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Abstract—Elasticity can be considered as one of the main

features of cloud computing. It can be described as the ability

to dynamically provision (or de-provision) resources to meet

an application’s demand. Cloud-native platforms support this

feature, allowing applications to be vertically or horizontally

scaled. However, evaluating the performance of elasticity in cloud-

native platforms is not a trivial task. These platforms tend to

focus on providing higher abstractions to their customers, which

typically results in the absence of low-level metrics that are

required for measuring and evaluating elasticity performance.

Therefore, this paper presents SABER, an infrastructure-agnostic

benchmark tool for elasticity evaluation of Cloud Foundry based

platforms. SABER collects low-level metrics regarding elasticity

typical procedures (e.g., allocation and de-allocation of resources)

and can be used to evaluate elasticity on different cloud in-

frastructures. Furthermore, we present an evaluation of SABER

running on Pivotal Application Service, a Cloud Foundry based

platform provided by Pivotal Web Services.

Keywords—Elasticity, cloud-native platforms, Pivotal Cloud
Foundry, Cloud Computing and Benchmarking.

I. INTRODUCTION

Cloud computing has emerged with popularity and pro-
viding many benefits, such as elasticity and resiliency. Cloud
computing is defined as a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of
configurable computing resources, including networks, servers,
storage, applications, and services that can be rapidly provi-
sioned and released with minimal management effort or service
provider interaction [1]. As such, virtualization is presented as
a key component of cloud computing, enabling the pooling
and allocation of hardware resources dynamically [2].

The virtualization technology is used to unify and manage
all the available resources according to users’ demand [3].
Currently, instance replication is the most widely used method
for providing elasticity in cloud applications [4]. Elasticity is
also considered an essential characteristic of cloud comput-
ing [1], and it is defined as the degree to which a system is
able to adapt to workload changes by provisioning and de-
provisioning resources in an autonomic manner, such that at
each point in time the available resources match the current
demand as closely as possible [5].

Due to these characteristics and benefits, many organiza-
tions are using cloud computing [6].

The way we develop software is changing to meet emerging
cloud computing technologies. Cloud native is a new approach
that has emerged as a solution to extract the maximum
potential from cloud computing [7] [8] [9]. Contrary to a
monolithic application, it is decomposed into smaller modules
called microservices, and each microservice runs in a container
in order to optimize resource utilization [10] [11]. Cloud-native
applications are designed to run on cloud-native platforms,
which runs on top of a cloud computing infrastructure.

Many elasticity mechanisms for cloud computing environ-
ments have been proposed in the literature [4]. However, mon-
itoring performance and collecting metrics related to elasticity
from cloud-native platforms is not a trivial task. Platforms
like OpenShift [12], Heroku [13] and Cloud Foundry [14]
usually do not provide data related to the elasticity (e.g.,
the provisioning time of instances). Besides, Cloud Foundry
is infrastructure-agnostic, which means it can run on top of
different public and private cloud infrastructures, providing
different elasticity results. To the best of our knowledge, there
are still no services or tools aimed at evaluating the elasticity
of Cloud Foundry based platforms running over different
infrastructures, such as Google Cloud Platform, Amazon Web
Services, Microsoft Azure or VMware vSphere. This paper

presents SABER, an infrastructure-agnostic benchmark

tool for elasticity evaluation of Cloud Foundry based

platforms. As such, we can also highlight the following

contributions:

• SABER allows operators to get insights on how chang-
ing the underlying infrastructure affects the elasticity
delivered by Cloud Foundry platforms.

• SABER takes advantage of Cloud Foundry’s built-
in mechanisms to provide a set of metrics related to
elasticity without requiring any extra configuration.

The remainder of this paper is organized as follows:
Section II provides an overview of elasticity, and cloud-
native applications and platforms. Section III presents SABER
architecture design and features, along with the metrics and
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outputs description. Section IV presents an evaluation scenario
used to validate SABER. This section also presents the results
and a discussion where we provide insights on the evaluation
results. Related work is provided in Section V. Conclusions
and future work are presented in SectionVI.

II. BACKGROUND

There are several definitions in the literature for elasticity.
Al-Dhuraibi et al. [15] define elasticity as a system’s ability
to add or remove computing resources of an application to
adapt to real-time load variation, such as CPU cores, memory,
virtual machines, and container instances. Similarly, Li et al.
[16] define elasticity as the ability of a system to adapt to
workload changes that may occur in a short period of time.
Aisopos, Tserpes, and Varvarigou [17] also define elasticity as
the ability of a provider to allocate the amount of memory,
CPU, and disk space required for a specific job dynamically,
and therefore, its performance and capabilities may vary based
on the demand for an application’s computational resources.
There are two types of elasticity:

• Horizontal elasticity, also known as scale-out, which
consists of adding or removing instances associated
with an application [18].

• Vertical elasticity, also known as scale-up, which
consists of adjusting the computing resources available
for an application based on the demand [15].

Although most of modern cloud platforms adopt several
elasticity mechanisms, the effectiveness of these mechanisms
can be directly affected by specific infrastructure character-
istics. For instance, in a scenario where two infrastructure
providers have the same amount of resources for applications,
one may deliver elasticity more effectively than the another by
using more powerful hardware components such as processors
that operate in higher frequencies. Therefore, there is a concern
around elasticity benchmark tools that provide means for
evaluating the elasticity of cloud-native platforms based on
specific infrastructure-level characteristics.

In Cloud Foundry applications, the main component for
delivering elasticity is called App-Autoscaler [19]. This com-
ponent orchestrates monitoring and provisioning mechanisms
available for Cloud Foundry in order to adjust applications re-
sources according to prior specified CPU, memory, throughput,
and response time requirements.

III. SABER ELASTICITY BENCHMARKING TOOL

SABER aims to provide a set of metrics related to the elas-
ticity of applications running on cloud-native platforms based
on Cloud Foundry, which is one of the most prominent cloud-
native platforms nowadays. Figure 1 illustrates the SABER
architecture design and process flow. The overall structure of
the architecture design is based on a client-server architecture:
The client is a local machine running SABER benchmark,
and the server refers to cloud plataform, where a sample
application is deployed. In the server-side, SABER provides
a sample application implemented in Ruby on Rails that is
deployed in the Cloud-native platform for evaluating it.

On the client-side, SABER uses an input file, where the
user can define execution parameters. SABER internally uses
the Siege Benchmark to stress the application deployed in the
cloud by increasing its resources demands and generate the
elasticity metrics. Siege Benchmark is an open-source tool
developed to stress an application by simulating concurrent
users and gathering metrics such as throughput and latency.
While in execution, SABER monitors application’s resource
demands using the Cloud Foundry API, obtaining detailed
information.

Before running SABER, the user must have an environment
correctly setup. So, the user must first run “Deploy Script” to
deploy the sample application and configure App Autoscaler
instance, which then binds this instance to the sample appli-
cation one, and finally, creates a memory rule to scale the
application. This script requires the user to fill out his platform
credentials. Right after setting up the testing environment,
the user must provide the information (input data) needed to
run SABER correctly, which includes the application route,
the environment specification, and testing cycles definition, as
described in III-A.

After this, the Siege benchmark begins stressing the ap-
plication and getting the metrics. When Siege execution is
completed, SABER displays the results and also generates a
CSV (Comma-separated values) file with them. The CSV file
can be used to get the resource demands and the resource
supply in each instant analyzed by the benchmark tool, mak-
ing it possible to create different charts and use it in data
analysis. In order to provide an overview of all the results, the
benchmark tool also automatically generates a chart reporting
the resources demand and the resources supply.

A. Input File

SABER configuration is based on a JSON-based input
file called input.json. This file contains necessary environment
information, such as the name of the application (parameter
app name), the location where the application is installed
(parameter app env), and the route to access the application
(parameter app route).

The input file is also used to define how the benchmark will
stress the application. SABER defines a set of demand cycles,
where the user can set the number of simulated concurrent
users that will make requests during a period of time for
each cycle. Each cycle has the following parameters: time,
which defines for how long time the concurrent users of
this cycle will perform requests (cycle duration in seconds);
concurrent users, which is the number of users that will be
simulated by the Siege benchmark during this cycle. SABER
requires at least one cycle, but the user can create multiple
cycles.

Figure 2 presents an example of the input.json file, where
two cycles are defined. The first cycle is defined with 1000
concurrent users for 60 seconds and the second cycle is defined
with 0 concurrent users for 60 seconds as well. Therefore, the
first cycle increases the resource demand, while the second
cycle decreases the resource demand and makes it possible to
evaluate the scaling down behaviour on the application.
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Fig. 1. SABER architecture design.

1 "app_name": "grin",
2 "app_env": "api.run.pivotal.io",
3 "app_route": "grin.cfapps.io",
4 "cycles": [
5 {
6 "time":"60",
7 "concurrent_users":"1000"
8 },
9 {

10 "time":"60",
11 "concurrent_users":"0"
12 },
13 ...
14 ]

Fig. 2. Example of input.json that is used to define the application name,
environment name, application route, and all the test cycles.

B. Output Metrics

The following output metrics provided by SABER:

• Provisioning time: The time that an application re-
quires to attend the workload demand. It is important
to emphasize that it is not only the time to provide
a new instance but all the time needed to provide an
instance with the application running and receiving
requests from the load balancer.

• Deprovisioning time: The time that the platform
needs to reduce the number of resources provided to
the application when the demand for computational
resources decreases. This metric provides an insight
into how long the platform needs to detect the resource
decrease.

• Average amount of provisioned resources: The av-
erage number of overprovisioned resources. It can be
used to verify if the amount of resources defined to
each instance is adequate in order to attend the current
demand.

• Accumulated quantity of provisioned resources:
The accumulative number of provisioned resources,
allowing administrators to verify the amount of idle
computing resources during a period.

• Number of concurrent users: This metric is not
directly related to elasticity. Nevertheless, the number
of concurrent users in each cycle can be used to verify
the impact that different amounts of users can generate
regarding the resources demand of applications.

• Failed requests: The number of failed requests when
the quantity of concurrent users increases in a short
time.

IV. EVALUATION

In order to validate SABER, we performed an experiment
for evaluating the elasticity of Pivotal Application Service [20],
which is a Cloud Foundry based platform that focuses on
providing a complete environment to run cloud-native appli-
cations.

Nowadays, Pivotal Cloud Foundry is a master brand that
consists of three main platform services: Pivotal Application
Services (PAS), Pivotal Container Service (PKS) [21] and,
Pivotal Function Service (PFS) [22]. PAS allows customers
to deploy cloud-native applications, while PKS provides an
abstraction for containers that can be used to execute con-
tainers, ISV applications, ElasticSearch and Apache Spark
on the PCF platform. Lastly, PFS is a Serverless service
that provides an environment for executing functions in the
cloud through various types of events. In this study, we use
a Pivotal Application Service distribution provided on Pivotal
Web Services, which runs on EC2 servers.

A. Proof-of-Concept

As previously mentioned, SABER provides a sample ap-
plication for evaluating the Cloud Foundry platform. However,
the user can define its own application for playing this role.
For this proof-of-concept experiment, we used the sample
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application offered by SABER, which requires 128MB of
RAM. As the free account on Pivotal Web Service provides
a maximum of 2GB of memory, it is possible to have 16
instances of our application running in parallel. Different
cycles were evaluated in the experiments. The specification
of each scenario is presented in Table I. Each configuration
scenario (A, B, C, and D) was executed ten times, and we
considered the average of all the collected results.

App Autoscaler was set to scale up when the memory
usage was higher than 80% and scale down when the memory
demand was less than 70%. We adopted this configuration
since the application starts with the usage of 62% of the
memory supplied. The tests were defined in this way in order to
verify the scale-up, and the down of this application, where the
first cycle has more concurrent users to increase the resources
demand, while the latter has less concurrent users in order to
decrease the resources demand.

The values of the Accumulated Amount of Overprovi-
sioned Resource increased during the test per different sce-
nario. These results were expected, since this metric collects
the amount of overprovisioned resources on each application
instance, in each verification (5 seconds), of our benchmark
tool. Therefore, the longer the benchmark tool executes, the
higher will be the number of resources accumulated. The
complete result is illustrated in Figure 3. Also, according to
the results on the metric Average Amount of Overprovisioned
resources, during the execution of the three configurations, the
obtained values were similar.
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Fig. 3. Accumulated amount of the overprovisioned resources and the average
amount of overprovisioned computing resources in MegaBytes.

Besides, when the number of concurrent users increases,
more instances will be allocated to supply the resource de-
mand, and more resources might be accumulated. Such event
can be seen in scenario B, where there are more concurrent
users. The time to provision resources was also evaluated
during the tests by the developed benchmark tool. As already
emphasized, the App Autoscaler service performs just hor-
izontal elasticity since the application needs to be restarted
when the vertical elasticity is performed. The time to create
a new application instance, configure routes, and configure
a load balancer is higher than the time needed to delete an
instance, which is expected. The provisioning time of instances

are presented in Figure 4.
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Fig. 4. Provisioning time.

During each benchmark verification, if the resource de-
mand becomes higher than the limit, a new instance is provi-
sioned, and the verification process stops for 30 seconds. If the
resource demand still increasing during this period, the amount
of time the platform will need to provision more resources will
be higher.

0

92

204

0

100

200

300

A B C

Scenario

Fa
ile

d 
R

eq
ue

st
s

Fig. 5. Number of failed requests for each evaluation scenario.

In our evaluation, we can also note that the number of
failed requests increases as the number of concurrent users
accessing the application grows (Figure 5). In scenario A, we
have no failed requests since the tests were performed with a
smaller number of users. However, in scenario B, several failed
requests were identified because the tests were performed
during more time (120 seconds). So, the application needs to
scale, as such, as each instance needs a amount of time to boot
and some requests fail during this period. Scenario C presented
the highest number of failed requests as it involves stressing
the application for a longer period, while a higher number of
users are accessing it.

V. RELATED WORK

Several studies have presented benchmark tools in order
to evaluate applications and services running on the cloud.

381

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on December 21,2021 at 13:25:01 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I. TESTBED SPECIFICATION.

Scenario Number of Cycles Execution Time Concurrent Users

A

2

60 10
0

B 120 10
0

C 240 30
480 5

Cooper et. al [23] created a standard benchmark tool and
benchmark framework to assist in the evaluation of different
cloud systems. The authors emphasize their focus on serving
systems. Two benchmark tiers were adopted for evaluating the
performance and the scalability of cloud serving system. The
performance tier focuses on the latency of requests, while the
scaling tier aims to examine the impact in the performance
when more machines are added to the system. In order to
evaluate the benchmark tool, a set of tests was defined includ-
ing different database systems, such as Cassandra, HBase, and
PNUTS.

In the same scenario, Li et. al [24] describes CloudCmp,
a benchmark suite developed to systematically compare the
performance and cost of cloud providers along dimensions that
matter to customers. Regarding elasticity, the authors divide
latency into two segments: a provisioning latency and a booting
latency. The authors also present the comparison results among
the following four providers: Amazon Web Services, Microsoft
Azure, Google App Engine, and Rackspace CloudServers. Be-
sides, this benchmark suite provides several metrics, including
scaling latency, response time, throughput, time to consistency,
and cost per operation.

Besides, there are several open source benchmark tools
that aim to assess the performance of systems running in the
cloud relative to scalability, such as the Benchmark Rally [25].
This tool provides a framework for performance evaluation and
benchmarking of each OpenStack component, as well as pro-
vides an evaluation of a complete production OpenStack cloud
implementation. Rally automates and unifies the deployment of
multiple OpenStack nodes, cloud verification, and testing and
profiling. Using this tool, the user can check how OpenStack
would work on a larger scale. Rally can be used through a
lightweight and portable CLI application or as a set of tools
that present the web user interface.

Cloud Suite [26] is also an open source cloud benchmark
tool for cloud computing and it was developed in order to pro-
vide real-world software stacks and represent real-world setups
evaluation. The third release consists of several applications. It
includes benchmarks that represent massive data manipulation
with tight latency constraints, such as in-memory data analytics
using Apache Spark. The tools selected in this suite are used
to characterize the inefficiencies in the microarchitecture of
modern server CPUs used in a cloud computing environment.
Among the tasks included in this set of benchmarks, we can
cite data serving, MapReduce, media streaming, SAT solving,
web hosting, and web search. These components are open
source applications as well. In the same context, this suite
was developed to provide an easy deployment into private

and public cloud platforms since it offers Docker containers
images for all CloudSuite benchmarks, such as web search,
data caching or data analytics benchmark.

Similar to Cloud Suite, HiBench is also an open source
benchmark suite for Hadoop. This tool consists of a set of
Hadoop programs, including both synthetic micro-benchmarks
and real-world applications [27]. The application currently
has several workloads classified into four categories: Mi-
crobenchmarks, Web Search, Machine Learning, and Data
Compression. Microbenchmarks provide several algorithms,
like Sort, WordCount, Sleep, enhanced DFSIO, and Tera-
Sort programs contained in the Hadoop distribution. These
benchmarks are used to represent a significant subset of real-
world MapReduce jobs. Web Search uses PageRank and Nutch
indexing benchmark tools. These benchmark tools are adopted
because the large-scale search indexing is one of the most
significant uses of MapReduce. It is important to emphasize
that the HiBench also provides several other machine learning
benchmark alternatives, like Linear Regression and Gradient
Boosting Trees.

To the best of our knowledge, SABER complements the
existing benchmark tools as it allows operators to evaluate
how good Cloud Foundry’s elasticity mechanisms behave on
different infrastructures. SABER provides several elasticity
metrics, including provisioning and deprovisioning time, aver-
age amount of provisioned resources, and accumulated amount
of provisioned resources. Therefore, considering that Cloud
Foundry based platforms are meant to run on any infras-
tructure, SABER stands out by providing means to evaluate
which infrastructure would best satisfy customers’ elasticity
requirements.

VI. CONCLUSION AND FUTURE WORK

Elasticity is a vital characteristic for cloud-native applica-
tions as it allows wisely provisioning resources according to
the demand.

In this paper, we present SABER, an elasticity benchmark
tool that allows operators to analyze how good Cloud Foundry
based platforms behave on different infrastructures. SABER
provides a set of metrics for evaluating elasticity, including
provisioning and deprovisioning time, the average amount
of provisioned resources, and the accumulated amount of
provisioned resources.

As future work, we are looking forward to extending
SABER to support other metrics, including CPU usage, which
may provide specific insights for infrastructure operators.
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