
EnPAC: Petri Net Model Checking for Linear
Temporal Logic

Zhijun Ding, Cong He, and Shuo Li
Department of Computer Science and Technology

Tongji University
Shanghai, China

dingzj@tongji.edu.cn, 1105585684@qq.com, and lishuo20062005@126.com

Abstract—State generation and exploration (counterexample
search) are two cores of explicit-state Petri net model checking
for linear temporal logic (LTL). Traditional state generation
updates a structure to reduce the computation of all transitions
and frequently encodes/decodes to read each encoded state.
We present the optimized calculation of enabled transitions on
demand by dynamic fireset to avoid such a structure. And we
propose direct read/write (DRW) operation on encoded markings
without decoding and re-encoding to make state generation faster
and reduce memory consumption. To search counterexamples
more quickly under an on-the-fly framework, we add heuristic
information to the Büchi automaton to guide the exploration in
the direction of accepted states. The above strategies can optimize
existing methods for LTL model checking. We implement these
optimization strategies in a Petri net model-checking tool called
EnPAC (Enhanced Petri-net Analyser and Checker) for linear
temporal logic. Then, we evaluate it on the benchmarks of MCC
(Model Checking Contest), which shows a drastic improvement
over the existing methods.

Index Terms—Petri nets, Model Checking, State explosion,
Encode, Heuristic, Linear Temporal Logic (LTL)

I. INTRODUCTION

Model checking is a highly automatic technology based
on a formalism, like Petri nets [1], for verifying finite-state
concurrent systems [2]. Actually, many important temporal
characteristics or functional requirements of concurrent sys-
tems are specified by linear temporal logics (LTLs) [3]. In
traditional LTL model checking, a formal system model is
synchronized by using the product construction with Büchi
automaton [3] representing all behaviors that violate an LTL
formula. Then, the existence of a run with infinitely many
occurrences of an accepting state in the product automaton
provides a counterexample for the LTL formula [4] with an
on-the-fly framework [5].

However, the state-explosion problem [6] is the main obsta-
cle to practical model checking, as the number of reachable
states is exponentially larger than the size of a system descrip-
tion via Petri nets. Even the complexity of LTL model check-
ing is exponential. So far, a lot of reduction techniques, e.g.,
abstraction, partial order reduction, and symmetry reduction,
can decrease the size of the state space. Also, many mature
tools (e.g., LoLA [7]) of Petri net model checking implement

This work is partially supported by National Key Research and Devel-
opment Program of China under Grant No.2022YFB4501700 and National
Natural Science Foundation of China under Grant No.61672381.

efficient state generation and exploration techniques. We focus
on optimizing state generation and exploration strategies in
existing tools in this paper.

Since model checking is essentially an exhaustive explo-
ration technology on state space, state generation is the core
of the whole process. Traditional methods must calculate
and store all enabled transitions under each reachable state.
However, many enabled transitions may never occur under on-
the-fly exploration. Thus, computing all transitions and storing
all enabled transitions lead to a waste of time and memory.
Addressing this problem, LoLA designs a data structure [7] to
accelerate computing all enabled transitions T (m) by briefly
updating T (m′) when migrating from a state m′ to the next
state m. Although it can avoid computing all transitions
by such a static structure, it brings some memory cost. In
this paper, we optimize the calculation of enabled transitions
under each state. It is more efficient to calculate the enabled
transitions on demand. We propose the first optimized strategy
of dynamically calculating the transition set, where only one
enabled transition is calculated when a successor state is
generated.

Most explicit-state Petri net model-checking tools exploit
various encoding strategies in marking storage, saving large
memory costs. Then, when calculating the enabled transitions,
they require reading the number of tokens of particular places
in the encoded marking. To our knowledge, they should have
a decoding and encoding procedure when reading or writing
encoded markings as shown in, e.g., LoLA [8]. However,
frequent decoding and re-encoding based on an encoding
strategy can reduce tool efficiency. It is challenging to read
the number of tokens directly by reading and writing encoded
markings. We define a reading pattern and a writing pattern
for each place and propose a set of bitwise operations on our
new pattern and the encoded markings. Thus, we propose
the second optimized strategy of direct read/write (DRW)
operations.

State exploration (counterexample search) is another core
for explicit LTL model checking. Actually, the faster the
counterexample is found, the fewer states are generated with
an on-the-fly framework. To find a counterexample faster than
random exploration, it is better to reach an acceptable state
faster. Based on this insight, we present the third optimized
strategy to add a heuristic to the Büchi automaton. The

1

ar
X

iv
:2

30
7.

12
32

4v
1

 [
cs

.F
L

]
 2

3
Ju

l 2
02

3

heuristic can guide the on-the-fly exploration in the direction
of accepted states.

Based on the above optimization insights, we implement
an explicit-state model-checking tool EnPAC standing for
Enhanced Petri-net Analyser and Checker. It can be used for
large concurrent systems, modeled as Petri nets [9] or Colored
Petri Nets (CPNs) as its colored extension [10]. It can evaluate
arbitrary queries specified in linear temporal logic. Then, we
evaluate the performance on the benchmarks in Model Check-
ing Contest (MCC) [11]. These optimized state generation and
exploration strategies help EnPAC make excellent progress and
drastic improvement on the benchmarks of MCC [11]. The
contributions are three optimization strategies summarized as
follows.

1. We propose a dynamic fireset to calculate enabled
transitions on demand, avoiding traditional complete enabled
transition calculation and additional data structure required by
LoLA [7].

2. We propose a new reading and writing pattern for each
place by a set of bitwise operations (called DRW operations)
on each marking without frequent decoding and encoding on
the encoded marking storage.

3. We present a heuristic Büchi automaton to guide the
exploration for searching a counterexample faster, which helps
avoid traditional random exploration.

We introduce the preliminaries in Section II and detail the
proposed optimizations in Section III. Our experiment results
are evaluated based on EnPAC in Section IV. Finally, this
paper is concluded in Section V.

II. PRELIMINARY

A. Petri Nets

Petri nets have been widely used in the modeling and
verification of concurrent systems for many interesting prop-
erties of concurrent systems, such as deadlock, liveness, and
reachability. We first introduce the definition of Petri net.

Definition 1: A Petri net N is a five-tuple N =
{P, T, F,W,m0} where P is a finite set of places, T is a finite
set of transitions (disjoint to P), F ⊆ (P × T) ∪ (T × P) is
a finite set of arcs, W : (P × T) ∪ (T × P)→ N is a weight
function where (x, y) /∈ F ⇐⇒ W (x, y) = 0, and m0 is the
initial marking. A marking is a mapping m : P → N.

Definition 2: A transition t is enabled under a marking m
if ∀p ∈ P , W (p, t) ≤ m(p). We call the set of all enabled
transitions in m fireset, denoted by T (m). Firing an enabled
transition t under a marking m leads to a new marking m′

where m′ (p) = m (p)−W (p, t)+W (t, p). This firing relation
is denoted as m t−→ m′. If there exists a transition sequence
ω = t1t2 · · · tn such that m1

t1−→ m2
t2−→ · · · tn−→ mn, mn is

reachable from m1, written m1
∗−→ mn. The state space of a

Petri net consists of R (m0) = {m | m0
∗−→ m}.

B. Linear Temporal Logic

We define the syntax and semantics of atomic proposition
based on MCC [11], and then LTL.

Definition 3: Let ⟨atomic⟩ be an atomic proposition, and
⟨int-expression⟩ be an expression evaluated by an integer.

⟨atomic⟩ := is-fireable(t1, · · · , tn)
|⟨int-expression⟩
≤ ⟨int-expression⟩

⟨int-expression⟩ := Int|tokens-count(p1, · · · , pn)

is-fireable (t1, · · · , tn) holds if either t1 or t2 or · · · or tn
are enabled, and tokens-count(p1, · · · , pn) returns the exact
number of tokens contained in the place set {p1, · · · , pn}.

Definition 4: Every atomic proposition is an LTL formula.
If φ and ψ are LTL formulae, so are ¬φ, (φ ∨ ψ), (φ ∧ ψ),
Xφ, Fφ, Gφ, (φUψ), (φRψ). Let AP be a non-empty finite
set of atomic propositions, ξ = x0x1x2 · · · be a sequence over
alphabet 2AP , φ and ψ be LTL formulae. We write ξi for the
suffix of ξ starting at xi. ξ satisfies an LTL formula according
to the following inductive scheme: ξ |= p ⇐⇒ p ∈ x0, p ∈
AP ; ξ |= ¬φ ⇐⇒ ξ dissatisfy φ; ξ |= φ ∨ ψ ⇐⇒ ξ |=
φ or |= ψ; ξ |= Xφ ⇐⇒ ξ1 |= φ; ξ |= φUψ ⇐⇒ i ≥
0, ξi |= ψ ∧ (∀j < i, ξi |= φ); Other operators (∧, R, F,G)
can be derived from the above operators: φ∧ψ ≡ ¬(¬φ∨¬ψ);
φRψ ≡ ¬(¬φU¬ψ); Fφ ≡ (TRUE)Uφ; Gφ ≡ ¬(F¬φ)

C. On-the-fly Exploration of LTL Model Checking

Fig. 1: The entire process of explicit-state LTL model checking

As shown in Fig. 1, explicit-state LTL model-check tools
for Petri nets calculate the reachability graph of a Petri net,
transform the negative LTL formula into the Büchi automaton,
and then generate the product automaton in the form of Carte-
sian product of reachability graph and Büchi automaton, and
finally searches counterexamples on the product automaton. If
a counterexample is explored, false is returned. Otherwise,
true is returned.

This process usually uses an on-the-fly framework to opti-
mize the above process. On-the-fly exploration [5] consists in
constructing a reachability graph and product automaton while
checking for the counterexamples in the product automaton.
An advantage of on-the-fly exploration is that it can return a
result before the entire state space is constructed.

III. OPTIMIZATION STRATEGIES

Since explicit model checking is an exploration technol-
ogy on state space, the efficiency of state generation and
exploration (counterexample search) directly affects its per-
formance. Clearly, improving the efficiency of state generation

2

and exploration is vitally important. We propose two optimiza-
tions to make state generation much faster with less memory
consumption. One is dynamic calculating enabled transitions.
The other is direct reading and writing encoded markings with-
out frequent decoding and re-encoding procedures. Concerning
state exploration, we propose a heuristic Büchi automaton
as an optimization to guide on-the-fly exploration to explore
counterexamples in the direction of accepted states.

A. Dynamic Fireset

Enabled transitions play a fundamental role in the state
generation since they determine all successor states of a
reachable state. The common practice is generating all enabled
transitions simultaneously and firing one by one to enumerate
all possible successor states. We generate only one enabled
transition at a time in a state. Then, when on-the-fly explo-
ration backtracks to an explored state, how to directly generate
the next enabled transition without repeated exploration is a
difficulty.

To solve this difficulty, we fix it by defining a total order
(≺, T) on the transition set and then checking which transition
is enabled in turn in that order. We also define an array to
store all the transitions and use their index as their total order.
In addition, each explored state needs to record the last fired
transition. In this case, when on-the-fly exploration backtracks
to an explored state, it can check the transition just next to the
last fired transition by order (≺, T) to fire the next enabled
transition. Once an enabled transition t is found, on-the-fly
exploration stops to generate a successor state m by firing t
and continues a depth-first search on m. Our new method is
named dynamic fireset (abbreviated as DYN). Its advantage
is that it saves memory and time to calculate and store all
enabled transitions under each reachable state.

B. DRW Operation on Encoded Markings

··· ··· 64 63 ··· 32 31 ··· 0 bit sequence

int 0int 1··· underlying implementation
is integer array

Fig. 2: Underlying implementation of bit sequence

Our encoding strategy is designed on an integer array, as
shown in Fig. 2, which is an underlying implementation of a
bit sequence. Based on it, we propose a new method of DRW
operation on the encoded marking, which can be divided into
two sub-tasks. One is to locate, i.e., in which integer the place’s
coding resides and from which bit of that integer it begins. The
other is to read/write its value. To locate the correct position,
we record each place’s start position in the bit sequence and
its length. To read or write a correct value, we define a reading
pattern and a writing pattern for each place. Then, the token
counts can be easily read or written by a series of bitwise
operations using these patterns.

Fig. 3: Büchi automaton with heuristic information

There are four kinds of marking encoding in APPENDICES
A-A. We use NUPN [12] encoding to illustrate our DRW op-
erations. In it, each place carries two extra attributes, myunit,
and myoffset, indicating the unit in which it is located and
the offset number in the unit, respectively. Each unit carries
two attributes, too, startpos and unitlen, indicating the start
position in the bit sequence and how many bits this unit takes.
When reading or writing a place, there are two cases. In other
words, the encoding of the unit occupies only one integer
or spans two integers. The algorithms for the two cases are
detailed in APPENDICES A.

C. Heuristic Büchi Automaton

Before state exploration, the Büchi automaton is automati-
cally generated, which has complete information. We propose
the heuristic in Büchi automaton in two aspects. Firstly,
searching counterexamples in a product automaton is to find a
strongly connected component containing accepted states. And
whether a product state (mi, bi) is accepted is determined by
its Büchi state part bi. When generating a reachable state and
seeking a Büchi state to combine, it should choose the state
that reaches an accepting state the fastest. Thus, the distance
to an accepting state is the first aspect we consider. As for
each state in the Büchi automaton, the number of atomic
propositions affects how easy to synthesize this state.

Based on these insights, we add two extra attributes Di and
Ti, as the heuristics in each Büchi state. Concretely, Di is the
length of the shortest path from state Bi to an acceptable state.
Take Fig. 3 as an example, D0 in B0 is 2 because its shortest
path to an accepted state is B0 → B1 → B4 (or B0 → B3 →
B4) whose length is 2. And Di can be computed by Dijkstra’s
algorithm. Let APi be the set of atomic propositions carried by
Büchi state Bi, and Ti |APi| ∗0.1 (Ti is the number of atomic
propositions carried by Bi. The coefficient ’0.1’ is from our
experience on MCC Benchmark). Ti indicates how tough it is
for state Bi to produce a reachable state into a product state.

In our heuristic Büchi automaton (abbreviated as HBA),
when choosing a Büchi state for the product with a reachable
state, we prioritize the state with smaller Di + Ti. It means
we always prefer the path that can reach an accepted state fast
and be smooth enough.

3

NoteNoteformula
(.xml)

NoteNotePetri net
model
(.pnml)

Syntax tree of formula

Rewrite

Pre-evaluation
Permanent true/false

atom propositions

Negation form

Simplify Simplified formula

Petri net model

P-invariants P/T place invariants

Bound

Encoding
strategy Encoding information

Encoding information

Büchi automata

Simplify

Convert Convert to SBA (State-
based Büchi Automata)

Simplified automata

compute
heuristic info Heuristc Büchi automata

LTL2BA

Parser
(tinyxml)

Reachability graph

Reachable
state generator

Fireable
transition

Caculate a fireable
transition

Reachability graph

Product automata

Product state generator Product automata

Counterexample search Model checking result

NoteNotePetri net
model

(.dot, .png)

NoteNoteBüchi
automata
(.dot, .png)

NoteNoteresult
(.txt)

Fig. 4: The architechture of EnPAC

IV. EXPERIMENTAL EVALUATION

A. Installation and Usage
We implement our optimizations in EnPAC (Enhanced Petri-

net Analyser and Checker). It is divided into five modules,
including the Petri net model, Reachability graph, Syntax tree
of LTL formula, Büchi automaton, and Product automaton.
The architecture of EnPAC is shown in Fig. 4, detailed in
APPENDICES A.

EnPAC can be downloaded from https://github.com/
Tj-Cong/EnPAC 2021 and installed easily. The GitHub home-
page presents a user manual that describes the installation
procedure, file formats, output, and options. EnPAC can be
utilized on the command line of the Linux terminal. The results
can be displayed on the screen or in a file.

B. Benchmarks and Methodology
For evaluating the optimization strategies via EnPAC, we

use the benchmarks provided by MCC [11]. The benchmarks
consist of 1016 Petri net instances, as well as 32 LTL formulae
per instance (32512 LTL formulae).

In the benchmarks, there are 3672 LTL formulae that no
tool could give a result in MCC’2020 [13]. EnPAC has not
yet implemented dynamic fireset (abbreviated as DYN), direct
read/write operation (abbreviated as DRW), and heuristic
Büchi automaton (abbreviated as HBA) for MCC’2020 [13].
Thus, we compare our three optimizations with the results in
MCC’2020 [13] to ensure that the results are persuasive. We
call the version without the implementation of our optimiza-
tions the original method (abbreviated as ORI).

C. Experimental Analysis

For verifying each formula, there is a time limit of 300 sec-
onds and a memory limit of 16GB. We use each optimization
individually to illustrate their performances. The experimental
results are shown in APPENDICES B.

1) Experiments for Dynamic Fireset: In order to show the
effect of DYN clearly, the time and memory peak for each
formula are recorded. TABLE III shows the comparison results
between the dynamic fireset method (DYN) and the original
method (ORI) on 8 Petri nets instances (their names are in the
first column). Two LTL formulae are verified for each instance
in the second column. Concretely, TORI and TDYN are the
whole time of ORI and DYN, respectively. And MORI and
MDYN are the memory peak of ORI and DYN, respectively.
To quantify the optimized performance for DYN, we calculate
∇T1 by TORI/TDYN , and∇M1 by MORI/MDYN in TABLE
III. The average of each result is shown in the last row. All
results come to the same conclusion that our DYN outperforms
ORI on time and memory consumption.

It can be found from the experimental results that our
DYN method is slightly faster than the ORI method in most
instances. In particular, an LTL formula of ’CircadianClock-
PT-001000’ is originally timed out, but our optimization of
DYN can output the result within 130s. Except for this result
of a timeout, DYN has an average improvement on time of
3.41 times. Moreover, because DYN does not need to store all
enabled transitions in every reachable state, it uses much less
memory consumption than ORI.

4

https://github.com/Tj-Cong/EnPAC_2021
https://github.com/Tj-Cong/EnPAC_2021

2) Experiments for DRW Operations: Due to different
DRW operations for our encoding strategies as explained in
APPENDICES A-A, we conduct separate experiments on 1-
safe encoding (8 instances), NUPN encoding (10 instances),
and P-invariant encoding (5 instances) in the first column.
For each instance in the second column, there are also two
LTL formulae in the third column. TORI and TDRW are the
whole time of ORI and DRW, respectively. And MORI and
MDRW are the memory peak of ORI and DRW, respectively.
To quantify the optimized performance for DRW, we calculate
∇T2 by TORI/TDRW and∇M2 by MORI/MDRW in TABLE
IV. The average of each result is shown in the last row.

It can be found that DRW is much faster than ORI on
time. For 1-safe encoding, DRW outperforms ORI by more
than 20 times in 9 formulae. Especially for NUPN encoding,
DRW outperforms ORI in all formulae on time. In P-invariant
encoding, DRW outperforms ORI by more than 200 times in
4 formulae. And DRW has an average improvement of 245.52
times than ORI. However, our DRW method uses slightly more
memory because it requires additional space overhead for the
read/write patterns of each place. But such costs are minuscule
since the average of ∇M2 is mostly close to 1.

3) Experiments for Heuristic Büchi Automaton: In addition
to time and memory, we add a comparison of the reachable
states that need to be generated to find counterexamples. It can
reflect whether the heuristic Büchi automaton can guide on-
the-fly exploration to find the counterexample faster. TABLE
V shows the experimental results on 10 instances in the first
column with two verified LTL formulae in the second column.
Concretely, NORI and NHBA are the state counts, TORI and
THBA are the whole time, and MORI and MHBA are the
memory peak of ORI and HBA, respectively. We also calculate
∇N by NORI/THBA, ∇T3 by TORI/THBA, and ∇M3 by
MORI/MHBA.

In TABLE V, there are 4 formulae that are originally
timed out. And HBA outputs the results successfully with
few states. Obviously, our heuristic Büchi automaton helps
find counterexamples faster. Due to generating fewer states,
they also consume less memory. The average of ∇T3 is
6.4. Although the heuristic information does not lead well to
finding the counterexample for many other formulae, it does
not produce large excessive costs in time and memory. Most
of ∇M3 are 1.00.

D. Discussion

We sketch four scatter plots in Fig. 5 on the benchmarks
of MCC [11]. The x-axis denotes the time/memory of DRW,
DYN, and HBA, while the y-axis denotes the time/memory of
ORI. In the scatter plot, each dot represents an LTL formula
verification, and the dots above the diagonal lines are the
winning cases of our optimization.

In Fig. 5(a) and (b), the time and memory of DRW are
demonstrated on all encoding methods, where ’P-invariant’
represents P-invariant encoding, ’NUPN’ represents NUPN
encoding, and ’1-safe’ represents 1-safe encoding. We can see
that DRW can significantly reduce time on most LTL formulae.

And the scores for DRW are the formula counts that ORI
cannot output the result within 300s (although they have less
memory in Fig. 5(b)). It can be found that DRW can output
the results within 150s.

In Fig. 5(c) and (d), the scores for DYN and HBA are
also the formula counts that ORI cannot output the result
within 300s. Obviously, HBA works extremely well on some
formulae, as we can see that some orange triangles and circles
are much higher above the diagonal lines. Most orange dots
are distributed near the diagonal lines. It confirms HBA does
not produce large excessive costs in time and memory. HBA
can also be counterproductive on individual formulae because
it does not lead to counterexamples. Although most blue dots
are distributed near the diagonal lines in Fig. 5(c), DYN is
much more effective in optimizing memory based on Fig. 5(d).

There are 3, 672 formulae that no tool can output the results
in MCC’2020 [13]. After using three optimization strategies,
EnPAC can give results for 432 unknown formulae. Under
the complete benchmarks in MCC’2020 [13], there are 28781
LTL formulae that EnPAC has given the correct result before.
With three optimizations, EnPAC correctly gives the results
for 31735 LTL formulae on the same benchmarks. Thus,
our optimization strategies improve EnPAC by nearly 3, 000
scores, which shows a drastic improvement in EnPAC.

V. CONCLUSION

We propose a dynamic fireset (DYN), which saves the stor-
age and time of computing some redundant enabled transitions.
We propose a direct read/write (DRW) operation on encoded
marking, which saves the large overhead of decoding. In terms
of state exploration, we add the heuristic information to the
Büchi automaton (HBA) to guide the search of counterex-
amples, which speeds up the exploration. We implement a
tool called EnPAC for verifying LTL. We then evaluate it
on the benchmarks of MCC. In the future, we improve the
performance of EnPAC with more reduction techniques.

REFERENCES

[1] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[2] K. Wolf, How Petri Net Theory Serves Petri Net Model Checking: A
Survey. Transactions on Petri Nets and Other Models of Concurrency
XIV, 2019.

[3] P. Gastin and D. Oddoux, “Fast ltl to büchi automata translation,” in
International Conference on Computer Aided Verification. Springer,
2001, pp. 53–65.

[4] M. Y. Vardi, An automata-theoretic approach to linear temporal logic.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 238–266.
[Online]. Available: https://doi.org/10.1007/3-540-60915-6 6

[5] J. Geldenhuys and A. Valmari, “More efficient on-the-fly ltl verification
with tarjan’s algorithm,” Theoretical Computer Science, vol. 345, no. 1,
pp. 60–82, 2005.

[6] A. Valmari, “A stubborn attack on state explosion,” Formal Methods in
System Design, vol. 1, no. 4, pp. 297–322, 1992.

[7] T. Liebke and C. Rosenke, “Faster enabledness-updates for the reacha-
bility graph computation.” in PNSE@ Petri Nets, 2020, pp. 108–117.

[8] K. Wolf, “Petri net model checking with lola 2,” in International
Conference on Applications and Theory of Petri Nets and Concurrency.
Springer, 2018, pp. 351–362.

[9] W. Reisig, Petri nets: an introduction. Springer Science & Business
Media, 2012, vol. 4.

5

https://doi.org/10.1007/3-540-60915-6_6

(a) DRW vs. ORI on time (b) DRW vs. ORI on memory

(c) DYN/HBA vs. ORI on time (d) DYN/HBA vs. ORI on memory

Fig. 5: Comparison of original method and our optimization strategies

[10] K. Jensen, Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use. Volume 1. Springer Science & Business Media, 2013.

[11] F. Kordon, “Model checking contest,” https://mcc.lip6.fr/.
[12] H. Garavel, “Nested-unit petri nets: A structural means to increase

efficiency and scalability of verification on elementary nets,” in In-
ternational Conference on Applications and Theory of Petri Nets and
Concurrency. Springer, 2015, pp. 179–199.

[13] F. Kordon, H. Garavel, L. M. Hillah, F. Hulin-Hubard, E. Amparore,
B. Berthomieu, S. Biswal, D. Donatelli, F. Galla, G. Ciardo, S. Dal
Zilio, P. Jensen, C. He, D. Le Botlan, S. Li, A. Miner, J. Srba, and
. Thierry-Mieg, “Complete Results for the 2020 Edition of the Model
Checking Contest,” http://mcc.lip6.fr/2020/results.php, 2020.

[14] L. Thomason, “Tinyxml2,” http://www.grinninglizard.com/tinyxml2/
index.html.

[15] H. Garavel, “Nested-unit petri nets,” The Journal of logic and algebraic
programming, vol. 104, no. APR., pp. 60–85, 2019.

[16] K. Schmidt, “Using petri net invariants in state space construction,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2003, pp. 473–488.

[17] ——, “How to calculate symmetries of petri nets,” Acta Informatica,
vol. 36, no. 7, pp. 545–590, 2000.

[18] E. Clarke, A. Biere, and R. Raimi, “Bounded model checking using
satisfiability solving,” Formal Methods in System Design, vol. 19, no. 1,
pp. p.7–34, 2001.

6

https://mcc.lip6.fr/
http://www.grinninglizard.com/tinyxml2/index.html
http://www.grinninglizard.com/tinyxml2/index.html

APPENDIX A
CORE MODULES OF ENPAC

We briefly introduce the five core modules. EnPAC requires
two input files, a PNML file that describes a Petri net and an
XML file that specify LTL formulae. We use a third-party
XML parser TinyXML-2 [14] for parsing the two input files.

A. Petri net model

In EnPAC, a Petri net is an object that contains three arrays
storing P , T , and other elements in Definition 1. In order
to alleviate the state explosion, EnPAC uses a bit sequence
to encode a marking instead of an integer vector, as shown in
Fig. 2. EnPAC adopts different encoding strategies for different
Petri nets. Our encoding techniques include

• default: 16 bits are used per place. If any place’s token
number is over 65535 in the initial marking, EnPAC will
allocate 32 bits per place. If EnPAC detects a reachable
marking where a place’s token number is over 65535
during the model-checking process, It will terminate,
indicating it cannot handle the model.

• 1-safe encoding: 1-safe net is a Petri net where all place
capacities are equal to one, indicating that each place can
contain at most one token. EnPAC uses one bit to encode
per place.

• NUPN encoding: NUPN (Nested Unit Petri Net)
[12] is a special type of Petri net. Let N =
{P, T, F,W,M0, U, u0,⊑, unit} be a NUPN. According
to unit-safe property [15], for ∀ui ∈ U , EnPAC use
⌈log2(|ui|+ 1)⌉ bits to encode unit ui where |ui| indi-
cates the number of local places of ui.

• P-invariants encoding: A place invariant is a mapping
that assigns a weight to each place such that all reach-
able markings get the same weighted token sum. Place
invariants divide all places into significant places and
redundant places. The token number of redundant places
can be calculated from significant places in any reachable
marking. Also, place invariants can be used for estimating
the upper bounds of places. We implemented the method
in [2], [16] of using place invariants to estimate the upper
bounds of places and encode markings. Let S be the set
of significant places of a Petri net, and b(pi) indicates
the upper bound of place pi. For ∀p ∈ S, EnPAC use
⌈log2(b(pi) + 1)⌉ bits to encode place pi.

The Algorithm 1 and 2 are proposed for DRW operations
in Section III-B.

B. Reachability graph

The generation of the reachability graph is integrated into
the on-the-fly framework. The main function of this module
is to provide an interface for on-the-fly to generate reachable
states and store reachability graphs. The reachability graph is
stored in a chained hash table. To generate a successor of a
reachable state M , fireable transitions under M need to be
calculated. For efficiency, EnPAC calculates only one fireable
transition for every time on-the-fly backtracks to M . We call
this method dynamic fireset. One advantage of dynamic fireset

is that it saves much memory by avoiding storing all fireable
transitions in every reachable marking. We detail it in Section
III-A.

C. Syntax tree of formula

After obtaining the syntax tree, EnPAC converts the formula
into a negation form and simplifies it using a set of rewriting
rules presented in [17] to reduce the number of temporal
operators.

TABLE I: Atomic Proposition Evaluation rules

Atomic proposition Condition Evaluation

0 ≤tokens-count(p1, p2, · · · , pn) / true

tokens-count(p1, p2, · · · , pn) ≤ k
1. the net is 1-safe
2. k ≥ n

true

tokens-count(p1, p2, · · · , pn) ≤ k
1. the net is a NUPN
2. k ≥ |{unit(pi) | 1 ≤ i ≤ n}| true

k <tokens-count(p1, p2, · · · , pn)
1. the net is 1-safe
2. k > n

false

k ≤tokens-count(p1, p2, · · · , pn)
1. the net is a NUPN
2. k > |{unit(pi) | 1 ≤ i ≤ n}| false

EnPAC then evaluates atomic propositions as TABLE I,
whether they are permanent true or false (true or false
under any reachable marking) according to the structural prop-
erties of the Petri net. For example, if an atomic proposition
is the form of 0 ≤ tokens-count(p1, p2, · · · , pn), then it is
permanent true. The reason is that the number of tokens of
any place under any marking is greater than or equal to zero,
let alone the sum of tokens of the n places. Another example
is that if a net is 1-safe and an atomic proposition is the form
of tokens-count (p1, p2, · · · , pn) ≤ k, then it is permanent
true when k ≥ n. Because the upper bound of any place
in the 1-safe net is 1, the token sum of n places must be
less than n. Moreover, since k ≥ n, the atomic proposition
is permanent true. If there are any permanent true or false
atomic propositions in the formula, then the corresponding
atomic propositions can be replaced with true or false, and
the LTL formula can be iteratively simplified. Moreover, we
propose some further simplification in TABLE II.

TABLE II: LTL Formula Further simplification rules

G(true) ≡ true G(true) ≡ true
F (true) ≡ true F (false) ≡ false
X(true) ≡ true X(false) ≡ false

φ U (true) ≡ true φ U (false) ≡ false
true ∨ φ ≡ true false ∧ φ ≡ false

D. Büchi automaton

We implemented the fast LTL2BA algorithm [3] in En-
PAC for translating the simplified LTL formula to a Büchi
automaton. We also use the simplification rules in [3] to
simplify the Büchi automaton. EnPAC implements the on-
the-fly framework. One significant feature of on-the-fly is
that once a counterexample is found, it stops state-space
exploration. So the sooner the counterexample is found, the
fewer states are generated. To generate fewer states, we add
heuristic information into all Büchi automaton states to guide

7

Algorithm 1 Direct read/write within an integer

1: function READ(pi,array)
2: index← unit [pi.myunit] .startpos/32
3: offset← unit [pi.myunit] .startpos%32
4: patternread ← (2unit[pi.myunit].unitlen − 1) << offset ▷ ’<<’ is left shift operator
5: value← (array [index] &patternread) >> offset ▷ ’>>’ is right shift operator
6: if pi.myoffset = value then
7: pi is marked
8: else
9: pi is not marked

10: function WRITE(pi, array)
11: patternzero ←∼ ((2unit[pi.myunit].unitlen − 1) << offset) ▷ ’∼’ is bitwise NOT operator
12: patternwrite ← pi.myoffset << offset
13: array [index]← (array [index] &patternzero) | patternwrite ▷ ’|’ is bitwise OR operator

Algorithm 2 Direct read/write across two integers

1: function READ(pi, array)
2: index← unit [pi.myunit] .startpos/32
3: offset← unit [pi.myunit] .startpos%32
4: patternread low ← (2unit[pi.myunit].unitlen − 1) << offset
5: patternread high ← (2unit[pi.myunit].unitlen − 1) >> (32− offset)
6: value← (array [index] &patternread low) >> offset

+(array [index+ 1]&patternreadhigh) << (32− offset)
7: if pi.myoffset = value then
8: pi is marked
9: else

10: pi is not marked
11: function WRITE(pi, array)
12: patternzero low ←∼ ((2unit[pi.myunit].unitlen − 1) << offset)
13: patternzero high ←∼ ((2unit[pi.myunit].unitlen − 1) >> (32− offset))
14: patternwrite low ← pi.myoffset << offset
15: patternwrite high ← pi.myoffset >> (32− offset)
16: array [index]← (array [index] &patternzero low) | patternwrite low

17: array [index+ 1]← (array [index+ 1]&patternzero high) | patternwrite high

exploration to find counterexamples. We detail the heuristic
Büchi automaton in Section III-C.

E. Product automaton

Product automation generation and counterexample search
are also integrated into on-the-fly. We implement the more
efficient on-the-fly algorithm [5] to search counterexample.

Meanwhile, we adopt the idea of bounded model checking
(BMC). BMC [18] unrolls the finite state machine (FSM) for
a fixed number of steps k and checks whether a property
violation can occur in k or fewer steps. The process can be
repeated with larger and larger values of k until all possible
violations have been ruled out. We leverage the core idea of
bounded model checking, i.e., a depth bound k.

EnPAC firstly depth-first checks counterexamples within k
steps. Suppose there are no counterexamples within the bound
k. EnPAC expands the bound. Then EnPAC starts the search
from scratch again until a counterexample is detected or the
entire state space is generated. The advantage is that it can
find short counterexamples quickly.

APPENDIX B
COMPLETE EXPERIMENTAL RESULT

8

TABLE III: Results of ORI and DYN

Instances Time (s) Memory (MB) Comparison

Name Formula TORI TDY N MORI MDY N ∇T1 ∇M1

AutoFlight-PT-04a 1 101.882 95.125 3428.82 816.023 1.07 4.20
2 158.778 147.119 3632.53 1019.41 1.08 3.56

BART-PT-020 1 0.0206 0.00575 808.09 669.086 3.58 1.21
2 6.562 1.142 7295.99 686.547 5.75 10.63

BART-PT-030 1 0.0383 0.00468 858.086 651.281 8.18 1.32
2 0.0429 0.00771 960.781 674.102 5.56 1.43

BART-PT-040 1 6.323 5.143 2166.43 697.957 1.23 3.10
2 0.0381 0.00305 1022.39 675.137 12.49 1.51

CircadianClock-PT-000100 1 2.529 1.731 753.027 647.434 1.46 1.16
2 0.562 0.529 681.512 639.156 1.06 1.07

CircadianClock-PT-001000 1 >300 123.802 3203.16 961.637 +∞ 3.33
2 5.449 2.355 1065.21 722.754 2.31 1.47

Dekker-PT-020 1 0.351 0.313 757.039 641.145 1.12 1.18
2 5.493 1.807 3092.35 681.301 3.04 4.54

RefineWMG-PT-007007 1 1.560 1.130 913.371 684.43 1.38 1.33
2 115.066 61.484 13760.2 2504.87 1.87 5.49

Average 44.04 (Timeout as 300) 27.61 2774.94 835.77 3.41 (excluding +∞) 2.91

9

TABLE IV: Results of ORI and DRW

Instances Time(s) Memory (MB) Comparison

Encoding Type Name Formula TORI TDRW MORI MDRW ∇T2 ∇M2

1-safe encoding

SmallOperatingSystem-
PT-MT0064DC0016

1 0.00413 0.000793 633.105 635.074 5.21 1.00
2 0.00545 0.00148 652.082 654.641 3.68 1.00

SmallOperatingSystem-
PT-MT0128DC0064

1 0.00131 0.00106 649.977 650.297 1.24 1.00
2 0.0108 0.00218 649.977 650.297 4.95 1.00

SmallOperatingSystem-
PT-MT4096DC1024

1 0.0288 0.00522 651.000 672.086 5.52 0.97
2 0.0281 0.00439 650.906 672.016 6.40 0.97

SquareGrid-PT-020102 1 0.212 0.00988 633.887 635.828 21.46 1.00
2 0.0126 0.000905 642.289 651.512 13.92 0.99

SafeBus-PT-03 1 1.505 0.0305 634.383 634.234 49.34 1.00
2 7.738 0.149 634.773 634.648 51.93 1.00

SafeBus-PT-06 1 7.210 0.0317 645.199 676.488 227.44 0.95
2 70.045 0.599 645.543 676.883 116.94 0.95

SafeBus-PT-10 1 5.841 0.00991 638.418 638.324 589.40 1.00
2 10.301 0.0151 650.309 721.465 682.19 0.90

SafeBus-PT-15 1 28.542 0.0232 642.215 642.121 1230.26 1.00
2 51.707 0.0844 643.047 642.949 612.64 1.00

NUPN encoding

ARMCacheCoherence-PT-none 1 0.908 0.0264 648.438 657.289 34.39 0.99
2 17.959 0.505 648.617 655.984 35.56 0.99

AirplaneLD-PT-0010 1 12.308 0.470 640.578 638.812 26.19 1.00
2 1.276 0.0207 637.832 636.051 61.64 1.00

AirplaneLD-PT-0020 1 5.372 0.0981 638.441 636.66 54.76 1.00
2 83.612 0.845 655.656 655.543 98.95 1.00

AutoFlight-PT-01b 1 0.770 0.0254 649.395 659.422 30.31 0.98
2 18.439 0.684 654.566 660.277 26.96 0.99

AutoFlight-PT-04a 1 0.198 0.00556 648.602 652.301 35.61 0.99
2 0.126 0.00384 648.602 652.301 32.81 0.99

CloudDeployment-PT-3b 1 81.724 0.927 641.43 641.348 88.16 1.00
2 83.314 0.932 642.609 649.879 89.39 0.99

CloudDeployment-PT-4a 1 1.948 0.0751 636.82 634.652 25.94 1.00
2 58.580 2.430 644.137 641.992 24.11 1.00

CloudReconfiguration-PT-306 1 0.303 0.0117 641.359 639.203 25.90 1.00
2 0.0298 0.000768 640.781 638.793 38.80 1.00

CloudReconfiguration-PT-308 1 29.818 0.582 640.176 639.977 51.23 1.00
2 11.289 0.220 642.281 648.094 51.31 0.99

DES-PT-00a 1 98.469 1.850 657.18 676.637 53.23 0.97
2 3.897 0.0572 637.656 656.941 68.13 0.97

P-invariant encoding

NQueens-PT-08 1 4.406 0.268 634.137 636.227 16.44 1.00
2 114.298 6.897 643.41 645.523 16.57 1.00

NQueens-PT-10 1 0.535 0.0289 636.879 640.25 18.51 0.99
2 0.169 0.00738 634.195 633.934 22.90 1.00

Peterson-PT-3 1 0.000711 0.000199 653.758 651.277 3.57 1.00
2 0.000733 0.000180 654.012 651.562 4.07 1.00

Philosophers-PT-000200 1 9.79662 0.00223398 642.195 684.777 4385.28 0.94
2 9.527 0.0453 678.965 704.766 210.31 0.96

Echo-PT-d04r03 1 0.519 0.000824 645.988 661.977 629.85 0.98
2 30.464 0.0216 646.098 658.707 1410.37 0.98

Average 18.77 0.39 644.82 652.83 245.52 0.99

10

TABLE V: Results of ORI and HBA

Instances Number of states Times (s) Memory (MB) Comparison

Name Formula NORI NHBA TORI THBA MORI MHBA ∇N ∇T3 ∇M3

ASLink-PT 1 113532 113306 0.453 0.458 678.242 678.383 1.00 0.99 1.00
-PT-02a 2 321725 238268 1.684 1.526 835.180 804.688 1.35 1.10 1.04

Angiogenesis 1 1045 990 3.64E-3 3.12E-3 633.891 633.844 1.06 1.17 1.00
-PT-20 2 826108 142831 7.671 1.088 1220.34 733.934 5.78 7.05 1.66

AutoFlight 1 265583 265468 1.418 1.451 793.445 794.117 1.00 0.98 1.00
-PT-01b 2 6222621 68 >300 7.71E-4 3650.78 702.203 91509.13 +∞ 5.20

AutoFlight 1 404 15 3.18E-3 1.82E-4 635.934 633.758 26.93 17.47 1.00
-PT-03a 2 621 176 4.97E-3 1.93E-3 636 633.852 3.53 2.58 1.00

AutoFlight 1 666 154 3.76E-3 8.95E-4 706.562 707.035 4.32 4.20 1.00
-PT-03b 2 15354260 4427 >300 7.59E-3 7202.09 710.859 3468.32 +∞ 10.13

CSRepetitions 1 1888 41 0.0361 9.07E-4 637.469 636.832 46.05 39.80 1.00
-PT-02 2 16 13 9.86E-4 1.01E-4 637.797 637.148 1.23 9.76 1.00

CSRepetitions 1 288 226 1.52E-3 1.53E-3 638.512 636.234 1.27 0.99 1.00
-PT-03 2 498814 267380 2.855 1.328 864.184 755.465 1.87 2.15 1.14

CircadianClock 1 5480306 2 >300 1.96E-4 3228.06 634.93 2740153.00 +∞ 5.08
-PT-001000 2 3003 1001 0.0231 0.0104 681.77 685.766 3.00 2.22 0.99

CircularTrains 1 1.28E+7 243 >300 7.70E-4 6282.94 751.906 52674.90 +∞ 8.36
-PT-048 2 337 241 7.60E-4 9.21E-4 773.793 768.605 1.40 0.83 1.01

RefineWMG 1 1303 7 0.00187 1.84E-4 731.551 738.414 186.14 10.16 0.99
-PT-005005 2 118480 116541 0.165 0.164 788.566 794.352 1.02 1.01 0.99

Average 2100550 57569.9 60.72 0.30 1612.86 703.62 144404.62 6.4 2.28(Timeout as 300) (excluding +∞)

11

	Introduction
	Preliminary
	Petri Nets
	Linear Temporal Logic
	On-the-fly Exploration of LTL Model Checking

	Optimization Strategies
	Dynamic Fireset
	DRW Operation on Encoded Markings
	Heuristic Büchi Automaton

	Experimental Evaluation
	Installation and Usage
	Benchmarks and Methodology
	Experimental Analysis
	Experiments for Dynamic Fireset
	Experiments for DRW Operations
	Experiments for Heuristic Büchi Automaton

	Discussion

	Conclusion
	References
	Appendix A: Core Modules of EnPAC
	Petri net model
	Reachability graph
	Syntax tree of formula
	Büchi automaton
	Product automaton

	Appendix B: Complete Experimental Result

