
 
Abstract—Stochastic gradient descent (SGD) algorithm is an effective learning strategy to build a latent factor analysis (LFA) model on a 
high-dimensional and incomplete (HDI) matrix. A particle swarm optimization (PSO) algorithm is commonly adopted to make an SGD-based 
LFA model’s hyper-parameters, i.e, learning rate and regularization coefficient, self-adaptation. However, a standard PSO algorithm may suffer 
from accuracy loss caused by premature convergence. To address this issue, this paper incorporates more historical information into each 
particle’s evolutionary process for avoiding premature convergence following the principle of a generalized-momentum (GM) method, thereby 
innovatively achieving a novel GM-incorporated PSO (GM-PSO). With it, a GM-PSO-based LFA (GMPL) model is further achieved to 
implement efficient self-adaptation of hyper-parameters. The experimental results on three HDI matrices demonstrate that the GMPL model 
achieves a higher prediction accuracy for missing data estimation in industrial applications. 
 

Index Terms—High-Dimensional and Incomplete Data, Latent Factor Analysis, Particle Swarm Optimization, Generalized Momentum, 
Adaptive Model. 

I. INTRODUCTION 

ITH the rapid expansion of big-data-related applications, information resources composed of multiple entities are growing in 
quantity as well, e.g., customers and items in a recommender system (RS) [1, 2, 33-35], and quality-of-service (QoS) in web 

service [3, 4, 36]. As the number of involved entities increases, the overall interaction mapping becomes difficult to observe.  
In general, a high-dimensional and incomplete (HDI) matrix [3-6, 37-40] is commonly used to describe the high incomplete 

interactive mapping relationships. Note that in an HDI matrix, most entries that describe the unobserved data are unknown rather 
than “zero”, while a few entries describe the observed portion [3-6], which means that the matrix is extremely sparse. Even so, it 
still contains wealthy and valuable content. Among the various knowledge representation models, the latent factor analysis (LFA) 
model is increasingly popular to extract valuable knowledge of the HDI data due to its high efficiency and scalability [7, 8]. It 
characterizes both users and items into the same latent factor space based on the known entries in the target HDI matrix and then 
estimates the missing ratings based on the corresponding vectors. Until now, many sophisticated LFA-based models are proposed 
to tackle the large-scale HDI data [9-11, 41]. These models are different in training schemes and model organizations, but the 
elemental principle is consistent.  

An SGD algorithm is one of the most commonly utilized learning schemes to handle the LFA-based model [12, 42]. However, 
the SGD-based LFA model largely depends on the selection of its hyper-parameters, i.e., the learning rate and regularization 
coefficient. For instance, when the learning rate is too large or too small, the model convergence cannot reach the global optimum 
or suffers overshooting or even divergence [13], and when the regularization coefficient is too small or too large, the model suffers 
overfitting or under-fitting [14]. Therefore, both hyper-parameters need to be carefully selected. Hence, it is essential to explore a 
feasible and operable approach to select appropriate parameters. 

Considering the commonly used hyper-parameter tuning approaches, such as manual and grid search methods, are too 
cumbersome and time-consuming to select an appropriate value. Some studies begin to emphasize the adaptive adjustment of 
hyper-parameters. For instance, serval studies [13-17] are exploring the adaptive tuning of the learning rate or regularization 
coefficient. Luo et al. [15] extend the RMSprop, AdaDelta, and Adam algorithms to the SGD algorithms to implement the learning 
rate adaption of the LFA-based model. Luo et. al [13] achieve a novel position-transitional particle swarm optimization (PSO) 
algorithm into an SGD-based LFA model to efficiently and automatically search for the optimal learning rate. Rendle [16] presents 
two optimization criteria, one is to optimize the desired LFs on the training set and the other is the regularization coefficient on the 
validation set. Chen et al. [17] propose a fine-grained adaptive regularizer that learns the regularization coefficients through 
training the desired LFs on the validation set, which facilitates regularization at any granularity. Meanwhile, Chen et. al [14] apply 
the standard PSO and its variant algorithm to accomplish the automatic optimization mechanism of the hyper-parametric 
regularization coefficient and learning rate of an SGD-based LFA model. Although it achieves a more steadily searching ability by 
constraining its particle position and velocity with finely-grained boundaries, its prediction accuracy and convergence rate still 
have an enclosure for research. 
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To address this critical issue, this paper proposes a generalized-momentum incorporated PSO (GM-PSO) algorithm that 
efficiently addresses the premature issues in a PSO algorithm. It calculates the momentum and “gradient” of particle velocity and 
position and represents their “gradient” by updating the incremental form, which is compatible with the generalized momentum 
method, thereby constructing the GM-PSO algorithm. The main contributions of this paper include: 
a) A GM-PSO algorithm. It considers the historical gradient information of particles in the evolution process. 
b) A hyper-parameter-adaptive GMPL model. It completes the hyper-parameter-adaptive training process of the learning rate 

and regularization coefficient. 
The rest of this paper organizes as follows. Section II reviews preliminaries. Section III outlines our method in this study. 

Section IV discusses experiments and empirical results. Section VI summarizes the paper. 

II. PRELIMINARIES 

A. Problem Statement 

An HDI matrix describes the interaction between two entity sets, i.e., a user set U and an item set I, which are involved in 
relevant applications [1-4, 12-15]: 
Definition 1. A rating matrix R|U|×|I| with each entry ru,i quantifies some interactions between entities u∈U and i∈I. Let Κ and Λ, 
denote R’s known and unknown entity sets, respectively, R is an HDI matrix if |Κ|≪|Λ|.  

An LFA model aims to build its low-rank approximation based on Κ only [1-2, 12-15]: 
Definition 2. Given R, U, I, f, an LFA model learns LF matrices X|U|×f and Y|I|×f to build its rank-f approximation R̂=XYT, where 
f≪min{|U|, |I|}. Note that f denotes the dimension of LF space. 

With it, an objective function of an LFA model can be modeled by the Euclidean distance as the distance metric: 
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where ru,i denotes the involved entries in R, xu,. and yi,. denote the u-th and i-th row LF vectors of X and Y, ,   computes the inner 

product of two entities to obtain the prediction rating, ||||2 computes the L2 norm of an enclosed vector, and λ is the regularization 
coefficient to avoid overfitting [18].  

B. An SGD-based LFA model 

SGD is a highly effective strategy frequently adopted to solve the objective function in an LFA model [7, 10]. With it, X and Y in 
the LFs involved in (1) are updated as follows:  
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note in (2), τ and υ denote the current update points for xu,. and yi,., (τ-1) and (υ-1) denote their last update points, η denotes the 

learning rate,    2 2 21 1 1 1
, , , , , ,,   

      u i u i u i u ir x y x y      denotes the instant loss on ru,i∈K and initial states of xu,., respectively. 

Note that xu,. and yi,. with different symbols because of Κ(u) Κ(i). Let 1 1
, , , ,, 

  u i u i u ie r x y  , then the SGD-based training rules 

for an LFA model applying (2) to (1) are formulated as 
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From (3), an SGD-based LFA model’s performance clearly depends on λ and η, as discussed in prior research [7, 14, 18]. 

III. METHODS 

A. A Standard PSO Algorithm 

A standard PSO algorithm [19-21] adopts a swarm of q particles flies in D-dimensional space to search for the desired solution, 
where the movement of each particle depends on its velocity and position. More specifically, the velocity s and position h of the j-th 
particle at the t-th iteration are denoted by two vectors, i.e., st 

j  = [st 
j,1, s

t 
j,2, …, st 

j,D] and ht 
j  = [ht 

j,1, h
t 
j,2,…, ht 

j,D] where 1≤j≤q. During the 
evolution process, the j-th particle determines its next position based on its locally best position and the swarm’s globally best 
position [ 19-21], where the latter is denoted by pbestj [pbestj,1, pbestj,2, …, pbestj,D] and the latter by gbest=[gbest1, gbest2,…, 
gbestD]. The evolution scheme of the j-th particle at the t-th iteration is formulated by: 
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where w is the non-negative inertia constant balancing the local and global searching ability, c1 and c2 are cognitive and social 
coefficients, r1 and r2 are two uniform random numbers in the scale of [0, 1]. 

B. A Momentum-PSO Algorithm 

1) Momentum Method 

The momentum method [22] is an acceleration method that has a faster convergence speed than that of the gradient descent (GD) 
method [23]. Given the decision parameter θ of objective J(θ), the following update rule of the momentum-incorporated GD-based 
algorithm are as follows: 

 0 1 1 10, ,t t t t t tv v v J v                                                                           (5) 

where v0 denotes the initial state of update velocity and normally initializes to zero, vt and vt-1 denote the update velocity at the t-th 
and (t-1)-th iterations, and γ denotes the constant balancing the effects of the previous update velocity vector and current gradient, 
respectively.  

2) Generalized Momentum Method  

According to formula (5), the current velocity vt is determined by the previous velocity vt-1 and the current gradient ▽J（θt-1). 
However, there is no explicit gradient term in formula (5), so we generalize the standard momentum method. Specifically, the 
current gradient is represented as the increment form of decision parameters rather, thereby making the momentum method 
compatible with the PSO algorithm.  

Let t   represents the expected state of the decision parameters updated by the adopted learning algorithm after the t-th iteration, 
then the incremental calculation formula of the gradient is as follows 

1t t t                                                                                                    (6) 
Let formula (6) replace in (5), the generalized form of the update velocity vector in the t-th iteration is obtained: 

 1 1 1t t t t t tv v v                                                                                       (7) 

The correctness of formula (7) can be verified by using the GD algorithm as the optimization algorithm, we have 
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According to the equivalence of formulas (5) and (8), we can obtain the generalized momentum method of velocity. 

 0 1 1 10, ,t t t t t t tv v v v                                                                             (9) 

Comparing formula (9) with formula (5), we find that a standard momentum method depends on the gradient. However, the 
generalized one depends on the update increment by the adopted algorithm. 

3) Generalized Momentum-PSO Method  

This subsection introduces the generalized momentum method combined with the PSO algorithm method. Let 1t
js   and 

1t
jh  represents the state of velocity and position the j-th particle algorithm at (t-1)-th iteration. t

js  and t
jh denotes the velocity state 

of the j-th particle after t iterations with the PSO algorithm, respectively. Therefore, the update increment caused by the PSO 
algorithm is calculated as 

-1 -1, ,t t t t t
j j j j js h s h                                                                                         (10) 

Meanwhile, according to equations (9) and (7), we calculate the update velocity of the first iteration as follows 
1 0 1 1 1 0 0= , ,j j j j j j jv v s h s h                                                                                    (11) 

where 0
js  and 0

jh  represent the initial velocity and position of the j-th particle. Thus, we have  
1 1 0 0 1 0 0 1 1 0 0 1 1, , , , , ,j j j j j j j j j j j j js h s h v s h s h s h s h                                                                         (12) 

By substituting (12) into (11), we have 
1 1 1 0 0 1 1 0 0= , , = , ,j j j j j j j j jv s h s h s h s h                                                                            (13) 

Next, we explore the second update process of particle velocity and position, thereby yielding: 
2 2 2 1 1= , ,j j j j js h s h                                                                                       (14) 

Combined with equations (9), (12), and (14), we accomplish the status of the second iteration 
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we achieve the following compact form for the PSO-based evolution rule: 
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Note that with the PSO algorithm, the velocity and position of each particle are updated by the generalized momentum method. 
Therefore, by combining equations (4) and (16), the following update rules can be obtained: 
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Note that the momentum coefficient γ is introduced as a new hyper-parameter, we automatically increase it in the range of (0.4, 1.4) 
according to [24]. It can increase the influence of momentum and accelerate the convergence [25], on the other hand, it can help 
particles jump out of the local saddle point. The implementation is as follows 

min maxmin 0.1 ,
t

m
         

                                                                            (18) 

where γmax=1.4, γmin=0.4, t represents the current iteration count, ⌊⋅⌋ represents the momentum coefficient varies every m iteration 

counts, where m indicates that the fixed number is set to 5. 

C. A GMPL Model 

In a GM-PSO algorithm, the j-th particle maintains an individual group of hyper-parameters, i.e., ηj and λj. Thus, its 
position during the evolution is given as: 

,j j jh                                                                                              (19) 

On the other hand, all particles are incorporated with the same pair of LF matrices X and Y. Thus, each evolution iteration 
consists of q sub-iterations, where at the j-th sub iteration of the t-th evolution iteration, X and Y are updated as follows: 
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where the subscript (j) on xu, and yi, denotes that their current update is linked with the j-th particle, i.e., ηj and λj. Note that 
restricting the position and velocity of particles to ensure that each particle can fly within a predetermined boundary, thereby 
yielding: 
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where the searching intervals [ηmin, ηmax] and [λmin, λmax] are set as [2-13, 2-7] and [2-7, 2-1]. Considering the fitness function, we 
set it according to the contribution of active particles to reducing the loss of the whole swarm.  
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where Ft 
j  denotes the contribution of the j-th particle at t-th iteration, and At 

j  represents the minimizing prediction error of the j-th 
particle at t-th iteration, respectively. We formulate the quantizing function in the form of root mean squared error (RMSE) as: 
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where Ω denotes the validation set and is disjoint with the training set Κ and testing set Γ, |∙|abs calculates the absolute value of an 
enclosed number, and ( ) ,

ˆ
j u ir  denotes the prediction generated by the LFs achieved with the hyper-parameter settings following the 

j-th particle, respectively.  
On the other hand, the improvement rate (Ir) of a particle j in GM-PSO is defined according to [26]: 
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where Ft-1 
j is the contribution of j-th particle ht-1 

j on (t-1)-th iteration, |ht-1 
j -ht 

j | denotes the Euclidean distance between ht-1 
j  and ht 

j  as 
setting according to [26, 27]. From Eq. (24), we can find that a higher improvement rate (Ir) means a particle j obtains a larger 
contribution at the smaller distance of two iterations.  
Then, we design the update rules for pbestj and gbest, which is as follows: 
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Based on (19)-(25), we achieve the GMPL model. 

D. Algorithm Design and Analysis 

Based on previous sections, we design the Algorithm GMPL. As shown in Algorithm GMPL, we summarize its computational 
cost as follows: 

( )( )K .GMPLT n q f=Q ´ ´ + W ´                                                            (26) 

Note that (26) holds the condition (|K|+|Ω|)×f ≫max{|U|, |I|}, which is constantly satisfied in industrial applications. It can be 
seen that the computational cost of the proposed method is linear with (|K|+|Ω|), and it can extend to large-scale datasets. 

As shown in Algorithm GMPL, we adopt several auxiliary matrices to store relevant data: 1) caching the LF matrices X and Y, 
whose storage costs sum up to Θ((|U|+|I|)×f); 2)caching the auxiliary matrices of particles to complete the evolution of the 
hyper-parameter, i. e. S. H. pbest, F and Ir. Since those auxiliary matrices of particles are far less than min{|U|, |I|}, such a storage 
burden is easy to resolve. Algorithm GMPL’s storage cost is given as: 

( )+ ,GMPLS U I f= ´                                                                       (27) 

which is linear with the involved entity count in R.  

Algorithm GMPL 
Operation Cost 
while not converge and t≤N do ×n

for j=1 to q ×q
Make Hj and Sj evolve via (17). Θ(1)
Bound Hj and Sj via (21). Θ(1)

Update γ via (18). Θ(1)
for j=1 to q ×q

for each ru,i in K ×|K|
Update xu,. and yi,. via (10). Θ(f)

Compute At 
j  via (23). Θ(|Ω|*f)

for j=1 to q ×q
Compute Ft 

j  with (22) Θ(1)
Compute Irt 

j  with (24) Θ(1)
Update pbestj and gbest with (25) Θ(1) 

t=t+1 Θ(1) 
Output: X, Y 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

A. General Settings 

Evaluation Protocol. For industrial applications, estimating the missing data of an HDI matrix is the main motivation expected for 
discovering the whole interactions between involved known sparse entities. Hence, we adopt the most used RMSE as the 
evaluation metrics [1, 3-7]. 
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where r̂u,i denotes the generated prediction for the testing instance ru,i∈Γ, |∙| represents the cardinality of a given set, |Γ| denotes the 
size of the testing dataset Γ, respectively.  



Datasets. In our experiments, three HDI matrices collected from industry applications are adopted, as detailed in Table I. 
TABLE I.  DETAILS OF EXPERIMENTAL DATASETS 

No. Name Row Column Known Entries Density
D1 Jester [28] 24983 100 1,186,324 72.41%
D2 ML10M [29] 71,567 65,133 10,000,054 1.31%
D3 Flixster [30] 147,612 48,794 8,196,077 0.11%

Note that each dataset is randomly split into ten disjoint subsets for implementing the ratio of 70%-10%-20% as the 
train-validation-test settings to achieve objective results. More specifically, a trained model is built on seven subsets Κ, a validated 
model is built on one subset Ω, and a tested model is built on two subsets Γ to verify the performance of its outcomes. The final 
results are based on an average of ten repetitions. The termination condition is uniform for all compared models, i.e., the iteration 
threshold is 1000, and the threshold of error for two consecutive iterations is 10-5.  

A. Comparison with LFA Models 

Compared Models. In this subsection, we compared the GMPL model with several LFA models. Note that the results are 
conducted on a Tablet with a 2.1GHz Xeon(R) CPU and 256-GB RAM. The programming language is JAVA SE8U131. A detailed 
comparison is performed in Table II and the manually-tuning hyper-parameters of M1-4 are summarized in Table III. 

TABLE II.  DETAILS OF COMPARED MODEL 

Model Description 
M1 An SGD-based LFA model [7]. 

M2 A PSO-based LFA model [14]. 

M3 An adaptive weighting PSO-based [31] LFA model.  

M4 The proposed model of this study. 

TABLE III.  HYPER-PARAMETERS CALL FOR MANUALLY TUNING IN EACH MODEL. 

Model Description 

M1 
η, learning rate
λ, regularization coefficient

M2-M3 η, λ self-adaptation
M4 η, λ, γ, self-adaptation 
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(a) D1                                                                         (b) D2                                                                            (c) D3 

Fig. 1. M1-4’s training curves on D1-3. Note that all panels share 
the same legend in panel (a). 

TABLE IV.  LOWEST RMSE AND ITS TOTAL TIME COST. A LOWER VALUE IS BETTER. 

Case M1 M2 M3 M4 

D1 
RMSE 1.0001±6E-5 1.0063±3E-3 1.0278±9E-3 0.9982±4E-4

Time-RMSE 107.5±2.0 20.1±1.9 134.1±23.3 57.9±14.9 

D2 
RMSE 0.7872±5E-4 0.7887±2E-3 0.7925±1E-5 0.7867±4E-4

Time-RMSE 932.1±11.2 285.3±15.6 2596.7±54.1 307.8±14.5 

D3 
RMSE 0.9445±2E-4 0.9477±7E-4 0.9861±4E-5 0.9409±9E-4

Time-RMSE 1060.3±17.5 216.8±63.4 1257.4±31.9 318.7±32.4 

 
Experimental Settings. To maintain the fairness of comparison, we use the following settings for all models: 
a) The initialization of LF matrices is randomly generated to remove performance bias; 
b) The LF dimension is uniformly set as f=20 to balance the computational efficiency and representative learning ability of each 

model [1, 3-7]. 
c) For M2-4, the hyper-parameters of PSO are fixed following [20], i.e., w=0.729, c1=c2=2, q=10, r1 and r2 are two uniformly 

distributed random numbers in a range of [0, 1], the swarm size q=10 according to [13, 14], respectively. Note the inertial weight 
in M3 is adaptive. 

Results and Analysis. Tables IV summarizes M1-4’s lowest RMSE, and corresponding total time costs, respectively. Fig. 1 
depicts their training curves in RMSE. From these results, we have the following findings:  



a) The GMPL model implements effective hyper-parameters adaptation due to the GM-PSO algorithm. As shown in Table 
IV, for instance, on D1, M4’s RMSE is 0.9982, which is 0.19% lower than 1.0001 by M1, 0.80% lower than 1.0063 by M5, 
2.88% lower than 1.0278 by M7, respectively, which shows a GMPL model generally outperforms to other models in terms of 
prediction accuracy.  

b) GMPL has a competitive advantage in computational efficiency when compared with its peers. According to the analysis 
in Section III (D), the per iteration cost of the GMPL model is about q (i.e. q=10) times that of the standard LFA-based model, 
but its total time cost is relatively low due to its fast convergence. However, the time efficiency of standard PSO is higher than 
that of GM-PSO, which is at the expense of prediction accuracy. Meanwhile, compared with the SGD-based LFA model and 
advanced PSO-based LFA model, the computational efficiency of GMPL owns advantageous. 

c) Summary. Based on the experimental results and corresponding analyses, we summarize that: a) GMPL significantly alleviates 
the premature convergence issue owing to its incorporation of the proposed GM-PSO algorithm, and; b) GMPL implements 
self-adaptation of hyper-parameters with competitive prediction accuracy for missing data of an HDI matrix along with low time 
cost.  

V. CONCLUSIONS 

In this paper, we achieve the effective adaptation of the hyper-parametric learning rate and regularization coefficient through our 
proposed GM-PSO algorithm. Compared with the advanced PSO algorithms, some extended PSO algorithms will increase the time 
complexity of the LFA model. The GM-PSO algorithm we proposed integrates the idea of momentum algorithm into the standard 
PSO, realizes the adaptation of multiple hyper-parameters of the SGD-based LFA model, shares the same hyper-parametric 
learning mechanism to reduce time complexity and computational efficiency, and achieves better prediction accuracy for the 
missing value of HDI matrix. In future work, we aim to extend the GM-PSO algorithm to other models, such as the protein complex 
detection model [5, 43], tensor decomposition model [32, 44, 45], and so on. 
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