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Abstract— This paper proposes an end-to-end deep rein-
forcement learning approach for mobile robot navigation with
dynamic obstacles avoidance. Using experience collected in a
simulation environment, a convolutional neural network (CNN)
is trained to predict proper steering actions of a robot from its
egocentric local occupancy maps, which accommodate various
sensors and fusion algorithms. The trained neural network is
then transferred and executed on a real-world mobile robot to
guide its local path planning. The new approach is evaluated
both qualitatively and quantitatively in simulation and real-
world robot experiments. The results show that the map-based
end-to-end navigation model is easy to be deployed to a robotic
platform, robust to sensor noise and outperforms other existing
DRL-based models in many indicators.

Index Terms— robot navigation, obstacle avoidance, rein-
forcement learning, occupancy map.

I. INTRODUCTION

One of the major challenges for robot navigation is to
develop a safe and robust collision avoidance policy to
navigate from the starting position to desired goal without
running into obstacles and pedestrians in unknown cluttered
environments. Although numerous methods have been pro-
posed [1], conventional methods are often built upon a set
of assumptions that are likely not to be satisfied in practice
[2], and may impose intensive computational demand [3]. In
addition, conventional algorithms normally involve a number
of parameters that need to be tuned manually [4] rather
than being able to learn from past experience automatically
[5]. It is difficult for these approachs to generalize well to
unanticipated scenarios.

Recently, several supervised and self-supervised deep
learning approaches have been applied to robot navigation.
Giusti et al. [6] used a Deep Neural Network to classify the
images to determine which action will keep the quadrotor on
the trail. Lei et al. [7] showed the effectiveness of a hierarchi-
cal structure that fuses a convolutional neural network (CNN)
with a decision process, which is a highly compact network
structure that takes raw depth images as input, and generates
control commands as network output. Pfeiffer et al. [8]
presented a model that is able to learn the complex mapping
from raw 2D-laser range findings and a target position to
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the required steering commands for the robot. However,
there are some limitations that prevent these approaches from
being widely applied in a real robotic setting. For instance, a
massive manually labeled dataset is required for the training
of the supervised learning approaches. Although this can
be migrated to an extent by resorting to self-supervised
learning methods, their performance is largely bounded by
the strategy generating training labels.

On the other hands, deep reinforcement learning (DRL)
methods have achieved remarkable success in many chal-
lenging tasks [9]–[11]. Different from previous supervised
learning methods, DRL based approaches learn from a large
number of trials and corresponding rewards instead of la-
beled data. In order to learn a sophisticated control policy
with reinforcement learning, robots need to interact with
the environment for a long period to accumulate knowledge
about the consequences of different actions. Collecting such
interaction data in real world is expensive, time consuming,
and sometimes infeasible due to safety issues [12]. For
instance, Kahn et al. [5] proposed a generalized computation
graph that subsumes value-based model-free methods and
model-based methods, and then instantiated this graph to
form a navigation model that learns from raw images and
is sample efficient. However, It takes hours of destructive
self-supervised training to navigate only dozens of meters
without collision through a indoor environment. Because of
the excessive number of trials required to learn a good policy,
training in a simulator is more suitable than experiences
derived from the real world. Then we can exploit the close
correspondence between a simulator and the real world, to
transfer the learned policy.

According to the difference of input data, the existing
reinforcement learning-based robot motion planning methods
can be roughly divided into two categories: agent-level inputs
and sensor-level inputs. And there are different transferability
to real world between different input data. As representatives
of agent-level methods, Chen et al. [13] train an agent-
level collision avoidance policy using DRL, which maps
an agent’s own state and its neighbors’ states to collision-
free action. However, it demands perfect sensing. Obviously,
this complex pipeline not only requires expensive online
computation but makes the whole system less robust to the
perception uncertainty.

As for sensor-level inputs, the types of sensor data used in
DRL-based navigation mainly include 2D laser range inputs,
depth images and color images. The network proposed in
[14] outputs control commands based on ten-dimensional
laser range inputs and is trained using an asynchronous
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DRL algorithm. Similarly, the models introduced in [15] and
[12] also derive the steering commands from laser range
sensors. 2D laser-based methods are competitive in terms
of the transferability to real world because of the smaller
discrepancies between their simulated and real domains.
However, 2D sensing data is not enough to describe complex
3D scenarios. On the contrary, vision sensors can provide
3D sensing informations. But RGB images suffer from the
significant deviation between real-world situations and the
simulation environments during training, which leads to quite
limited generalization across situations. Compared to RGB
images, the depth inputs in simulations exhibit much better
visual fidelity due to the textureless nature and, as a result,
greatly alleviate the burden of transferring the trained model
to real deployments [16]. Based on depth images, Zhang et
al. [17] proposed to use successor features to achieve efficient
knowledge transfer across tasks in depth-based navigation.
Currently, all existing sensor-level works rely on specific
sensor types and configurations. While in complex environ-
ments, most robots are equipped with different sensors to
navigate autonomously and safely [18].

In this paper, we propose an end-to-end model-free deep
reinforcement learning algorithm to improve the performance
of autonomous decision making in complex environments,
which directly maps local probabilistic costmaps to an
agent’s steering commands in terms of target position and
robot velocity. Compared to previous work on DRL-based
obstacle avoidance, our motion planner is based on proba-
bilistic costmaps to represent environment and target posi-
tion, which enables the learned collision avoidance policy
to handle different types of sensor input efficiently, such as
the multi-sensor information from 2D/3D range scan finders
or RGB-D cameras [19]. And our trained CNN-based policy
is easily transferred and executed on a real-world mobile
robot to guide its local path planning and robust to sensor
noise. We evaluate our DRL agents both in simulation and
on-robot qualitatively and quantitatively. Our results show
the improvement in multiple indicators over the DRL-based
obstacle avoidance policy.

Our main contributions are summarized as follow:

• Formulate the obstacle avoidance for mobile robots as
an DRL problem based on a generated costmap, which
can handle multi-sensor fusion and is robust to sensor
noise.

• Integrate curriculum learning technique to enhance the
performance of dueling double DQN with prioritized
experience reply.

• Contract a variety of real-world experiments to reveal
the high adaptability of our model to transfer to different
sensor configurations and environments.

The rest of this paper is organized as follows. The structure
of the DRL-based navigation system is presented in Section
II. The deep reinforcement learning algorithm for obstacle
avoidance based on egocentric local occupancy maps is
described in Section III. Section IV presents experimental
results, followed by conclusions in Section V.

Multi-
sensor
Data

SLAM

Path
Planner

Costmap
Generator

Robot Velocity

Local

Goal

Costmap

v

w
DRL

Planner
Base

Controller

Fig. 1. Block diagram of the DRL-based navigation system for autonomous
robots.

II. SYSTEM STRUCTURE

The proposed DRL-based mobile robot navigation system
consists of six modules. As shown in Fig. 1, simultaneous
localization and mapping (SLAM) module establishes an
environment map based on sensor data, and can estimate
the position and velocity of the robot in the map simultane-
ously. When a target position is received, the path planner
module generates a path or a series of local goal points
from the current position to the target position. In order to
cope with the dynamic and complex environments, a safe
and robust collision avoidance policy in unknown cluttered
environments is required. In addition to the local goal points
from the path planning module and robot velocity provided
by the positioning module, our local planner also needs the
input of the surrounding environment information, which
is the egocentric occupancy map produced by the costmap
generator module based on multi-sensor data. Generally
speaking, Our DRL-based local planner takes the velocity
information generated by the SLAM module, the local goal
generated by the global path planner and the cost maps from
the generator which can fuse multi-sensor information, and
outputs the linear velocity v and angular velocity w of the
robot. Finally, the output speed command is executed by
the base controller module which depends on the specific
kinematics of the robot.

III. APPROACH

We begin this section by introducing the problem formu-
lation of the local obstacle avoidance. Next, we describe the
key ingredients of our reinforcement learning algorithm and
the details about the network architecture of the collision
avoidance policy.

A. Problem Formulation

At each timestamp t, given a frame sensing data st , a local
goal position gt in the robot coordinate system and the robot
linear velocity vt , angular velocity ωt , the proposed local
obstacle avoidance policy provides an action command at as
follows:

Mt = fλ (st) (1)

at = πθ (Mt ,gt ,vt ,ωt) (2)

where Mt is a local cost map describing the obstacle avoid-
ance task, λ and θ are model parameters. Specifically, the



cost map Mt is constructed as an aggregate of robot config-
urations and the obstacle penalty, which will be explained
below.

Hence, the robot collision avoidance problem can be
simply formulated as a sequential decision making problem.
The sequential decisions consisting of observations ot ∼
[Mt ,gt ,vt ,ωt ] and actions (velocities) at ∼ [vt+1,ωt+1] (t = 0 :
tg) can be considered as a trajectory l from its start position
p0 to its desired goal pg, where tg is the traveled time. Our
goal is to minimize the expectation of the arrival time and
take into account that robots do not collide, which is defined
as:

argmin
πθ

E[tg|at = πθ (ot),

pt = pt−1 +at ·∆t,

∀k ∈ [1,N] : ‖pt − (pobs)k‖> R]

(3)

where pobs is the position of obstacle and R is the robot
radius.

B. Dueling DDQN with prioritized experience reply

Markov Decision Processes (MDPs) provide a mathemat-
ical framework to model stochastic planning and decision-
making problems under uncertainty. An MDP is a tuple
M = (S,A,P,R,γ), where S indicates the state space, A is
the action space, P indicates the transition function which
describes the probability distribution over states if an action
a is taken in the current state s, R represents the reward
function which illustrates the immediate state-action reward
signal, and γ ∈ [0,1] is the discount factor. In an MDP
problem, a policy π(a|s) specifies the probability of mapping
state s to action a. The superiority of a policy π can be
assessed by the action-value function (Q-value) defined as:

Qπ(s,a) = Eπ [
∞

∑
t=0

γ
tR(st ,at)|s0 = s,a0 = a] (4)

Therefore, the action-value function is the expectation of
discounted sums of rewards, given that ation a is taken in
state s and policy π is executed afterwards. The objective
of the agent is to maximize the expected cumulative future
reward, and this can be achieved by adopting the Q-learning
algorithm which approximates the optimal action-value func-
tion iteratively using the Bellman equation:

Q∗(st ,at) = R(st ,at)+ γmax
at+1

Q(st+1,at+1) (5)

Combined with deep neural networks, DQN enables rein-
forcement learning to cope with complex high-dimensional
problems. Generally, DQN maintains two deep neural net-
works, including an online network with parameters θ and a
separate target network with parameters θ ′. The parameters
of the online network are updated constantly by minimiz-
ing the loss function (yt −Q(st ,at ;θ ′))2, where yt can be
calculated as follows:

yt =

{
rt if episode ends
rt + γmax

at+1
Q(st+1,at+1;θ ′) otherwise (6)

(a) (b)

Fig. 2. Gazebo training environments (left) and corresponding occupancy
map displayed by Rviz (right).

And the parameters of the target network are fixed for gen-
erating Temporal-Difference (TD) targets and synchronized
regularly with those of the online network.

Conventional Q-learning is affected by an overestimation
bias, due to the maximization step in Equation (6), which
would harm the learning process. Double Q-learning [20],
addresses this overestimation by decoupling, in the maxi-
mization performed for the bootstrap target, the selection of
the action from its evaluation. Therefore, if episode not ends,
the yt in the above formula is rewritten as follows:

yt = rt + γQ(st+1,argmax
at+1

Q(st+1,at+1;θ);θ
′) (7)

In this work, dueling networks [21] and prioritized replay
[22] are also deployed for more reliable estimation of Q-
values and sampling efficiency of replay buffer respectively.
In the following, we describe the details of the observation
space, the action space, the reward function and the network
architecture.

1) Observation space: As mentioned in Section III-A, the
observation ot consists of the generated costmaps Mt , the
relative goal position gt and the robot’s current velocity vt .
Specifically, Mt represents the cost map images generated
from a 180-degree laser scanner or other sensors. The
relative goal position gt is a 2D vector representing the goal
coordinate with respect to the robot’s current position. The
observation vt includes the current transitional and rotational
velocity of the differential-driven robot.

We use layered costmaps [23] to represent environmental
information perceived by multi-sensors. Then though the
map generater module, we get the state maps Mt by drawing
the robot configuration (shape) into the layered costmaps.
Fig. 2(b) shows an example of generated occupancy maps.

2) Action space: The action space is a set of permissible
velocities in discrete space. The action of differential robot
includes the translational and rotational velocity, i.e. at =
[vt ,wt ]. In this work, considering the real robots kinematics
and the real world applications, we set the range of the
translational velocity v ∈ [0.0,0.2,0.4,0.6] and the rotational
velocity in w ∈ [0.9,−0.6,−0.3,0.0,0.3,0.6,0.9]. Note that
backward moving (i.e. v < 0.0) is not allowed since the laser
range finder can not cover the back area of the robot.

3) Reward: The reward function in reinforcement learning
implicatly specifies what the agent is encourage to do.
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Fig. 3. The architecture of our CNN-based dueling DQN network. This network takes three local maps and a vector with local goal and robot velocity
as input and outputs the Q values of 28 discrete actions.

Our objective is to avoid collisions during navigation and
minimize the mean arrival time of the robot. A reward
function is designed to guide robots to achieve this objective:

rt = (rg)t +(rc)t +(rs)t (8)

The reward r at time step t is a weighted sum of three terms:
rg, rc and rs. In particular, the robot is awarded by (rg)t for
reaching its goal:

(rg)t =

{
rarr if‖pt −g‖< 0.2
ε(
∥∥pt−1−g

∥∥−‖pt −g‖) otherwise (9)

When the robot collides with other obstacles in the environ-
ment, it is penalized by (rc)t :

(rc)t =

{
rcol if collision
0 otherwise (10)

And we also give robots a small fixed penalty rs at each step.
We set rarr = 500, ε = 10, rcol = -500 and rs = −5 in the
training procedure.

4) Network Architecture: We define a CNN-based deep
convolutional neural network that computes the action-value
function for each actions. The input of the network has
three local maps M with 60× 60 grey pixels and a four-
dimensional vector with local goal g and robot velocity v.
The output of the network is the Q-values for actions. The
architecture of our deep Q-value network is shown in Figure
3. The input costmaps are fed into a 8×8 convolution with
stride 4, followed by a 4× 4 convolution with stride 2 and
a 3×3 convolution with stride 1. The local goal and robot
velocity form a four-dimensional vector, which is processed
by one fully connected layer, and is then pointwise added
to each point in the response map of processed costmap by
tiling the output over the special dimensions. The result is
then processed by three 3× 3 convolutions and three fully
connected layers with 512, 512 units respectively, and then
fed into the dueling network architecture, after which the
network outputs the Q values of 28 discrete actions.

C. Curriculum Learning

Curriculum learning [24] is a learning strategy in machine
learning, which starts from easy instances and then gradually
handles harder ones. In this work, we use Gazebo simulator
[25] to build an environment with multiple obstacles. As
the training progresses, we gradually increase the number of
obstacles in the environment, and also the distance from the

starting point of the target point gradually increases. This
makes our strategy training from easy situation to difficult
ones. At the same time, the position of each obstacle and the
start and end points of the robot are automatically random
during all training episodes. One training scene is shown in
Fig. 2(a).

IV. EXPERIMENTS

In this section, we present experiment setup and evaluation
in both simulated and real environments. We quantitatively
and contrastively evaluate the DQN-based navigation policy
to show that it outperforms other related methods in multiple
indicators. Moreover, we also performed qualitative tests on
real robots, and also integrated our obstacle avoidance policy
into the navigation framework for long-range navigation
testing.

A. Reinforcement Learning Setup
The training experiments are conducted with a customized

differential drive robot in a simulated virtual environment
using Gazebo. A 180-degree laser scanner is mounted on
the front of the robot as shown in Fig. 2(a). The system
parameters are empirically determined in terms of both the
performance and our computation resource limits as listed in
Table I.

TABLE I
SYSTEM PARAMETERS

Parameter Value

learning rate 5×10−4

discount factor 0.99
replay buffer size 2×105

minibatch size 1024
image size 60×60

episode length 300
initial exploration 1

final exploration 0.1

The implementation of our algorithm is in TensorFlow, and
we train the deep Q-network in terms of objective function
Eq. 7 with the Adam optimizer [26]. The training hardware
is a computer with an i9-9900k CPU and a single NVIDIA
GeForce 2080 Ti GPU. The entire training process (including
exploration and training time) takes about 10 hours for the
policy to converge to a robust performance.
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Fig. 4. Indicator curves of different methods during training.

B. Experiments on simulation scenarios

1) Performance metrics: To compare the performance of
our approach with other methods over various test cases, we
define the following performance metrics.

• Expected return Er is the average of the sum of rewards
of episodes.

• Success rate π̄ is the ratio of the episodes in which the
robot reaching the goals within a certain step without
any collisions over the total episodes.

• Reach step s̄ is the average number of steps required
to successfully reach the target point without any colli-
sions.

• Average angular velocity change Oω is the average
of the angular velocity changes for each step, which
reflects the smoothness of the trajectory.

TABLE II
INDICATORS VALUES OF VARIOUS METHODS

Method Er π̄ s̄ Oω

PPO with 1d conv 467.87 0.85 40.19 0.46
Normal DQN 547.43 0.91 27.76 0.39

Curricular DQN 617.04 0.94 26.13 0.35

2) Comparative experiments: We compare our curricu-
lar DQN policy with normal (non-curricular) DQN policy
and PPO with one-dimensional convolution network [15]
in our tests. As shown in Fig. 4, our DQN-based policy
has significant improvement over PPO policy in terms of
expected retrun, success rate, reach step and average angular
velocity change, and curricular DQN policy has also a slight
improvement on multiple indicators. In the tests with more
obstacles, the specific indicators values of various method
are shown in the Table II. Fig. 5 shows a test case of our
curricular DQN policy in a test scenario.

Fig. 5. A test case of our curricular DQN policy in a test scenario, the
green dot represents the starting point, the red dot represents the end point,
and the robot’s trajectory is marked with purple arrows.
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Fig. 6. Reach rate over laser noise. DQN policy trained with sensor noise
compared to policy without sensor noise and traditional VFH method.

3) Robustness to noise: Fig. 6 depicts that the perfor-
mances of our DQN-based policy and the traditional vector
field histogram (VFH) method [27] vary with the noise error
of the laser sensor data in an environment with many ob-
stacles. Results show that our DQN-based policy is resilient
to noise, and laser noise heavily influences the reach rate of
VFH. This is expected since VFH uses obstacle clearance to
calculate its objective function, and such a greedy approach
often guides the robot to local minima. More importantly,
the learned policy (the DQN policy with noise in the Fig. 6)
will work better when using the same noise variance as the
test environment during training.

C. Navigation in real-world

To further verify the generalization and effectiveness of
our learning policy, we use our robot chassis to do experi-
ments in real-world. As shown in Fig. 7, our robot platform
is a differential wheel robot with a Hokuyo UTM-30LX
scanning laser rangefinder and a laptop with an i7-8750H
CPU and a NVIDIA 1060 GPU. The robot pose and velocity
are provided by a particle filter based state estimator. An
occupancy map is constructed from laser measurement, from
which an egocentric local map is cropped to fixed size
6.0×6.0m and resolution 0.1m at each cycle.

We used paper boxes to build different difficult envi-
ronments for testing. As shown in Fig. 7, when the robot
confronts obstacles, the trained policy succeeds in providing
a reactive action command that drives the robot away from



2d laser scanner

Fig. 7. Our robot chassis with a laptop and a Hokuyo UTM-30LX
laser scanner (left). Real test environment(right), including difficult obstacle
environments (upper right) and long-range corridor test (bottom right).

obstacles. In the long-range experiments, our robots navigate
safely in corridors with obstacles and pedestrians. A video
for real and simulated navigation experiments can be found
at https://youtu.be/Eq4AjsFH_cU.

V. CONCLUSIONS
In this paper, we propose a model-free deep reinforce-

ment learning algorithm to improve the performance of au-
tonomous decision making in complex environments, which
directly maps egocentric local occupancy maps to an agents
steering commands in terms of target position and movement
velocity. Our approach is mainly based on dueling double
DQN with prioritized experience reply, and integrate curricu-
lum learning techniques to further enhance our performance.
Finally, both qualitative and quantitative results show that the
map-based motion planner outperforms other related DRL-
based methods in multiple indicators in simulation environ-
ments and is easy to be deployed to a robotic platform.

REFERENCES

[1] M. Mohanan and A. Salgoankar, “A survey of robotic motion planning
in dynamic environments,” Robotics and Autonomous Systems, vol.
100, pp. 171–185, 2018.

[2] W. Zhang, S. Wei, Y. Teng, J. Zhang, X. Wang, and Z. Yan, “Dynamic
obstacle avoidance for unmanned underwater vehicles based on an
improved velocity obstacle method,” Sensors, vol. 17, no. 12, p. 2742,
2017.

[3] D. Zhou, Z. Wang, S. Bandyopadhyay, and M. Schwager, “Fast, on-
line collision avoidance for dynamic vehicles using buffered voronoi
cells,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 1047–
1054, 2017.
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