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Abstract—Exploring the most task-friendly camera setting—
optimal camera placement (OCP) problem—in tasks that use
multiple cameras is of great importance. However, few existing
OCP solutions specialize in depth observation of indoor scenes,
and most versatile solutions work offline. To this problem, an
OCP online solution to depth observation of indoor scenes based
on reinforcement learning is proposed in this paper. The proposed
solution comprises a simulation environment that implements
scene observation and reward estimation using shadow maps
and an agent network containing a soft actor-critic (SAC)-based
reinforcement learning backbone and a feature extractor to
extract features from the observed point cloud layer-by-layer.
Comparative experiments with two state-of-the-art optimization-
based offline methods are conducted. The experimental results
indicate that the proposed system outperforms seven out of ten
test scenes in obtaining lower depth observation error. The total
error in all test scenes is also less than 90% of the baseline
ones. Therefore, the proposed system is more competent for depth
camera placement in scenarios where there is no prior knowledge
of the scenes or where a lower depth observation error is the
main objective.

Index Terms—Camera placement, Deep reinforcement learn-
ing, Point cloud data, Shadow map, Soft actor-critic

I. INTRODUCTION

Industrial automation using cyber-physical systems is being
researched and developed for the next industrial revolution
(Industry 4.0). These systems often require the use of auto-
mated sensors to complete the information gathering in the
workplace. Depth cameras are a kind of such automated sen-
sors. In many application scenarios of depth cameras such as
surveillance or 3D reconstruction, depth information obtained
by a single depth camera is insufficient for the task. Therefore,
it is necessary to introduce multiple depth cameras to conduct a
comprehensive observation of the observed object to overcome
this limitation; however, it leads to another problem: what
arrangement should be employed for these depth cameras to
achieve this goal more effectively. This problem is referred
to as the optimal camera placement (OCP) problem. The
solutions for the OCP problem can be widely applied to the
automatic planning of various multicamera application scenar-
ios in Industry 4.0, which can help improve the adaptability
and resource utilization of relevant systems in the working
environment.

One of the main ideas for general OCP is to determine the
possible solutions in the candidate camera placement pool.
Each element of the candidate pool combines a set of camera
parameters such as camera positions or orientations, which

are obtained by discretizing the possible range of parameters.
[1] uses an idea based on particle swarm optimization (PSO),
which simulates the information-sharing behavior of migrating
animals to search for the optimum. Many inertial particles
move and search in parallel in the camera parameter candidate
pool with a tendency to the current global optimum. Since the
camera parameter candidate pool is a discrete solution space,
it uses a variant of the PSO algorithm called binary PSO.
Another two similar research studies focused on [2] artificial
bee colonies and [3] differential evolution. Other studies
that do not discretize camera parameters use greedy search
algorithms to find the OCP. [4] proposed trans-dimensional
simulated annealing (TDSA) that uses a probabilistic decision
model to enable the increase or decrease in the number of
cameras to be two extra search directions, i.e., the dimension
of the model becomes the model variable to be optimized.

In contrast to exploring general solutions, other studies
focus on developing dedicated OCP solutions for specific
problems. One such example is the most researched specific
issue of OCP, i.e., surveillance. In contrast to the research
on applying general solutions to surveillance problems, many
studies address specific aspects of the surveillance problem
[5]–[8]. After the development of the unmanned aerial vehicle
(UAV), a considerable amount of research has focused on the
placement of UAVs [9] to obtain a solution for maximizing the
area covered by UAVs while considering energy consumption,
which is a critical metric to UAVs. Some other researchers
studied tasks similar to depth cameras placement. [10] pro-
vides an approach to the minimal geometry reconstruction
error for an object whereas [11] mentions the method to op-
timize the camera placement for object recognition. However,
they are not suitable for larger-scale complex objects (such as
rooms) and require the premeasurement of the target object.

Although many OCP solutions in various scenarios have
been listed above, they are unsuitable for our task because
of their specialization. We expect to apply OCP to the depth
observation of indoor scenes. The working principles of
different types of depth cameras are different; however, all
depth cameras require the high-precision perception of the
observation target, which limits their effective range. Depth
cameras designed for indoor scenes can only guarantee the
completeness and accuracy of the results within a few meters.
This limitation makes depth cameras more dependent on
suitable camera placement than traditional optical cameras.
Further, the use of existing OCP frameworks to plan the
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placement of depth cameras may be insufficient because only
a few of the existing OCP frameworks are designed to ensure
the quality of the depth observations. Besides, most existing
OCP algorithms require prior knowledge of scene information
as input, such as floor plans or pre-measured three-dimensional
data, which prevents them from online usage.

The main contributions of this study are summarized as
follows:
• Proposed a reinforcement learning (RL) based camera

placement system specialized for depth observation in
indoor scenes.

• Designed a sufficiently fast simulation environment re-
quired by training.

• Designed an agent network for learning the placement of
depth cameras; this network can deal with unstructured
point cloud data.

• Conducted comparative experiments with traditional of-
fline approaches, which shows that the proposed system
as an online algorithm can achieve more accurate depth
observations than offline algorithms.

The rest of this paper is organized as follows. Section II
provides the detailed definition of the research problem. Sec-
tion III presents an overview and the detailed design of the
proposed system from two parts of the system: the simulation
environment and agent network. Subsequently, Section IV
describes the conducted experiments and the composition of
the used dataset. Finally, the paper is concluded in Section V.

II. PROBLEM DEFINITION

For simplicity, we assume that all cameras are omnidirec-
tional, and therefore, we use only camera positions as variable
camera parameters. Omnidirectional depth cameras are already
widely used in depth observation research, such as [12]–[14].
Section III-B1 shows that our proposed system can be eas-
ily transferred to regular non-omnidirectional depth cameras.
Another assumption considered for the sake of simplicity is
that the number of cameras is fixed during the optimization
process.

Based on these assumptions, the camera settings to be
optimized include the camera positions. Therefore, the target
of the depth camera placement for depth observation in indoor
scenes can be given as finding the camera positions p as

arg min
p∈S

D(p |C), (1)

where S denotes the valid value range of p, i.e., the whole
indoor space; C is the point cloud data that represents the
scene; D(p |C) is the difference between the ground truth
and depth images observed by cameras placed as p, and the
research target is to minimize this difference.

The difference Dj(p |C) between the depth camera obser-
vation and the ground truth at a given viewpoint j can be
intuitively defined as the sum of pixel-wise differences on the
depth image as

Dj(p |C) =
∑

pixel∈Ij

|| dpixel(p |C)− d
′

pixel(C) ||, (2)

Fig. 1. Overview of training routine.

where Ij denotes the depth image observed at j; dpixel(p |C)
represents the pixel value on the depth image calculated
with the partial point cloud observed by cameras at p, and
d

′

pixel(C) represents the pixel value on the depth image
calculated with the entire point cloud, i.e., the ground truth.

Ideally, D(p |C) should be defined as the sum of Dj(p |C)
for all viewpoints j in S. However, this definition is difficult
to calculate in practice. Therefore, the appropriate approach is
to consider some sampling points in S, and define D(p |C)
as the sum of Dj(p |C) on these sampling points. With this
definition, the target can be formulated as

D(p |C) =
∑
j∈V

Dj(p |C), (3)

where V represents the set of sampling points.

III. REINFORCEMENT LEARNING SYSTEM

A. System Overview

The overview of the training routine of the proposed system
is illustrated in Fig. 1. Similar to other reinforcement learning
tasks, the training process of this system is conducted through
an iterative interaction between the agent and the environment.

The soft actor critic (SAC) [15] algorithm is adopted as
the agent backbone. The agent network comprises three parts:
an actor network representing the strategy responsible for
generating actions from the extracted features and estimated
Q-value; a critic network responsible for the estimation of Q-
value from the extracted features and action; and a feature
extractor that processes point cloud data. The actor network
and critic network use the implementation provided by the
stable baselines3 [16], and therefore, they are not described
in detail in this paper.

The actions produced by the agent network are designed
to be camera movements in each turn. The agent generates
actions for all camera globally. Given the actions output by
the agent, the simulation environment becomes responsible for
outputting the corresponding observation and reward. For our
research, the output is the partial point cloud observed until
the current turn and the reward of the movements (including
the difference of space coverage and depth observation error
compared to the last turn).

The evaluation routines are similar to the training routines
that involve repeated interactions between the agent and the



Fig. 2. Shadow maps for omnidirectional cameras. The left part represents
the shadow map, and the right represents the corresponding coverage volume
in the three-dimensional space of the painted one element in the left. α and
β are the indices of the elements in the shadow map and their corresponding
spherical coordinate values. P is the camera position. The radius of the ball on
the right is the effective range of the depth camera. Vα, β is a quadrangular
pyramid-like body surrounded by four radii (corresponding to the four vertices
of the painted cell in the left image) and the spherical surface. The value of
the painted cell is the minimum distance from all points in Vα, β to the center
of the sphere.

environment. However, the estimation of the Q-value and
computation of the rewards on which it depends are unnec-
essary because there is no need to consider backpropagation.
The modules related to them can be discarded from Fig. 1.
Moreover, when used in real-world applications, the entire
simulated environment is replaced by the natural environment
and only the agent network is required.

The camera movements generated by the agent gradually
converge to zero after a certain number of interaction cycles.
Thus, the environment is set with the maximum number of
interactions. The loop is stopped after reaching this maximum
value. The camera positions at the end are used as the final
positions to evaluate the performance of the depth camera
placement using (3).

B. Simulation Environment

For our research, the required simulation environment must
perform the following functions while considering both speed
and accuracy:

• Scene point cloud observation
• Space coverage estimation
• Depth observation error estimation

These functions correspond to the three dark-colored mod-
ules in the simulation environment in Fig. 1. The proposed
system implements these functions based on shadow maps,
which correspond to the light-colored module in the simulated
environment in Fig. 1.

1) Shadow Maps Calculator: Basic shadow maps are simi-
lar to depth images because the depth information along differ-
ent directions is stored pixel-by-pixel. The name shadow maps
is based on its application in real-time rendering. Shadow maps
can be used to store distances from the nearest obstacle to the
light source. Further, shadow maps can be used to evaluate
whether the light source illuminates a specific fragment by
comparing their distance with the shadow map value.

Shadow maps can be calculated directly from the point
cloud data. Further, shadow maps can be defined in a spherical

coordinate system with the camera as the center and indepen-
dent of the radial distance because users are assumed to use
omnidirectional cameras. The definition and calculation of the
shadow map are shown in Fig. 2 and (4).

SMi[α, β] = min
point∈Vi, α, β

||point−Pi ||2 (4)

The above shadow maps are defined for omnidirectional depth
cameras; however, they can still be used for normal (non-
omnidirectional) depth cameras. The calculation is also easy
for normal scenarios; only slight modifications (4) as required.

SMi[α, β] = min
point∈Vi, α, β∩Fi

||point−Pi ||2, (5)

where Fi denotes the viewing cone of the i-th camera. This
change is essentially as an additional judgment. The shadow
map is updated only when the point falls within the viewing
cone of the camera.

Each point is considered a rectangle when calculating the
shadow maps. Not only the cell in which the point falls but also
the surrounding cells are updated. The rectangles are centered
on the cell where the point is located; however, their size is
not fixed. Each point is considered a cube whose side length
is twice the distance from the point to the nearest neighbor in
the point cloud. Without this amendment, the gap between the
points may uncover points that should not be visible behind
them.

2) Visibility Test in Following Modules: It is simple to
conduct a visibility analysis to determine if a point is visible
to a camera once the shadow map is calculated. The approach
is to identify the cell where the point falls in the shadow map
of the camera and to determine if the distance to that camera
is less than the value stored in the cell. A small compensation
is added to the shadow map value. Thus, the visible area is
slightly expanded, and it covers visible points that would have
been erroneously eliminated because of the sampling accuracy.

3) Scene Point Cloud Observer: One step to obtain the
partial point cloud observed in the current turn is checking
the visibility of all cameras for each point in the point cloud.
If a point is visible by any camera, it is added to the list of
observed points. Finally, this list is output as the simulation
of the observation results. The observation flag is set to false
each time the environment is reset. Once the flag of some
point is set to true, it will always be true, which indicates that
this point will be included in the observation.

4) Space Coverage Calculator: The space is discretized
to estimate the space coverage. The bounding box of the
scene point cloud is considered as the entire space, and it
is then uniformly divided into small cells. Each cell in the
grid determines whether it is in the visible area by checking
the visibility of its center point. The number of cells that pass
the visibility check is then multiplied by the volume of an
individual cell to obtain the space coverage.

5) Depth Error Calculator: Calculating the depth error
at a single point is straightforward. Owing to the similarity
of shadow maps and depth images, they can be directly
considered the depth information observed at a certain point.



Fig. 3. Forward data flow diagram of the extraction unit in feature extractor
module.

Therefore, to compare the depth observation obtained by
placed cameras and the ground truth, shadow maps are cal-
culated with the partial point cloud visible to placed cameras
and the entire point cloud, respectively. Then, the depth error is
calculated by accumulating the differences of the depth values
pixel-by-pixel.

Nevertheless, it is difficult to compute the depth error for
the entire space. The depth errors at some sampling points are
used to represent the overall depth error. Then, the summation
of the depth errors at all sampling points can estimate the
overall depth error. Sampling points are placed in the center
and four corners ( 23 of the position from the center point to
the vertex of the bounding box) of the bounding box of the
scene. The height of the sampling points is half of the height
of the scene bounding box.

C. Agent Network

The critical parts of the agent network include a feature
extractor module and a reward mapping module, excluding
the actor and critic networks, which are not our contributions.
The feature extractor module extracts latent features from the
input observed point clouds. The reward mapping module
preprocesses the rewards from the environment to guide the
training direction better.

1) Feature Extractor: Inspired by other networks that ex-
tract features from point clouds [17], [18], the proposed feature
extractor extracts point cloud features level-by-level through
sampling and grouping. The core part of this module is the
extraction unit, which extracts a set of key points and features
from the input point cloud. The extraction unit is repeated
three times in the feature extractor to extract the features of
the different levels. The last layer is set to have only one key
point, which extracts the global features of the point cloud.
The features extracted from the point cloud are concatenated
with manually extracted features (bounding box of observed
point cloud and current camera positions) as the input of the
subsequent actor and critic network.

The specific structure of the extraction unit is shown in
Fig. 3. The input point cloud is first sampled to obtain K
key points, and then, the point clouds are grouped with these
key points as the center points. Each group has G points.
Sampling and grouping operations are the same as in [18].
These operations select some points from the point cloud based

on indices, which are constant for each point cloud. Therefore,
these indices are precomputed in the observation cache module
and passed into the extraction unit when extracting features.

Then, the grouped points are passed through a multilayer
perceptron (MLP) with shared weights to extract latent fea-
tures. The MLP comprises three layers with the same output
channel number C′. The following maximum pooling layer
filters out the maximum components of each group in the
output of the MLP. The filtered components are concatenated
with the center point position of each group. Therefore, the
final output of the feature extraction unit is similar to a point
cloud containing K points, and each point has 3 position
channels and C′ feature channels.

2) Reward Mapping: The simulation environment provides
two reward outputs: space coverage SC and depth observation
error DOE. Further, a penalty term P for preventing the actions
of moving the camera outside the room is added. This term is a
Boolean variable, and it is calculated whenever the rewards are
calculated. When any camera position is outside the bounding
box of the scene, P is set to 1. Otherwise, it is set to 0. These
three reward terms are combined into a reward scalar Rew as

Rew ( SC, DOE, P) =

(KSC ×∆SC +KDOE ×∆DOE)× (1− P)

+KP × P,
(6)

where ∆SC and ∆DOE represent the difference in space
coverage and depth observation error compared to the previous
turn. KSC , KDOE , and KP denote the weights of space cov-
erage, depth observation error, and penalty terms, respectively.

When using (6) directly for the loss calculation of the
Q-network, the agent rapidly expands the coverage area of
the camera at the beginning, and this is accompanied by a
significant decrease in the depth error. Then, the agent may
appear sluggish. The agent keeps the cameras immobile even
though more suitable (lower depth error) positions may exist
near the cameras.

For this problem, we propose a solution that involves
mapping rewards by functions with sufficiently large positive
first-order derivatives and positive second-order derivatives. In
the case of already large rewards, sufficiently large positive
first-order derivatives allow even small increments of rewards
to produce significant increments of mapped rewards. Further-
more, the positive second-order derivative makes this effect
increasingly enhanced as the base reward becomes larger. In
this specific implementation, we use the third power function
as the mapping function.

IV. EXPERIMENTS

The experiments described in this paper are performed on
an Ubuntu 18.04 server with two AMD Ryzen Threadripper
3970X CPUs, 128GB RAM, and one NVIDIA TITAN RTX
graphics card.

A. Dataset

Our training and evaluating datasets are based on the S3DIS
dataset [19], which is a large-scale indoor scene dataset



TABLE I
DEPTH ERROR SUM OF ALL EVALUATION SCENES

Approach Ours TDSA BPSO

Depth Error Sum 48.4 56.6 54.3

obtained by scanning the real-world campus rooms by depth
cameras, including 3 buildings, 6 areas, and a total of 272
scenes. The point cloud data of scenes from area 1 to area 5
are used to construct the training dataset, and data from area
6 are used to construct the evaluation dataset.

However, not all scenes in the S3DIS dataset are suitable
for the experiments. 10 scenes from each area are selected
based on the following rules to form the experiment datasets.
• Scene shape completeness: The selected scene must

have closed walls and ceilings. An open space may in-
terfere with the measurement of depth observation errors
and evaluation of whether the camera is inside the scene.
This rule only applies to the training dataset. In order not
to introduce bias to the evaluation set, the evaluation set
still contains open scenes.

• Scene size: The selected scene must be of the appropriate
size to be roughly covered by the chosen number of
cameras without too much omission or overlap. If the
scene is too small, then the camera can easily cover
the whole scene. If the scene is too large, a good
depth observation cannot be obtained no matter how the
cameras are placed because the number of cameras is
fixed. Optimizing camera placement in both cases is not
meaningful, and therefore, they cannot be used for our
experiments.

• Flat room: We restrict camera positions in experiments
on a plane parallel to the ground to simplify the calcula-
tion. This restriction makes the simplified model handle
flat rooms. Therefore, we excluded non-flat rooms such
as stairwells from the training and evaluation sets.

Further, segmented scenes in the S3DIS dataset are all axis-
aligned. To avoid this property from introducing bias into
datasets, two additional scenes for each scene are added by
rotating the scene by 60° and 120° around the center of its
bounding box. Thus, the final dataset used for the experiments
contains 60 × 3 = 180 scenes, 150 of which are used for
training and 30 for evaluation.

B. Comparative Experiment

1) Baselines: Two versatile non-deep-learning OCP solu-
tions, TDSA [4] and BPSO [1] are used as baselines to
compare with our proposed system.

2) Metrics: The primary metric of the comparative ex-
periment is the depth observation error, i.e., (3), which is
calculated in the simulation environment. Therefore, we can
directly use the depth observation error output from the
simulation environment as the evaluation metric.

3) Results: Fig. 4 shows the depth observation error ob-
tained by each approach in each evaluation scene. The error

Fig. 4. Depth observation error of each approach in each evaluation scene.

TABLE II
COMPUTATION TIME FOR EACH APPROACH

Approach Ours (Training) TDSA BPSO
Time ∼ 9 h ∼ 6 h ∼ 13 h

of each scene is the average of the depth observation errors
obtained by itself and those in the two derived scenes. TA-
BLE I shows the sum of errors for all scenes. The proposed
system performs better in 7/10 scenes, and the total error is
the smallest. This result shows that our system is better than
general algorithms on camera placement for depth observation
tasks. TABLE II summarizes the computation times for each
approach. The time required by the baselines is the compu-
tation time for all 30 evaluation scenes. The results indicate
that even if our approach is considered an offline algorithm,
its time consumption remains acceptable.

C. Training Statistics

Fig. 5 shows the additional details of the training process.
Fig. 5 shows that after one million interactions, the perfor-
mance of the agent has almost stabilized, and the losses of
modules gradually converged.

D. Example Visualization

Fig. 6 shows some examples of camera placement results
and trajectories output by the proposed system in the test
scenes. The red balls, white lines, and semi-transparent white
balls represent the final camera positions output by the system,
trajectories of the camera movement during the repeated
interactions with the environment, and influential ranges of
the cameras, respectively.

V. CONCLUSION

In this study, a reinforcement learning-based OCP system
for depth observation tasks in indoor scenes was proposed.
As an online algorithm, it behaves better in obtaining more
accurate depth observations compared to offline baselines.
Therefore, it is more competent for depth camera placement in
scenarios where there is no prior knowledge of the scenes or
where a lower depth observation error is the main objective.

One of the main limitations of the proposed system is that
it can be overly constrained to some corners of the scene in
some scenes, thus neglecting other regions. This is the main
factor why the system did not beat the baselines in all test
scenes. Another major limitation is that it is restricted to using
a fixed number of depth cameras. Therefore, future work may



(a) Performance (b) Losses

Fig. 5. Performance and losses of agent measured during training.

Fig. 6. Examples of camera placement results and trajectories output by the proposed system.

include introducing collaborative learning and exploring a way
to encode the movements of variable-length cameras.
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