
LTE-Advanced Based Handover Mechanism for 
Natural Disaster Situations 

Sayan Kumar Ray1, Nurul I Sarkar2, Devatanu Deka3 and Swapan Kumar Ray4  
1Faculty of Business and Information Technology, Manukau Institute of Technology, Auckland, New Zealand  

2School of Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand 
3Dynamic Controls, Christchurch, New Zealand 

4Dept of Computer Science and Engineering, Jadavpur University, Kolkata, India 
 

sayan.ray@manukau.ac.nz, nurul.sarkar@aut.ac.nz, deva.deka@gmail.com, skray@ieee.org  

 
Abstract—Telecommunication networks often face power outage 
problems in the natural disaster affected areas. Also, owing to a 
sudden substantial increase in network traffic loads the battery 
backup power of the base stations run out quickly and therefore 
hampering telecommunication services. To overcome this system 
performance issues, we propose a Long Term Evolution (LTE)-
Advanced (LTE-A)-based user equipment (UE)-controlled and 
base station (Evolved Node B or eNB)-assisted handover scheme. 
The idea is to limit the arrival of new traffic to an already 
overloaded eNB by diverting their handover to lightly loaded 
nearby eNBs. The novelty of this work is the ability of an UE to 
self-detect the occurrence of a natural disaster and to self-select 
the most suitable target eNB (TeNB) to handover with in the 
disaster affected areas. The handover is performed by obtaining 
the weighted average score (WAS) of the direction of motion 
(DoM) and the leftover battery backup power of the different 
neighboring eNBs (NeNB). The UE also predicts its DoM and 
dynamically adjust the weights of the two parameters if it’s a 
disaster situation. Preliminary simulation results show that the 
scheme can offer up to 65% handover success rate in disaster 
situations.   

Keywords-natural disaster, seamless handover, leftover power, 
base station, LTE-A, weighted average score, movement prediction 

I.  INTRODUCTION  
Telecommunication networks have become an important 

part of our daily lives because people would be immobilized 
without network and telecommunication services. They are 
expected to be stable and reliable always. However, natural 
disasters, like earthquakes and hurricanes, may damage the 
whole network infrastructure or cause breakdown of the power 
grid in the affected areas hampering telecommunication 
services [1-2]. Immediately after a natural disaster the 
telecommunication networks become heavily congested as a 
result of sudden and huge increase in network traffic/calls in 
the affected areas. This results to a complete collapse of the 
whole network coverage as eNode B (eNB or base station) 
battery backup dies down very quickly. A practical example of 
this disaster situation is the earthquake in Christchurch, New 
Zealand in 2011. Network traffic overloading of the eNBs in 
the affected areas can be caused by (a) the sudden substantial 

increase in voice calls to and from people stuck in the affected 
areas; and (b) the addition of new communication traffic 
generated by the rescue and relief team members and other 
people arriving for rendering help. The network outage occurs 
owing to power outage and traffic congestion. In such 
situations, it is always helpful if the battery backups in the 
affected eNBs sustain for longer time enabling people in need 
to carry on essential communications.   

To overcome the above problems, we propose an UE-
controlled handover scheme for natural disaster scenarios. We 
consider LTE-A as an underlying network architecture. The 
key idea is that an UE self-detects the occurrence of disasters 
and then self-selects the best TeNB for handover using self-
predicted DoM and the leftover power (LoP) of the battery 
backups of the NeNBs in the affected areas (The concept of 
LoP is explained in Section III). The UE assigns scores to 
each NeNB against these two parameters and finally selects 
the TeNB based on the highest weighted average score 
(WAS). This work is an extension to our previous work 
published in [2]. The proposed scheme aims at discouraging 
the arrival of new traffic/calls to an already overloaded natural 
disaster affected eNB in order to prolong the overall lifetime 
of the battery backup in the eNBs. This in turn would prolong 
the flow of the number of voice calls and text messages 
immediately after a disaster situation by utilizing the LoP of 
the backup batteries before they die down. We used a relative 
velocity-based DoM prediction algorithm which is different to 
the angle-of-divergence based prediction method used in [2]. 
We also propose a novel mechanism of an UE self-detecting 
the natural disaster situation and dynamically adjusting the 
weighted values of the DoM and LoP. The proposed handover 
scheme offers the following three main benefits during natural 
disasters. First, existing connections continue to receive good 
QoS. Second, new connections may be diverted to less-
overloaded nearby NeNBs. Finally, residual battery life of 
eNBs is considerably prolonged. The remaining paper is 
organized as follows. Section II reviews related works. The 
proposed handover scheme is discussed in Section III. 
Simulation results are presented in Section IV and a brief 
discussion in Section V ends the paper. 
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II. RELATED WORK  
The fact that cellular eNBs in the disaster affected areas die 
down quickly because of massive network traffic congestion 
after facing power outage is becoming a critical public safety 
issue. eNBs at local cell sites have battery backups, which 
may last for up to 8 hours depending on traffic loads at the site 
[3- 4]. The number of cell phone call requests immediately 
after a natural disaster incident shoots up to 8 to 10 times more 
than during normal situations [5]. In recent times, multiple 
counter mechanisms are proposed that mostly aim at 
increasing the backup power capacity in base stations. These 
include the use of fuel cells and hydrogen back up power 
supply as well as providing base stations with powerful 
generators that are able to sustain longer [6-8]. A robust never 
die network (NDN) constituting of self-powered fixed base 
stations, cognitive mobile base stations and wireless balloon 
stations is proposed in [5]. The sudden substantial spikes in 
network traffic load in the disaster areas overwhelm the 
transmission capabilities of the network resulting in a lack of 
spectrum availability for communication. To counter such 
situations, an emergency communication cognitive radio 
vehicular (EC-CRVN) architecture is proposed in [9] that may 
serve as the backbone for essential communications in the 
affected areas. This network senses for currently unused 
frequencies in the wireless spectrum licensed to other 
operators and used those for essential communications. [10] 
proposes a mechanism of on-the-fly establishment of multi-
hop wireless access networks (OEMAN) for disaster response. 
The purpose of such an initiative is to extend Internet 
connectivity from surviving WiFi access points in the affected 
areas to disaster victims using their own mobile devices. 

III. THE PROPOSED HANDOVER SCHEME  
The proposed scheme is based on an LTE-A UE-controlled 

and eNB-assisted handover applicable to areas affected by 
natural disasters such as earthquakes and tornadoes. In this 
scheme an LTE-A UE (e.g., a smartphone) detects a natural 
disaster situation, dynamically assigns weights to key 
parameters such as DoM and LoP and finally selects the best 
TeNB for handover. The selection of TeNB is based on the 
combination of two independent parameters, namely, the UE’s 
DoM prediction (the UE self-tracks its movement direction) 
relative to its NeNBs and the LoP of the battery backups of 
different NeNBs. The UE assigns scores on the DoM (SDoM) 
and the LoP (SLoP) to individual NeNB and the selection of the 
TeNB for handover activity is based on the highest WAS 
obtained by an NeNB. The UE thus avoids selecting any 
NeNB with very little LoP for communication and can thereby 
maintain a satisfactory QoS for an ongoing traffic call even 
after the handover. A relative velocity-based DoM prediction 
mechanism for UE is used. The novel mechanism of LoP 
estimation of an eNB battery backup is also used in this work 
[2]. In an LTE-A network, an UE may receive the LoP 
information of the different NeNBs from the SeNB either as 
an added field in the existing Handover Measurement Control 
Request message or as an emergency broadcasted information 

service similar to the newly introduced 3GPP Earthquake and 
Tsunami Warning Service (ETWS) and Commercial Mobile 
Alert Service (CMAS) [11-12]. 

In addition to the above contributions, we also propose a 
novel technique for UE to self-detect natural disasters and 
dynamically adjust the weights of the two parameters, DoM 
and LoP, as needed. This dynamic allocation of weights based 
on the underlying environment is more realistic than allocating 
fixed weights and changing them manually as proposed in [2], 
where we have assigned some non-zero weights to SLoP even 
during the normal non-disaster situations. The parameter LoP 
is relevant and meaningful only at the time of natural disaster. 
On the contrary, the DoM is relevant at all times. Thus, the 
score SLoP of LoP should come into play and be given a weight 
only at the time of the actual onslaught of a natural disaster 
and certainly not at other times. Giving non-zero weights to 
SLoP at other times would hamper the quality of the handover. 
This is because at normal situation the DoM should control the 
handover solely and must receive 100% weightage. Giving 
any weightage to SLoP during non-disaster situation is of no 
use and may add meaningless and random scores in the 
computation of SWAS, which eventually may distort the vital 
DoM score leading to a wrong choice of TeNB for handover 
during non-disaster situations. Thus in achieving a good 
handover performance, SLoP from NeNBs should be used only 
during the times of actual onslaughts of natural disasters, 
whereas, SDoM should be computed at all times. To summarize, 
during non-disaster situations the handover should be carried 
out solely based on SDoM. In this paper we have assigned a 
weight of 50% to SLoP for disaster situations only. 

The overall scheme has three different parts: (a) UE 
assigning individual scores (SDoM) to the NeNBs depending on 
its direction of motion, (b) UE assigning scores (SLoP) to 
NeNBs based on their leftover battery power and (c) UE self-
detecting a disaster situation and automatically adjusting the 
weights of DoM and LoE accordingly and calculating the 
WAS to select the final TeNB for handover. The detailed 
handover scheme is presented next.    

A. Relative Velocity-based DoM Prediction Scheme 
We employ a distance estimation and lookahead-based 

handover scheme to predict the UE’s DoM relative to its 
NeNBs [13]. According to this concept, an UE approximately 
estimates its current distance, from the SeNB as well as from 
its NeNBs, by monitoring the received signal strength 
(through periodic measurements/scanning) from the eNBs 
concerned. For estimating the distance, the UE uses any 
suitable path loss property of the communication channel. 
Using a set of at least two distance estimates for each NeNB, a 
UE can self-track its DoM via simple computation of its 
relative velocity with respect to each NeNB [13-14]. These 
estimates allow the UE to look ahead and to determine the 
NeNBs to continue/discontinue monitoring (i.e., scanning) 
and, most importantly, which NeNB the UE is likely to come 
closer after it leaves its current cell. This knowledge will, in 
effect, allow the UE to make the best choice of the potential 
TeNB (among all the NeNBs being scanned/measured) to 
which it should be handed over by the SeNB. We assume that 
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the UE’s motion, while it is at the fag end of its journey across 
a cell, is “broadly linear” over a certain time frame.  

In the proposed method, the UE does multiple distance 
calculations, periodically, for each of the NeNB and from 
those set of distance samples it can self-ascertain whether its 
movements relative to a particular NeNB is progressive or 
regressive. The UE can then compare the progressive 
movements to identify the NeNB with the highest 
accumulated forward movement (AFM). Basically, the 
proposed scheme operates as follows. From the chosen most 
appropriate path loss Equation, the UE can easily get an 
estimate of its distance from any particular NeNB at different 
points in time. Thus, if its distance d to an NeNB is estimated 
as d1 = d(t1) and d2 = d(t2) at the time instants t1 and t2 (t2> t1), 
respectively, then, during the duration T=t2–t1 of the time 
interval (t1,t2), the MS has an average relative velocity of  

v 1,2 = (d2–d1) / T = | v 1,2| sgn ( v 1,2)                               (1)  

with respect to the NeNB, where v 1,2 is a simpler 
representation for v t1,t2

 (i.e. the average relative velocity of 
the UE with respect to the NeNB during the time interval 
T=t2–t1.      

In Eq. 1, the magnitude | v 1,2| of v 1,2 indicates how fast the 
UE is approaching towards or receding from the NeNB, i.e.,    
| v 1,2| indicates the speed of progression or regression of the 
UE, relative to the NeNB. On the other hand, sgn| v 1,2| 
signifies whether the UE is moving towards [if sgn| v 1,2| < 0] 
or away from [sgn| v 1,2| > 0] the NeNB, implying thereby 
whether the motion of the UE, relative to the NeNB, is 
progressive or regressive. It is obvious that if the motion of the 
UE relative to a particular NeNB is regressive, (i.e. sgn| v 1,2| > 
0), then that NeNB should not be considered as a potential 
TeNB by the UE. Thus, an UE basically chooses its TeNB 
based on the acquisition of a few periodic samples of the RSS 
from each NeNB and then use of the principle of self-
estimation of distance followed by a simple lookahead 
scheme. We keep all the successive sampling periods (i.e. the 
inter-scanning intervals) constant at T seconds, i.e. if T=ti-ti-1 
for all i, i = 2, 3, …, and assume that {di} are the distances 
estimated at the scanning instants {ti}, i = 1, 2, …. This makes 
the values {∆i-1,i}={di-di-1} (i.e. ∆1,2=d2-d1,∆2,3=d3-d2, and so 
on) of the successive “differences in consecutive distances” of 
the UE from an NeNB themselves represent the average 
velocity (after scaling by the factor 1/T) of the UE, relative to 
the NeNB, during the respective equal time intervals (t1,t2), 
(t2,t3) and so on. Accordingly, each individual “differences in 
consecutive distances” may, generally speaking, be given by 
the following vector:  
∆i-1,i = di-di-1 = |di-di-1| sgn (di-di-1)             (2) 

To illustrate this direction of motion detection scheme, we 
consider the scenario depicted in Figure 1 [13]. We assume 
that the UE measures the RSS from each NeNB at a set of 
chosen time instants through scanning. In the figure, the UE 
has four NeNBs, B, C, D and E, clustered around its SeNB A 
and the UE is moving along a straight line (shown in the solid 
line) in the direction of the arrow. Thus, referring to Eq. (2), 

the consecutive distance differences of the UE from an NeNB 
(say NeNB B), in Figure 1, if scanned during the time interval 
(ti-1, ti),will be given by  

∆i-1,i(B)= di(B)-di-1(B)=|di(B)-di-1(B)|sgn[di(B)-di-1(B)]         (3) 

Initially, we make the assumption that the UE is presently 
enjoying satisfactory signal strength from its current SeNB A. 
On detecting the drop in its RSS from SeNB, the UE decides 
to go for the handover and starts measuring (scanning) each of 
the NeNBs at T second intervals. The number of measurement 
cycles and T are chosen based on factors such as the current 
velocity of the UE, the number of NeNBs, etc. For simplicity, 
we assume that the MS initiates three consecutive scanning 
cycles at the time instants t1, t2 and t3, where t2-t1 = t3-t2 = T. 
The UE is located at the points a, b and c, respectively, on the 
line of its motion, at these time instants (refer to Fig. 1). 
During each of the scanning cycles, the UE acquires its 
distance estimates from all the four NeNBs B, C, D and E. 
Thus it obtains the three sets of approximate distances {aB, 
aC, aD, aE}, {bB, bC, bD, bE} and {cB, cC, cD, cE} at 
approximately the three successive T second intervals 
beginning t1, t2 and t3. Next, referring to Equations 2-3, the UE 
computes the “∆i-1,i” with respect to each of the four NeNBs 
(i.e. B, C, D and E in Figure 1) at time t2, at the end of the first 
inter-scanning interval (t1, t2) as ∆1,2(B) = bB – aB, ∆1,2(C) = 
bC – aC, ∆1,2(D) = bD – aD and ∆1,2(E) = bE – aE. Similar 
results are obtained for the next inter-scanning interval (t2,t3). 
At the end of the required number of measurement cycles 
(let’s say for 3 cycles in this case), the UE simply accumulates 
its relative movement samples with respect to each NeNB and 
computes the respective ‘accumulated forward movement’ 
(AFM), during the entire scanning session for each NeNB (B, 
C, D and E) as AFMB: ∆1,2(B) + ∆2,3(B), AFMC: ∆1,2(C) + 
∆2,3(C), AFMD: ∆1,2(D) + ∆2,3(D) and AFME: ∆1,2(E) + ∆2,3(E). 
It should be noted here that each term as well as each of the 
AFM values may be either positive or negative. Based on the 
calculated AFMs, the UE assigns DoM scores (SDoM) to each    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 1:     UE’s movement direction prediction scheme 
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of the individual NeNBs and the NeNB with the maximum 
AFM value gets the highest score (as the UE shows maximum  
progressive movement with respect to this NeNB; in Fig. 1 its 
NeNB C) and that with the minimum value get the lowest 
score. 

B. LoP-based Scoring and WAS Calculation 
In the aftermath of a natural disaster, most often the eNBs in 
the affected areas loose electrical power from the underlying 
grid because of an outage. Owing to that they switch to either 
the backup battery power or the generator power to sustain. 
However, because of the sudden heavy increase in traffic load 
the backup power in eNBs does not last long either and the 
whole mobile network is jammed owing to congestion until 
those eNBs die down. For such situations we assume that 
eNBs keep track of their leftover backup power and have the 
intelligence to self-estimate (even approximately) how long 
that may last based on the existing traffic load situation [2]. In 
an LTE-A network, the eNBs are able to exchange this 
information through the backbone X2 interfaces. A “X2 Power 
Indication” message is proposed that can be exchanged 
amongst each other over the X2 interface by the different 
eNBs [2]. Such a message can be particularly very useful for 
eNBs in disaster affected areas to inter-exchange leftover 
power information. 

A novel scheme of estimating the LoP of a backup battery 
in an eNB was proposed by us in [2]. In this context, a simple 
explanation of the concept of LoP is provided here. 
Conceptually, LoP is the difference between the maximum 
instantaneous power that can be delivered by a battery without 
being overloaded and the average instantaneous power that is 
being actually delivered by the battery. A large value of LoP 
indicates that the battery is capable of delivering much more 
power than what it is delivering presently, which implies that 
an eNB can invite more connections. Practically speaking, 
LoP should be measured over a small interval. Accordingly, 
from a practical perspective, LoP may be defined as “the 
difference between the average maximum power that can be 
delivered by a battery during small interval without being 
overloaded and the average power that is actually being 
delivered by the battery during the same small interval”. 

 On receiving the LoP information about different NeNBs 
from its SeNB, the UE assigns them individual scores (SLoP) 
and the NeNB with the least LoP gets the lowest score. The 
details of this LoE-based score assignment technique can be 
found in [2]. It is well known that the number of connections 
(voice and data) currently handled by an eNB, provides an 
indirect and approximate measure of the traffic load it is 
handling. Thus there is a direct proportionality between the 
number of connections being currently handled by the eNB 
and the traffic load on the eNB [15]. This observation gave us 
a clue towards making an approximate estimation of the LoP 
of the battery at any time. We assumed that an eNB has a 
capacity of handling N connections at any time. This implies 
that the eNB can support a maximum of N connections at any 
time without lowering the QoS enjoyed by the connections, 
with the battery voltage still maintaining its rated (maximum) 
value and the supplied battery power being the maximum. We 

assumed ‘n’ to be the number or count of connections that are 
currently being handled by the eNB. There is a direct 
proportionality between ‘n’ and the eNB's present call traffic 
power consumption, i.e., traffic load. Also, N >= n at any 
time. Allowing the eNB to handle more than ‘n’ connections 
at any time, will basically overload its battery causing 
noticeable deterioration in the QoS of the calls. The LoP of the 
battery of an eNB equals [(N - n) / N] * Rated power of the 
battery. Accordingly, under this particular condition of the 
traffic load (with ‘n’ active connections), the score assigned to 
the eNB, against the LoP of its battery, is given by SLoP = (N - 
n) / N. So, obviously, the more loaded an eNB is, the fewer the 
number of new connections it invites to pass through it and 
less score it gets.  

Once the UE has scored all the NeNBs against the DoM 
and LoP parameters, it calculates the WAS for each of the 
NeNB and the NeNB receiving the highest WAS is selected 
by the UE as the TeNB to handover with. However, for the 
scheme proposed in [2] the weights are manually assigned to 
the DoM and LoP parameters without taking much into 
consideration the underlying environment condition. Here we 
propose a more realistic mechanism of dynamically adjusting 
the parametric weights according to the underlying condition.   

C. Dynamic Weight Assignment by an UE 
In order to achieve a good handover performance at all 

times we propose that an UE needs to self-assess the 
underlying environment condition and self-detect the actual 
beginning of the onslaught of a natural disaster as an event. 
Depending on the condition, an UE can then change the 
assigned weights dynamically as and when needed with no 
requirement of any manual intervention. We propose a scheme 
which basically requires the detection of the actual beginning 
of the onslaught of a natural disaster as an event. Before the 
occurrence of this event, i.e., at normal times, the weight of 
the parameters should be initialized as WDoM = 1.0 and WLoP = 
0.0. This is because the parameter LoP is relevant and 
meaningful only at the times of natural disasters and not 
otherwise. However, immediately after the detection of a 
natural disaster event, the weights should be set as WDoM = 0.5 
and WLoP = 0.5. Finally, after the natural disaster subsides, the 
weightage should be reset to their normal values, i.e., WDoM = 
1.0 and WLoP = 0.0.  

UE will detect a natural disaster event and switch the 
weights accordingly in the following way. In context to the 
LoP scoring procedure discussed in the previous section, it is 
observed that although during normal times, the value of ‘n’ 
increases and decreases randomly with time (depending on 
eNB traffic loads) at a relatively slow rate, it always remains 
below the eNB capacity N (i.e., N > n). On the contrary, 
during the beginning of the onslaught of a natural disaster, ‘n’ 
tends to monotonically increase and that too at a much higher 
rate than at the normal times. Thus the event of the beginning 
of the onslaught of a natural disaster can be easily detected by 
periodically sampling the variable number ‘n’ of the count of 
connections in a eNB and accumulating the count values up to 
few samples (for example, let’s say, four samples). Although, 
during normal times, the accumulation of count samples will 

168



be relatively small, at the beginning of the onslaught of a 
natural disaster, the accumulation of connection count samples 
will be much larger. At this point, we assume that the 
sampling is always done every TS seconds (in practice, TS can 
be around 1 to 2 minutes), to generate the sequence of 
connection count samples n(t), n(t+TS), n(t+2TS), 
n(t+3TS), ..........., n[t+(p-1)TS], n(t+pTS), n[t+(p+1)TS],…, etc. 
In this context, it should be noted that LoP of an eNB only 
changes over a time frame of minutes, not seconds as much of 
the LoP calculation depends on the present load of an eNB, 
which only changes over minutes [13]. Hence the value of the 
accumulated count of samples M at the time (t+pTS) may be 
given by 

M = ∑ ��� � �������
�����                             (4) 

When the accumulated count of samples M will exceed an 
appropriately chosen threshold value, the desired event will be 
considered to have occurred and, accordingly, UE will 
automatically set the weights of the parameters to WDoM = 0.5, 
WLoP = 0.5. Then, the UE will calculate the WAS and choose 
the highest value NeNB as the TeNB for handover. Similarly, 
after natural disaster subsides, the weights will be reset to 
(WDoM = 1.0, WLoP = 0.0). Both these setting and resetting of 
the weights will be carried out through program interrupts. 

IV. SIMULATION MODEL VALIDATION 

A Python-based LTE-A simulator has been developed to 
validate the proposed handover mechanisms. We primarily 
aimed at validating the system model ensuring that the 
proposed scheme is resulting in the right choice of the TeNB 
based on the two parameters, DoM and LoP, as per the 
algorithm. In the simulation topology, 400 cells are considered 
in a 20 x 20 square array, with each cell having one eNB in it. 
A 500 m of inter-eNB distance is considered. The simulation 
runs on a flat terrain, where movements are defined in steps of 
10 m. Also, the distance between two grid lines is arbitrarily 
assumed to be 10 m. Coverage overlap exists between 
adjacent eNBs in the simulation terrain and all eNBs are 
assumed to be connected to the backbone network. We assume 
that each eNB has eight NeNBs around it (except the ones at 
the boundary of the terrain) and each of them is aware of its 
location in the terrain. 

We considered simulating the movements of UEs in 
different situations where the user is moving (i) along the 
motorways or the state highways with the roads being 
relatively straight and not zigzag or random, (ii) in the cities 
with the roads/movements being straight/curvy/zigzag but not 
random; and (iii) in the city centre where the roads are laid out 
in the form of grids. We, thus, considered three different 
mobility models, namely, the Random Waypoint model, the 
Random Direction model and the Manhattan model, to 
simulate the realistic movements of the UE. In accordance to 
the underlying mobility model, the UE randomly moves 
through different paths and performs multiple handovers. For 
every path of the UE, we have tracked its movement carrying 
out multiple successive handovers with different NeNBs (one 
of these NeNBs after handover becomes the successive SeNB 

for the UE). For every handover the UE carries out, the 
simulation works as per the explanations in Section IV to 
compute the individual scores of NeNBs. The Walfisch-
Ikegami model [14] is implemented to simulate the path loss 
behaviours of the UE. Every eNB in the terrain is assigned a 
load value and the LoP is estimated based on that. As 
primarily we aim to validate the reliability of this scheme, i.e., 
whether the UE is selecting the right TeNB according to our 
scheme, we have recorded whether the eNBs with which 
handovers are actually performed, match the eNBs as per the 
prediction of our scheme (in that case we call it a ‘correct’ or 
reliable handover) or not (an ‘incorrect’ handover). The results 
presented here are based on the method of multiple 
independent replications each of which continued until the UE 
stopped its movements at the end of the time frame for each 
simulation run. 

Preliminary simulation results presented in Fig. 2 show the 
percentage of correct handovers for our proposed scheme 
against the UE’s movement paths following the three different 
mobility models. SWAS for each NeNB is calculated against 
two weight ratios assigned dynamically to the two parameters 
by the UE depending on the underlying environment 
condition, i.e., non-disaster or disaster situation. For the 
former the DoM:LoP weight ratio is 100:0, while the weight 
ratio for the latter is 50:50 as discussed in Section III. As 
shown in Figure 2, the percentage of correct number of 
handovers is always better during a non-disaster situation 
compared to a disaster situation. This is true for all the three 
mobility models and is primarily due to the fact that eNB LoP, 
which is estimated based on the random eNB load values, is 
not assigned any weightage during a non-disaster situation and 
DoM received 100% weightage value. Of the three mobility 
models, Manhattan model offered the highest handover 
success rate both in non-disaster and disaster situations. The 
success rate during non-disaster situations is more than 89% 
and around 65% if there is a disaster. Compared to this, the 
handover success rates for the other two mobility models are 
much less. This is due to the square grid like nature of the 
Manhattan Model corresponding to the field also being 
arranged in a square grid. A better prediction is made for 
motion in 45 degree intervals than any other angle as the grids 
of eNBs naturally form these angles themselves. Also, while 
choosing the next random direction to move, in case of the 
Manhattan model, where the roads are in the form of grids, the 
UE just has to choose one random direction out of only four 
different directions available to choose from. So, the time 
taken to make each of these choices is shorter than the time 
taken in case of the other two mobility models. 

V. CONCLUSIONS 

In this paper we proposed an LTE-A based UE-controlled 
and eNB-assisted handover mechanism suitable for 
communication in the natural disaster scenarios. The proposed 
mechanism prolongs the overall lifetime of the battery 
backups in the affected eNBs so that the communication 
network could work little longer enabling the people stuck in 
the affected areas to make some urgent calls. Simulation  
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Fig. 2. Handover Results for Selection of TeNB 
 
studies have shown that the proposed scheme can offer up to  
65% handover success rate in disaster situations and about 
89% success rate in non-disaster environments. The main 
benefits/features of the proposed handover scheme are briefly 
highlighted below. The system can self-detect the occurrence 
of a natural disaster and dynamically adjusts the weights of 
two parameters namely, DoM and LoP depending on the 
underlying network environment used. It can also self-predict 
its own DoM and finally self-select the best suitable TeNB for 
handover depending on the highest WAS assigned to an eNB. 
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