
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Detection of Android Ad Library Focusing on
HTTP Connections and View Object Redraw
Behaviors

Kajiwara, Naoya
Department of Informatics, Kyushu University

Kawamoto, Junpei
Department of Informatics, Kyushu University

Matsumoto, Shinichi
Department of Informatics, Kyushu University

Hori, Yoshiaki
Organization for General Education, Saga University

他

https://hdl.handle.net/2324/1498304

出版情報：Proceedings of the 29th International Conference on Information Networking, pp.104-
109, 2015. IEEE Computer Society
バージョン：
権利関係：



Detection of Android Ad Library
Focusing on HTTP Connections

and View Object Redraw Behaviors

Naoya Kajiwara
Department of Informatics,

Kyushu University,
ISIT,

Fukuoka, Japan
Email: kajiwara@itslab.inf.kyushu-u.ac.jp

Junpei Kawamoto
Department of Informatics,

Kyushu University,
ISIT,

Fukuoka, Japan
Email:kawamoto@itslab.inf.kyushu-u.ac.jp

Shinichi Matsumoto
Department of Informatics,

Kyushu University,
ISIT,

Fukuoka, Japan
Email:smatsumoto@isit.or.jp

Yoshiaki Hori
Organization for General Education,

Saga University,
ISIT,

Saga, Japan
Email:horiyo@cc.saga-u.ac.jp

Kouichi Sakurai
Department of Informatics,

Kyushu University,
ISIT,

Fukuoka, Japan
Email:sakurai@csce.kyushu-u.ac.jp

Abstract—In recent years, the smart phone application market
has expanded rapidly. One of reasons is the popularity of free
applications. A developer acquires his revenues by including
advertising libraries in his own application. However, some
problems about these advertising libraries become clear from
recent researches. Especially in the leakage of privacy information
is known as a typical problem which advertising libraries cause.
In order to solve this problem, the technology which detects
advertisement libraries is important. In this paper, we propose
a method for detection of Android ad library. We focus on the
acquisition and redraw of advertising image operation which are
the basic operations of mobile advertisement. Firstly, we tried
running some applications with advertisements. Then, It turned
out that mobile advertisements acquire advertising images from
server and set that image on the screen at a fixed interval.
By modifying AndroidOS, logging HTTP connections and View
object redraw behaviors, we confirmed the ad image acquisition
behavior. Moreover, to take advantage of the periodicity of this
behavior, we carried out Fourier-transform the invocation time
data of HTTP connections and redraw of View objects. Then,
we extracted the periodicity by calculating correlation coefficient
for these two data. From the value of correlation coefficient, it is
possible to judge whether advertisement library is incorporated
into an application or not. As a result, our proposal method
results in a output of about 76 % detection rate.

I. INTRODUCTION

Now, more than 1 300 000 Android applications are ex-
hibited on Google Play market[1]. About 84 % applications of
these applications is exhibited for free. Many of the developers
of such free applications are selecting monetization model of
acquiring the counter value of development by incorporating
advertisement into their application[2]. However, it becomes
clear about some problems which the advertising libraries

This work was supported by JSPS KAKENHI Grant Number 26330169.

have.
The leakage of privacy information is a typical problem caused
by advertising libraries. This problem is that when an applica-
tion which an advertisement library is incorporated into is run,
that advertisement library send user’s information outside from
terminal without acquiring user’s consent. For example, some
advertising libraries access user’s location information, and
send it external server[3]. In the background of such problems,
there are a fact that developers of applications and advertising
libraries are different. About the behavior of an advertising
library, an application developer can grasp to some extent
from the document. However, application developers have few
understanding to the behavior of advertising libraries because
of some reasons such as the insufficient document or the low
concerns about privacy problem. This means that application
developers incorporate third party library whose behavior is
unknown. Thus, since application developers do not grasp the
behaviors of advertisement correctly, unexpected leakage of
information is caused. Moreover, this leads to the problem
that developer’s explanation of the application in Google Play
market will not function. Thus, for both application developers
and users, the present condition is that many applications
whose behaviors are unknown are in circulation. Therefore,
the method of detecting advertisement in Android applications
in advance is important.
In this paper, we propose a method for detection of Android ad
library. We focus on the acquisition and redraw of advertising
image operation, which are the basic operations of mobile
advertisement. Firstly, we tried running some applications with
advertisements. Then, It turned out that mobile advertisements
acquire advertising images from server and set that image
on the screen at a fixed interval. By modifying AndroidOS,
logging HTTP connections and View object redraw behaviors,
we confirmed ad image acquisition behavior. Moreover, to



Activity A

Root-ViewGroup

Viewgroup1

View1

Viewgroup2

View2

View3

ViewGroup3

View4

Fig. 1. View Tree Structure on an Activity

take advantage of periodicity of this behavior, we carried
out Fourier-transform for the invocation time data of HTTP
connections and redraw of View objects. Then, we realized
analysis with the tolerance to a noise by analyzing data in a
frequency domain. As a result, our proposal method results in
a output of about 76 % detection rate.

II. BACKGROUND

A. Advertisement Library

Generally, the advertisement for smart phones monopolizes
a part of screen space, and displays an advertising image there.
If a user clicks on an advertising image, actions such as a
guidance to an application store or a special web page is
performed.
Advertisement library is incorporated into the same package
with application’s code. Therefore, in Android systems, ap-
plication code and advertising code share same process ID.
This makes distinction of application’s function invocation and
advertising function invocation difficult.

B. Activity

Activity is a component equivalent to a screen of an
Android application. Mostly, Activity and a screen of UI has
a relation of 1 to 1. In other words, an application’s screens
are implemented by Activity classes.

C. View

View is a component equivalent to elements of the screen
in an Android application. All of the elements arranged on
the screen such as a button, text box or list are implemented
by View class or View’s child classes. These View objects
are set to Activity object corresponding to the screen where a
developer wants to set a View in UI. At this time, the View
objects take a tree structure. Fig.1 shows an example of View
tree structure on an Activity.

III. RELATED WORKS

There are some researches related to Android advertise-
ment.
[4] is a paper which proposes detection method of Android
advertising library. In this paper, authors focus on acquisition

of advertisement image by advertising library in the same
way as this paper. By capturing HTTP communications for
an acquisition of advertising image and generating graphs
from HTTP sessions data, authors detected image acquisition
behavior by advertisements. However, there is a challenge that
if communication is encrypted, their method cannot be adapted
for.
[5] is a paper which proposes the solution method of the
permission sharing problem. There is a problem that adver-
tising libraries share Permissions with the applications code.
This is because applications code and advertising libraries are
implemented into same package and they run on the same
process in an Android system. In order to solve this problem,
authors proposed the separation of Permission between appli-
cation’s code and advertising library. This system is achieved
by running special system service managing advertising func-
tions. Thereby, the check of whether the advertisement is
contained in an application become easy, and Permissions can
be managed strictly.
[6] is a paper which proposes a testing method of Android ap-
plication based on UI elements. In this paper authors focus on
the Activity and View objects which compose an application’s
screen. By exploring all activity and view objects, SmartDroid
can automatically detect UI-based trigger conditions which
leads to the sensitive behavior caused by Android malwares.
As a result, authors show that SmartDroid can detect several
Android malwares which cannot be detected with existing
techniques.

IV. APPROACH

In this section, we describe the approach about the ad-
vertisement detection method. In this paper, we focus on an
updating ad image behavior which is the basic operation of
the Android ad libraries.

A. Assumption about Advertisement Behavior

Generally, an ad library changes images of the advertise-
ment displayed on a screen for every definition period to
other pictures to pull a user’s attention. In this paper, we
classified this updating ad image operation to the following
two behaviors.

1) Http connection
Picture acquisition from advertising servers are exe-
cuted by HTTP connections.

2) View Redraw
Rearrangement of the acquired advertising pictures to
the screen

Then, we designed the system that records these two be-
haviors’invocation time and judging automatically whether an
application has advertisement or not using these two data. As
mentioned in Section II-A, application’s code and advertising
code are executed on the same process, distinction of these
two are difficult. However, in our assumption, advertisement’s
behavior have periodicity and application’s behavior don’t have
periodicity. Therefore, in the detection of advertisements, it is
important that updating operations of advertisement pictures
are always invoked at a fixed interval once an advertisement
is set to a screen. That is, when an advertisement is contained
in an application, HTTP and View behavior invocations have



Application code

Advertisement library

Application Package

Android OS (Framework)

HTTP 
framework

HTTP 
framework

View 
framework

View 
framework

HTTP API
invocation

View API 
invocation

Periodicity
Timing Linkage

Fig. 2. The Periodicity in Ad-Library’s behaviors

a certain periodicity. So, by confirming the existence of this
periodicity, it can be judged whether an application has ad-
vertisement or not. Fig.2 shows our model of ad behavior’s
periodicity.

B. Monitoring HTTP connection and View Redraw

We modified Android OS to record invocations of Http
connection and View redraw behaviors. We modified the
Android framework, Java libraries and apache libraries which
provide API for developers. The modified points are “HTTP
framework” and “View framework” in Fig. 2. This behavior
recording method in Android framework is proposed in [7].

1) Recording HTTP connection: In the document of HTTP
connection implementation in Android Developers[8], the use
of following two classes is recommended when a developer
implements HTTP communication in an Android application.

• HttpClient class in org.apache library

• HttpURLConnection class in java.net library

However, for the case of a developer implements HTTP
connection without using these classes, we inserted codes
logging Http connection into

• Socket.connect(SocketAddress endpoint, int timeout)

in java.net library. Also when the two above-mentioned classes
recommended in Android Developer are used, it is confirmed
that a Socket.connect method is invoked inside.

2) Recording View Redraw: Record of the
redraw behavior of View was implemented using
android.view.ViewTreeObserver class. As mentioned in
Section II-C, in AndroidOS, each screen of applications
corresponds with Activity object. And, under each Activity,
Views are arranged with a tree structure. A ViewTreeObserver
class has a function that supervising this View tree structure
and detecting events such as an addition of new View or
change of View’s setting. In this paper, we modified Activity
class code in Android Framework, and implemented following
operations.

0
:0
0
:0
0

0
:0
0
:2
0

0
:0
0
:4
0

0
:0
1
:0
0

0
:0
1
:2
0

0
:0
1
:4
0

0
:0
2
:0
0

0
:0
2
:2
0

0
:0
2
:4
0

0
:0
3
:0
0

0
:0
3
:2
0

0
:0
3
:4
0

0
:0
4
:0
0

0
:0
4
:2
0

0
:0
4
:4
0

0
:0
5
:0
0

HTTP Connection

0
:0
0
:0
0

0
:0
0
:2
0

0
:0
0
:4
0

0
:0
1
:0
0

0
:0
1
:2
0

0
:0
1
:4
0

0
:0
2
:0
0

0
:0
2
:2
0

0
:0
2
:4
0

0
:0
3
:0
0

0
:0
3
:2
0

0
:0
3
:4
0

0
:0
4
:0
0

0
:0
4
:2
0

0
:0
4
:4
0

0
:0
5
:0
0

View Refresh

Fig. 3. Invocation Time of HTTP Connection and View Redraw when
Running the Application A which has advertisement

1) At the generation of Activity object, root View object
in that Activity is acquired.

2) ViewTreeObserver class is set to root View object.
3) ViewTreeObserver.onGlobalLayoutListener is

invoked when View tree state is changed.
4) Log message is recorded within event listener that

implies redraw of View was performed.

C. Preliminary experiment

As mentioned in Section IV-A, in our method, we want
to detect advertisement in an application by the periodicity of
HTTP connection and View redraw behaviors invoked by an
application. In this section, we report the result of preliminary
experiment. As a preliminary experiment, we ran the following
three applications and confirmed that what kind of features
appeared about HTTP connection and View redraw behaviors
invocation time.

• Application A has an advertisement. This application
has no function of HTTP connection and View redraw
excepting advertisement.

• Application B has an advertisement. This application
has functions of View redraw in addition to advertising
function.

• Application C has no advertisement. This application
has function of HTTP connection and View redraw in
application itself code.

1) Result with Advertisement:

a) Case of Application A: Fig. 3 shows the invocation
time of HTTP connection and View redraw behaviors when
the application A was run on Android emulator. In this graph,
horizontal axis expresses time. The period of graph is 5
minutes which starts from the launch of the application A.
And if HTTP connection or View redraw is invoked, vertical
bar is appeared on each time slot.
This figure shows that HTTP connections and View redraw
behaviors are invoked at intervals of about 30 seconds re-
spectively. Each invocation indicates HTTP communication for
acquisition of an advertising image file and an arrangement of
an acquired image to the screen.



0
:0
0
:0
0

0
:0
0
:2
0

0
:0
0
:4
0

0
:0
1
:0
0

0
:0
1
:2
0

0
:0
1
:4
0

0
:0
2
:0
0

0
:0
2
:2
0

0
:0
2
:4
0

0
:0
3
:0
0

0
:0
3
:2
0

0
:0
3
:4
0

0
:0
4
:0
0

0
:0
4
:2
0

0
:0
4
:4
0

0
:0
5
:0
0

HTTP Connection

0
:0
0
:0
0

0
:0
0
:2
0

0
:0
0
:4
0

0
:0
1
:0
0

0
:0
1
:2
0

0
:0
1
:4
0

0
:0
2
:0
0

0
:0
2
:2
0

0
:0
2
:4
0

0
:0
3
:0
0

0
:0
3
:2
0

0
:0
3
:4
0

0
:0
4
:0
0

0
:0
4
:2
0

0
:0
4
:4
0

0
:0
5
:0
0

View Refresh

Fig. 4. Invocation Time of HTTP Connection and View Redraw when
Running the Application B which has advertisement

0
:0
0
:0
0

0
:0
0
:2
0

0
:0
0
:4
0

0
:0
1
:0
0

0
:0
1
:2
0

0
:0
1
:4
0

0
:0
2
:0
0

0
:0
2
:2
0

0
:0
2
:4
0

0
:0
3
:0
0

0
:0
3
:2
0

0
:0
3
:4
0

0
:0
4
:0
0

0
:0
4
:2
0

0
:0
4
:4
0

0
:0
5
:0
0

HTTP Connection

0
:0
0
:0
0

0
:0
0
:2
0

0
:0
0
:4
0

0
:0
1
:0
0

0
:0
1
:2
0

0
:0
1
:4
0

0
:0
2
:0
0

0
:0
2
:2
0

0
:0
2
:4
0

0
:0
3
:0
0

0
:0
3
:2
0

0
:0
3
:4
0

0
:0
4
:0
0

0
:0
4
:2
0

0
:0
4
:4
0

0
:0
5
:0
0

View Refresh

Fig. 5. Invocation Time of HTTP Connection and View Redraw when
Running the Application C which has no Advertisement

b) Case of Application B: Fig. 4 shows that invocation
time of HTTP connections and View redraw behaviors when
the application B with advertisement was run on Android em-
ulator. This figure shows that HTTP connections are executed
at the intervals of about 30 seconds. On the other hand, View
redraw behaviors data seems to have no periodicity. This is
because HTTP connection is not implemented in the code of
application itself but View redraw is implemented. As a result,
View redraw behaviors by application and advertisement are
mixed. In other words, data with periodicity and data without
it are mixed together in View redraw behaviors.

2) Result without Advertisement: Fig. 5 shows the invo-
cation time of HTTP connection and View redraw behaviors
when the application C without advertisement was run on
Android emulator. In this figure, HTTP connections and View
redraw behaviors are invoked many times. However, at the
whole period of the log data, these two behaviors are not
invoked at a specific interval. In other words, two behaviors
don’t have periodicity.

D. The feature of the target data

In this paper, the targets of analysis are two sequential data
which correspond to the invocation time of HTTP connections

and View redraw. As mentioned in Section IV-A, when an ad-
vertisement is contained in an application, periodicity appears
in these two behaviors. However, in Android systems, since the
operations executed by application code and by advertisement
code are mixed up, non-periodic data may be added into
the periodic data. Fig. 4 is an actual example for that case.
Therefore, we need to examine the analysis technique which
the following requirements are satisfied with.

1) The periodicities in two sequential data can be com-
pared with.

2) Data can be analyzed even if the non-periodic data
are mixed into it.

V. DETECTION METHOD

As mentioned in Section IV-A, if an application has adver-
tisement, the invocation time of HTTP connections and View
redraws has a certain periodicity. In this section, we discuss
how it is appropriate to analyze two data (the invocation time
of HTTP connections and View redraws) to judge the existence
of an advertisement in an application.
As the analysis method which satisfies requirements mentioned
in Section IV-D, we propose the analysis in the frequency
domain using Fourier transform. By Fourier-transforming the
sequential data and analyzing these data in frequency domain,
the noise-proof can be increased and the influence of execution
lags of an application will be reduced.
Table I shows steps of the analysis in the proposal method. In
the following sub sections, we will explain about each step.

TABLE I. STEPS OF THE ANALYSIS IN PROPOSAL METHOD

1. Sampling log data for Fourier transform
2. Execution of Fourier transform
3. Calculation of correlation coefficient
4. Evaluation using Logistic regression

A. Sampling log data

Firstly, we sample an application’s log data for Fourier
transform. Fig. 6 is an example of sampled data. This data
starts from the time of an application is launched. The first
row expresses the time. In the sampled data, the time is divided
into intervals of a certain as a time slot. Fig. 6 is the data in
the case of setting width of time slot to 5 seconds. The second
row corresponds to the existence of HTTP connection. In the
time slot of each line, when an application establishes HTTP
connection, value“ 1” is output. And, when an application
doesn’t establish HTTP connection, value“0”is output. The
third row corresponds to redraw of View behavior. Like the
second row, in each time slot, when an application performs
redraw of View, value“1”is output and when an application
doesn’t, value“ 0”is output. In the following sections, these
two sequential data are Fourier-transformed and we analyzed
these data in frequency domain.

B. Fourier Transform

After the log data is sampled for Fourier-transform, the
sampling data is Fourier-transformed. Therefore, the data an-
alyzed in the following steps are the waveforms whose the



00:00, 1, 1

00:05, 0, 1

00:10, 0, 0

00:15, 1, 0

00:20, 1, 0

00:25, 0, 0

00:30, 1, 1

00:35, 0, 0

Indicating HTTP connection
and View Refresh were 
performed from 00:00 to 00:05

Indicating only HTTP 
connection was performed
from 00:20 to 00:25

[Time(mm:ss), HTTP, View]

Sampled log data

Fig. 6. An example of sampling data for Fourier transform when setting the
time slot 5 sec

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0

Fre q u e n cy

− 0 .2

− 0 .1

0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

A
m

p
li

tu
d

e

HTTP Con n e ct ion

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0

Fre q u e n cy

− 0 .2

− 0 .1

0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

A
m

p
li

tu
d

e

Vie w Re d ra w

Fig. 7. An example of the wave form of Fourier-transformed data produced
from an application with advertisement

horizontal axis indicates the frequency and the vertical axis
indicates the amplitude. Fig. 7 is the waveform produced by
executing Fourier-transform for the log data of Application B
shown in Fig. 4. In this figure, the horizontal axis indicate the
label of frequency using serial numbers.

C. Detection method using correlation coefficient

We performed detection method using data in the fre-
quency domain obtained in Section V-B. In this paper, we

consider that detection of advertisement can be obtained by
using the correlation coefficient of these two data. Equation
1 shows the definition of correlation coefficient. We adapted
two output waveforms shown in Fig. 7 to the x and y in 1
respectively. As mentioned above, when an advertisement is
contained in an application, periodicity appears in two data.
In the Fourier-transformed data, this periodicity appears as
a specific frequency component. In Fig. 7, five peak values
are equivalent to this frequency component. When calculating
correlation coefficient, average value is subtracted from each
x and y as shown in 1. So, only five peak values have major
influence on the output value of a correlation coefficient in our
method because the other frequency components are settled
near 0. Therefore, when the log of an application that has
advertisement is analyzed, the correlation coefficient of two
data should become high value close to 1.
After outputting the values of correlation coefficient for each
application’s log data, we examined detection rate of proposal
method using logistic regression.

n∑
i=1

(xi − x)(yi − y)√√√√ n∑
i=1

(xi − x)2

√√√√ n∑
i=1

(yi − y)2

(1)

VI. EXPERIMENT

A. Experimental procedure

In this paper, we prepared 24 log data of applications
with advertisement and 21 log data of applications without
advertisement for experiment. We acquired these log data
by running sample applications on Android emulator which
is based on modified OS to record HTTP connection and
View redraw behavior. The sample applications are a part of
applications which ran normally on Android emulator from
free applications exhibited in Google Play. For example, game
applications which use much GPU power or map applications
using Google Map API cannot run on Android emulator
normally. So, we cannot use such applications’ log data.
In the experiment, we evaluated accuracy rate and false positive
of detection advertisement using the method mentioned in
Section V. In order to reduce the deviation arising from
the smallness of log data, we used cross-validation. Dividing
advertisement sample group and non-advertisement sample
group into three groups severally, we used one group for
learning phase and two group for validation phase to output
detection rate. Then, the combination of learning data and
validation data was rotated, and validation was executed in
three kinds of combinations. In our method, the output value
has randomness since Stochastic Gradient Descent method is
used in logistic regression. So, we repeated this calculation a
hundred times, and we defined an average value as a result for
detection rate and false positive.
In this experiment, we changed the width of time slot as a
parameter. We performed experiment with four parameters,
namely, 1 sec, 2 sec, 5 sec and 10 sec. Also, in this paper
we cut first 1 minute data from each log data. This is because
advertisement library perform initial operations at the time of
launch and this influence on the periodicity of log data. After



TABLE II. DETECTION RATE AND FALSE POSITIVE FOR FOUR
PARAMETERS

Width of time slot accuracy(%) false positive(%)
1s 75.53 30.64
2s 76.20 29.79
5s 75.57 32.33
10s 72.64 33.50

cutting initial operations, we used 10 minutes log data for the
analyze. Table II shows the result of the experiment.

B. Consideration

In this paper, we performed the experiments for four width
value of time slot as parameters in sampling of log data.
The parameters are 1 sec, 2 sec, 5 sec and 10 sec. From the
outputted results, we can consider following things.
First, even if the parameters are changed, it was not affected
largely to a detection rate. It seems that many advertising
libraries performs updating of advertisement image at intervals
for 30 seconds to 1 minute. Therefore, it seems that small
change of time slot width didn’t majorly influence the detection
rate. Also, end-to-end delays of advertising image fetching
does not majorly influence the analysis because such delays
are smaller than the period of ad behaviors.
We also considered a cause of false positive. One of the causes
is that some unexpected frequency components may appear in
log data . Even if an advertisement library was not incorporated
into an application, there is a possibility that any frequency
component appears between the HTTP and View behavior
when these two behavior are invoked many times. Also, as
another case, if an application’s code invokes HTTP and View
behavior which have the periodicity, this may detected as the
operation of an advertising library. We will discuss how to
solve these problems in the next section.

VII. FUTURE WORKS

All of HTTP connections and View object redraw behaviors
are recorded on log data. Therefore, as shown in Fig.4 and
Fig.5, behaviors related to advertisement and not related to
advertisement are mixed together in log data. There is a
possibility that this causes false positive.
By grouping HTTP connections and View behaviors into some
series based on related information and analyzing log data for
each series, the above problem may be solvable. For example,
there is a method focusing on destination IP address in HTTP
connections. Consider the case of running a news application
which has an advertisement library. In this case, this applica-
tion performs HTTP connections for acquisition of advertising
images and news information. Generally, advertisement im-
ages are provided from a server managed by advertisement
providers. On the other hand, news information is provided
from another server. So, HTTP connections performed by the
application have two destinations, a server providing news
and a server providing advertisement. Therefore, destination IP
addresses of HTTP connections which appeared in that news
application’s log data can be grouped into two series. Thus, an

advertisement and the original function of an application can
be divided by grouping HTTP connections. This may make
accuracy rate to rise.

VIII. CONCLUSION

In this paper, a detection method of advertisement library
focusing on HTTP connections and View object redraw be-
haviors is proposed. Mobile advertisement libraries update
advertising image periodically to attract a user’s attention.
This means that the invocation times of HTTP connections
and View object redraw have a certain periodicity by an
application with advertisement. We realized detection method
of advertisement library by extracting this periodicity using a
combination of Fourier-transform and correlation coefficient.
With this method, it is possible to detect advertisement library
only from its behavior. Because we focus on the behavior of
advertisements in our method, it is unnecessary to acquire
signatures of advertisement libraries in advance. Therefore,
unknown advertisement library can be detected with proposal
method. And, since our method is based on the View object
which is the component of applications’ screen, our method
is hard to be affected to the small difference in implementing
for every advertising library. Our proposal method resulted in
a output of about 76 % detection rate for about 50 sample
applications.

ACKNOWLEDGMENT

We would like to thank Ayumu Kubota and Takamasa
Isohara, KDDI R&D Labs for giving beneficial advices in early
work of this research.

REFERENCES

[1] “Android operating system statistics - appbrain.” [Online]. Available:
http://www.appbrain.com/stats/stats-index

[2] I. Leontiadis, C. Efstratiou, M. Picone, and C. Mascolo, “Don’t kill my
ads!: balancing privacy in an ad-supported mobile application market,”
in Proceedings of the Twelfth Workshop on Mobile Computing Systems
& Applications. ACM, 2012, p. 2.

[3] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Investigating
user privacy in android ad libraries,” in Workshop on Mobile Security
Technologies (MoST). Citeseer, 2012.

[4] H. Kuzuno and K. Magata, “Detecting advertisement module network
behavior with graph modeling,” in Proceedings of the 9th Asia Joint
Conference on Information Security(AsiaJCIS2014). IEEE, 2014.

[5] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner, “Addroid: Privilege
separation for applications and advertisers in android,” in Proceedings of
the 7th ACM Symposium on Information, Computer and Communications
Security. ACM, 2012, pp. 71–72.

[6] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou, “Smart-
droid: an automatic system for revealing ui-based trigger conditions in
android applications,” in Proceedings of the second ACM workshop on
Security and privacy in smartphones and mobile devices. ACM, 2012,
pp. 93–104.

[7] Y. Nishimoto, N. Kajiwara, S. Matsumoto, Y. Hori, and K. Sakurai,
“Detection of android api call using logging mechanism within an-
droid framework,” in Security and Privacy in Communication Networks.
Springer, 2013, pp. 393–404.

[8] “Connecting to the network — android develop-
ers.” [Online]. Available: http://developer.android.com/training/basics/
network-ops/connecting.html


