightening and
shutter system, and consider recommendations by caregivers
and clinicians [7]. Thus, it implies to discovery and establish
relations between things, between things and humans, and
coordinating their activities also accounting for their social
relations [2]. Clearly, for the above coordination mechanisms
to work, context-awareness and self-adaptation are required.
In fact, the inherent ephemerality, unreliability, and mobility
of system components (e.g., things such as everyday objects
at home may come and go, can be moved around, and can
be placed in corners without wireless connections) makes it
impossible to anticipate which things will be available and for
how long during their exploitation. This requires mechanisms
for discovery, group formation, and coordination are that are
capable of dynamically self-adapting to the general context in
which they act, or possibly even self-organize in a context-
aware way. [11], [18].

Concerning the “access” to the functionalities and capa-
bilities of individual things by users, the scene is currently
dominate by the so called “Web of Things” (WoT) vision [8].
The idea is to expose services and functionalities of individual
things in terms of REST services, enabling the adoption of
assessed web technologies as far as discovery of things and
provisioning of coordinated group services are concerned.
Concerning middleware infrastructures, a variety of proposal
to support the provisioning of IoT services and applications
have appeared [16], [4], [14]. Beside their specificities, most
of these proposals rely on: some basic infrastructure to support
the WoT approach (i.e., to expose things in terms of simple
services); some means to support, in according to a specific
coordination model, the discovery of things (and of their
associated services), and the coordinated activities of groups of
things; and some solutions to make services and applications
capable of self-adapting and self-organizing in a context-aware
and unsupervised way.

C. Services and Applications

With the term “IoT System” we generally refer to the
overall set of IoT devices and to the associated middleware
infrastructure devoted to manage their networking and their
context-aware interactions. Logically above an IoT system,
specific software can be deployed to orchestrate the activities
of the system so as to provide:

• A number of specific services. That is, means to enable
stakeholders and users to access and exploit individual
things and direct/activate their sensing/actuating capabil-
ities, but also coordinated services that access groups of
things and coordinate their sensing/actuating capabilities.
For instance, in a smart home instrumented for healthcare,

Fig. 1. Key concepts and abstractions for IoT engineering.

other than to services to access and control individual
appliances, one can think at providing a coordinated
service that, by accessing and directing the lightening
system, the light sensors, and the windows obscuring
system in a specific room, can modify the overall situation
of that room depending on the specific need of the person
occupying it.

• A number of more general-purpose applications or suites,
intended as more comprehensive software systems in-
tended to both regulate the overall functioning of an
IoT system (or of some of its parts), so as to ensure
specific overall behaviour of the system, as well as to
provide an harmonized set of services to access the
system and (possibly) its configuration. In the smart home
scenario, one can think at applications to control the
overall heating systems and lightening systems of a set
of houses hosting patients with a specific health problem,
and giving medical doctors and/or carers the access to
services to change the configuration of the associated
parameter.

Clearly, depending on the specific scenario, one can think at
IoT systems in which services may exist only confined within
the context of some general application, but also at scenarios
in which there are services that can be deployed as stand-alone
software.

III. SOFTWARE ENGINEERING ABSTRACTIONS AND THE
ROLE OF AGENT-BASED COMPUTING

Based on the above overview of IoT issues, we now try to
synthesize the central concepts and abstractions around which
the development of IoT systems (spanning analysis, design,
and implementation) should be centered, and discuss how
these directly relate to concepts and abstractions developed
in the context of agent-based computing [10], [17]. Figure 1
graphically frames such concepts in a logical stack.

A. Actors

The first activity in the analysis of a system-to-be concern
identifying the stakeholders and users of the system, aka the
“actors”. That is, those persons/organizations who will own,
manage, and/or use the system and its functionalities, and from
which requirements should be elicited.

In the case of IoT systems, the distinction between IoT
services and applications, and the presence of an IoT mid-
dleware to support them and to manage individual things,
naturally leads to the identification of three main abstract
classes of“actors”:

• Global Managers: These are the owners of an overall
IoT system and infrastructure, or delegates empowered to
exert control and establishing policies over the configura-
tion, structure, and overall functioning of its applications
and services. In the smart healthcare scenario, the global
manager corresponds to the system manager devoted to
control the overall IoT system of the smart houses set
according to the directives of the medical doctors, e.g.,
for deciding heating levels or for surveillance strategies.

• Local Managers: These are owners/delegates (whether
permanently or on a temporary basis) of a limited portion
of the IoT system, empowered to enforce local control
and policies for that portion of the system. In the smart
healthcare scenario, these could correspond to the house
owners, empowered to control the IoT system in their
houses and rooms, and tune the local parameters and
exploit its services according to own specific needs.

• Users: These are persons or groups that have limited
access to the overall configuration of the IoT applications
and services, i.e., cannot impose policies on them, but
are nevertheless entitled to exploit its services. In the
smart healthcare scenario, these include the patients with
limited abilities, authorized to access specific services
(e.g., regulating specific appliances), but not entitled to
modify the overall configuration of their houses (in charge
of medical doctors and partly of their responsible family
members.

The three identified classes of actors are of a very general
nature, beside the smart healthcare scenario. For example, in
a scenario of energy management in a smart city, they could
correspond to, respectively: city managers, house/shop owners,
private citizens and tourists. In the area of urban mobility, they
could correspond to, respectively: mobility managers, parking
owners or car sharing companies, private drivers.

B. Functionalities

Once the key actors are identified, the analysis preceding
design and implementation cannot – for IoT systems and
applications – simply reduce to elicit from them the function-
alities (i.e., the specific services) that things or group of things
has to provide, but has to account for a more comprehensive
approach. In fact:

• Beside things provided with basic sensing/actuating func-
tionalities, one should consider the presence of smarter

things that can be activated to perform in autonomy some
long-term activities associated with their nature and with
their role in the socio/physical environment in which they
situates. These can range from simply cleaning robots to
more sophisticated autonomous personal assistants [1].

• IoT applications are not simply concerned with providing
a suite of coordinated functionalities, but they should also
globally regulate the activities of the IoT systems on a
continuous basis, according to the policies established by
its stakeholders and to their objectives.

As a consequence, other than analyzing the specific func-
tionalities to deliver, one also has to identify the policies and
goals to be associated with services and applications, i.e., the
desirable “state of the affairs” to strive for in the context of
the socio-cyber-physical system where IoT applications and
services operate.

In this perspective, the general classes of functionalities
to be identified for the development of IoT applications and
services include:

• Policies express desirable permanent configurations or
states of functioning of an overall IoT system (global
policies) or portions of it (local policies), and have the
aims of regulating the overall underlying IoT system.
In the smart healthcare scenario, global policies can be
defined, e.g., to specify the maximum sleeping hours,
the maximum time for sedentary activities, and have
this monitored by not-intrusive sensors in order to invite
people to make more activities or to go for resting
whenever needed. Policies are meant to be alway active
and actively enforced. Although, from the software en-
gineering viewpoint, the focus is mostly on application-
level policies, policies can also account for the proper
configuration of the underlying hardware and network
infrastructures. The definition of global and local policies
is generally in charge of the global managers, although
local managers can be also entitled to enforce temporary
local policies on local portions of the system (provided
they do not contrast with the ones imposed by the global
managers).

• Goals express desirable situations or state of the affairs
that, in specific cases, can/should be achieved. The activa-
tion of a goal may rely on specific pre-conditions (i.e., the
occurrence of specific events or the recognition of some
specific configurations in the IoT system) or may also be
specifically activated upon user action (e.g., the activation
of a goal is invokable “as a service”). The typical post-
condition (deactivating the pursuing of a goal) is the
achievement of the goal itself. In the smart healthcare
scenario, one example could be that of activating an
evacuation procedure upon detection of fire by a smoke
sensor (pre-conditions), whose goal (and post-condition)
is to achieve a quick evacuation of the patient from
her/his home. To this end, the activation of a goal can
trigger the activities of digital signages and controllable
doors in order to rationally guide people towards the

exits. Another example could be the case of a fall has
been detected. An audio sensor automatically recognizes
the help request by the patient (pre-conditions), whose
goal is to immediately send assistance at home (e.g.,
an ambulance) and to communicate with the familiars
to make a visit and support the patient (post-condition).
To this end, the activation of a goal can trigger the
activities of contacting caregivers and familiars. As it was
the case for policies, the definition of global and local
goals is generally in charge of global, and sometimes of
local, managers, whereas users can be sometimes entitled
to activate simple local goals (or goals associated to
individual things) “as a service”.

• Functions define the sensing/computing/actuating capa-
bilities of individual things or of group of things, or
the specific resources that are to be made available to
managers and users in the context of specific IoT applica-
tion and services. Functions are typically made accessible
in the form of services, and can sometime involve the
coordinated access to the functions of a multitude of
individual things. In the smart healthcare scenario, one
can think at the individual functionalities of a door sensor
in a fridge (e.g., to control opening/closing), as well as
more complex functionalities that can be achieved by
orchestrating things (e.g., controlling food in the fridge
to verify if the shopping list updating it with needed
food). Functions and the associated services are typically
defined by global and possibly local managers, but are
exploited also by the everyday users of the IoT systems
(e.g., the patient and her/his caregivers).).

Clearly, the concepts of goals and policies are central in
the research area of agent systems and multiagent systems,
and will require, to be realized, components with autonomous
and social behaviour, capable of working together towards the
achievement of goals and the enforcement of policies.

C. Software Components and Their Coordination

Moving from analysis to the design of an actual system and
of its components, one should consider that the “things” to be
involved in the implementation of the identified functionalities
can correspond to a variety of different objects and devices,
other than to places and humans, each relying on a pletora of
different technologies and capabilities. Accordingly, from both
the gluing software infrastructure and the software engineering
viewpoints, it is necessary to define higher-level abstractions
to practically and conceptually handle the design and develop-
ment of application and services, and to harmonically exploit
all the components of the IoT system.

Most of the proposal for programming models and mid-
dleware acknowledge this need, by virtualizing individual
things in some sort of software abstraction [8]. The WoT
perspective abstracts things and their functionalities in terms of
generic resources, to be accessed via RESTful calls, possibly
associating external software HTTP “gateways” to individual
things if they cannot directly support HTTP interfacing. Other

approaches suggest adopting a more standard SOA or object-
oriented approach. Surprisingly, only a few proposals consider
associating autonomous software agents to individual things
[15], despite the fact goals to be pursued in autonomy may be
associated to things, a feature that service-oriented approaches
can hardly accommodate.

In addition, as already stated, some “things” make no
sense as individual entities as far as the provisioning of
specific services and applications is concerned, and are to be
considered part of a group and be capable of providing their
services as a coordinated group. This applies both to the cases
in which a multitude of equivalent devices must be collectively
exploited abstracting from the presence of the individuals [4],
and to the cases in which the functionalities of the group
complement with each other and needs to be orchestrated [15].
However, due to the dynamic and contextual nature of IoT
scenario, traditional service-oriented orchestration methods,
although necessary, are not enough to

With these considerations in mind, in an effort of synthe-
sizing from a variety of different proposals and of bringing
in as needed agent-oriented concepts, we suggest the unifying
abstractions of avatars and coalitions (See Figure 2).

Avatars. Borrowing the term from [12] (to distinguish from
software agents but nevertheless borrowing several features
from them) we define an avatar as the general abstraction
for individual things and also for group of things (and
possibly other avatars) that contribute to define a unique
functionality/service. Avatars abstract away form the specific
physical/social/technological characteristics of the things their
represent, and are defined by means of:

• Identity. An avatar has a unique identity and is address-
able. An avatar representing a group does not necessarily
hides the identities of inner avatars, but it has its own
identity.

• Services. These represent access point for exploiting the
peculiar capabilities of avatars. That is, depending on the
kinds of things and functionalities a service abstracts:
triggering and directing the sensing/computing/actuating
capabilities, or accessing some managed resources.

• Goals. Goals, in the sense of desired state of the affairs,
can be associated to avatars. A goals have may a pre-
condition for autonomous activation, or may be explicitly
activated by a user or by another avatar.

• Events. Events represent specific state of the affairs that
can be detected by an avatar, and that may be of interests
to other avatars or to users. Other avatars or users can
subscribe to events of interest.

Clearly, for group of avatars, an internal orchestra-
tion scheme must be defined for coordinating the activi-
ties/functionalities of the things (or of the other avatars) it
includes. In general terms – and in accord to assessed service-
oriented approaches – an orchestration scheme defines the
internal workflow of activities among the composing things
and avatars, and the constrains/conditions they are subjected
to. Orchestration scheme may also account for contextual in-

formation, to make the activities of the group of context-aware.
The need of defining orchestrations schemes and constraints
to rules the access and usage of (group of) things is generally
attributed – with specific characteristics and terminologies – in
most middleware and programming approaches for IoT [16],
[4].

The avatar abstraction is in line, and account for all the
typical characteristics, of most existing IoT approaches. How-
ever, the stateful concepts of goals and events make avatars
go beyond RESTful approaches. Indeed, these concepts make
an avatar more than simply a service provider, turning them
into autonomous entities capable of goal-oriented and situated
behaviour. Although most existing approaches recognize the
need to somehow incorporate similar concepts within RESTful
architectures [8], a few of them explicitly refer to agent-based
computing, where such concepts belong to.

Coalitions. In this case, and without fear of borrowing the
term from the area of multiagent systems [6], we define a
coalition as a group of avatars that coordinate each other’s
activities in order to reach specific goals, or enact specific
policies. Accordingly, coalitions may be of a temporary or
permanent nature. Unlike avatar groups, coalitions does not
necessarily have an identity, and does not necessarily provide
services.

To define and bring a coalition in action, the abstraction of
coalition must be defined (at least) in terms of a coordination
scheme that should include:

• Rules for membership, to specify the conditions upon
which an avatar should/could enter a coalitions. From
the viewpoint of individual avatars, the act of entering a
coalition can be represented by the activation of a specific
goal based on pre-conditions that correspond to the rules
for membership [5].

• Coordination pattern, to define the pattern (interaction
protocol and shared strategy) by which the members of
the coalition have to interact. The coordination pattern
may include an explicit representation of the goal by
which the coalition has been activated. However, such
goal can also be implicit in the definition of the protocol
and of the strategy.

• Coordination law, to express constraints that must be
enforced in the way the avatars involved in the coalition
should act and interact.

In addition, one can consider the possibility to subscribe to
events occurring within the coalition.

The view of avatar coalitions can be of use to realize
policies, or to aggregate groups of avatar based on similarity,
so as to make them work collectively in a mission-oriented
way without forcing them to specific identity-centered orches-
tration scheme. This is coherent with the idea of multiagent
societies and, in general, of distributed dynamic coordination
[10]. Also, this is in line with nature-inspired approaches [18],
and approaches to aggregate programming.

Fig. 2. Avatars, groups, and coalitions.

D. From Design to Implementation

The identification of avatars, avatar groups, and coali-
tions, abstracts away from implementation issues. However,
the implementation of individual avatars associated to actual
“things” and of the necessary software for supporting for the
orchestration schemes of avatar groups and the coordination
patterns of coalitions, has to eventually follow.

In our perspective, and comparing against the state of the art
in the area, avatars, groups and coalitions are abstract enough
concepts to tolerate implementation – with different efforts –
above most existing systems and infrastructures. However, this
article at least contributes in suggesting a more deep adoption
of multiagent concepts and – consequently – of multiagent
languages and middleware infrastructure – in the development
of next-generation IoT systems.

IV. CONCLUSIONS AND FUTURE WORK

Despite the large number of research works that attack
specific problems related to the design and development of
IoT applications and services, a general software engineering
approach is still missing. This paper, by having proposed and
framed some key conceptual abstractions revolving about the
IoT universe, and showing how these related to agent-based
computing, can represent a first small step towards a general
discipline for engineering IoT systems and applications.

As IoT technologies mature, and real-world experiences ac-
cumulate, more research in the area of software engineering for
IoT systems will be needed, and these will have increasingly
exploit contaminations with the area of agent-oriented software
engineering [17] and of software engineering for self-adaptive
and self-organizing systems [18], and eventually leading to the
identification of a widely accepted general methodology – and
associated tools – for the IoT-oriented software engineering.

REFERENCES

[1] Harshit Agrawal, Sang-won Leigh, and Pattie Maes.
L’evolved: Autonomous and ubiquitous utilities as smart
agents. In ACM International Joint Conference on
Pervasive and Ubiquitous Computing, pages 487–491,
New York, NY, USA, 2015. ACM.

[2] Luigi Atzori, Davide Carboni, and Antonio Iera. Smart
things in the social loop: Paradigms, technologies, and
potentials. Ad Hoc Networks, 18:121–132, 2014.

[3] Luigi Atzori, Antonio Iera, and Giacomo Morabito.
The internet of things: A survey. Computer Networks,
54(15):2787–2805, 2010.

[4] Jacob Beal, Danilo Pianini, and Mirko Viroli. Aggregate
programming for the internet of things. IEEE Computer,
48(9):22–30, 2015.

[5] T. Bures, F. Plasil, M. Kit, P. Tuma, and N. Hoch.
Software abstractions for component interaction in the
internet of things. Computer, 49(12):50–59, Dec 2016.

[6] Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen.
An overview of recent progress in the study of distributed
multi-agent coordination. Industrial Informatics, IEEE
Transactions on, 9(1):427–438, 2013.

[7] Juan Manuel Fernández, Marc Solà, Alexander Steblin,
Eloisa Vargiu, and Felip Miralles. The relevance of pro-
viding useful information to therapists and caregivers in
tele. In Cristian Lai, Alessandro Giuliani, and Giovanni
Semeraro, editors, Information Filtering and Retrieval.
DART 2014: Revised and Invited Papers, pages 97–
117. Studies in Computational Intelligence, Vol. 668,
Springer, 2016.

[8] J. Heuer, J. Hund, and O. Pfaff. Toward the web of
things: Applying web technologies to the physical world.
Computer, 48(5):34–42, May 2015.

[9] Marco Iansiti and Karin Lakhani. Digital ubiquity:
How connections, sensors, and data, are revolutionizing
business. Harvard Business Review, 2014.

[10] Nicholas R. Jennings. An agent-based approach for
building complex software systems. Commun. ACM,
44(4):35–41, 2001.

[11] Alexander Kott, Ananthram Swami, and Bruce West. The
internet of battle things. Computer, 49(12):70–75, 2016.

[12] M. Mrissa, L. Medini, J.-P. Jamont, N. Le Sommer, and
J. Laplace. An avatar architecture for the web of things.
Internet Computing, IEEE, 19(2):30–38, Mar 2015.

[13] Hammadi Nait-Charif and Stephen J McKenna. Activity
summarisation and fall detection in a supportive home
environment. In Pattern Recognition, 2004. ICPR 2004.
Proceedings of the 17th International Conference on,
volume 4, pages 323–326. IEEE, 2004.

[14] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and
S. Clarke. Middleware for internet of things: A survey.
IEEE Internet of Things Journal, 3(1):70–95, Feb 2016.

[15] N. Spanoudakis and P. Moraitis. Engineering ambient
intelligence systems using agent technology. Intelligent
Systems, IEEE, 30(3):60–67, May 2015.

[16] Jonas Ullberg, Amy Loutfi, and Federico Pecora. A
customizable approach for monitoring activities of el-
derly users in their homes. In International Workshop
on Activity Monitoring by Multiple Distributed Sensing,
pages 13–25. Springer, 2014.

[17] Lina Yao, Q.Z. Sheng, and S. Dustdar. Web-based man-
agement of the internet of things. Internet Computing,
IEEE, 19(4):60–67, July 2015.

[18] Franco Zambonelli and Andrea Omicini. Challenges
and research directions in agent-oriented software engi-
neering. Autonomous Agents and Multi-Agent Systems,
9(3):253–283, 2004.

[19] Franco Zambonelli, Andrea Omicini, Bernhard Anzen-
gruber, Gabriella Castelli, Francesco L. De Angelis, Gio-
vanna Di Marzo Serugendo, Simon Dobson, Jose Luis
Fernandez-Marquez, Alois Ferscha, Marco Mamei, Ste-
fano Mariani, Ambra Molesini, Sara Montagna, Jussi
Nieminen, Danilo Pianini, Matteo Risoldi, Alberto Rosi,
Graeme Stevenson, Mirko Viroli, and Juan Ye. Devel-
oping pervasive multi-agent systems with nature-inspired
coordination. Pervasive and Mobile Computing, 17, Part
B:236–252, 2015.

[20] Carme Zambrana, Xavier Rafael-Palou, and Eloisa
Vargiu. Sleeping recognition to assist elderly people at
home. Artificial Intelligence Research, 5(2):p64, 2016.

