

Dynamic Multicast Trees

Jorge A. Cobb

Department of Computer Science (EC 31)
The University of Texas at Dallas

Richardson, TX 75083-0688
jcobb@utdallas.edu

Abstract
We present a family of protocols to build a multicast tree
in a network of processes. No processing or storage
overhead is required for processes not included in the
tree. The overhead of processes in the tree consists solely
of the periodic exchange of a pair of messages with their
parent in the tree. To choose the processes that constitute
the tree, we take advantage of the existing unicast routing
tables. In addition, our protocol family distinguishes itself
from other protocols in three ways. First, the protocols
are proven correct. Second, the integrity of the multicast
tree is preserved as the tree adapts to changes in the
unicast routing table. Third, the protocols are self-
stabilizing, i.e., they tolerate all transient faults.

1. Introduction
We present a family of protocols to build a multicast

tree in a network of processes. The network consists of a
set of processes interconnected by point-to-point
communication channels. Multicast routing has many
applications, such as audio and video conferencing [16],
replicated database updating and querying, and resource
discovery [13].

In multicast routing, a tree is constructed which spans
all the nodes of a multicast group. Each node in the tree
corresponds to a process in the network, and each edge in
the tree corresponds to a communication link between two
processes. For simplicity, we present a protocol for a
single process group. The extension to multiple groups is
straightforward.

To build a multicast tree, we take advantage of the
existing unicast routing tables of each process, and use
them as a guide in the construction of an efficient tree. The
unicast routing tables define a forest of spanning trees, one
tree for each process in the network. The multicast tree is
constructed as a subgraph of one of these spanning trees.

The maintenance and construction of the multicast tree
requires minimal overhead from the network. Processes
involved in the multicast tree simply periodically
exchange a pair of messages with their parent in the
multicast tree, and store the process id's of their parent and

children. Processes not involved in the group tree incur no
message or storage overhead.

Many unicast routing algorithms exist in the literature,
e.g., [1], [2], [11], [12], [15]. These algorithms have many
differences. However, common to all is the ability to
change the routing tables in response to varying network
conditions, such as fluctuations in traffic loads. To make
our protocols suitable for operating in conjunction with
any unicast routing protocol, we only make the following
simple assumption about unicast routing. The unicast
routing tables may temporarily fluctuate, but they
eventually converge to a value that, for each pair of
processes p and q, defines a path from p to q.

To maintain the routing efficiency of the multicast tree,
when the unicast routing tables change, the tree is
restructured to reflect these changes. For example,
consider a multicast distribution of a video image. If the
topology of the network changes, and a network path with
greater bandwidth is created between the source of the
video and its destinations, then the multicast tree should
converge and use this new path.

In addition, our protocols have the desirable property of
maintaining the integrity of the multicast tree while the
unicast routing tables change. That is, no temporary loops
are introduced, the tree is always connected, and no
member of the multicast group is temporary removed from
the tree. In the above example, the multicast tree would
adapt itself to the best network path without interrupting
the flow of video to the members of the multicast group.

Building multicast trees based on the unicast routing
tables is an existing technique. In [3] [4], a tree is initially
built from the unicast routing tables. However, the tree is
static, and does not adapt to changes in these tables.
Obtaining a broadcast tree from the unicast routing tables
was first presented in [8]. In [6] [7], the broadcast tree is
trimmed into a multicast tree that excludes those processes
not needed to reach the members of the group. However,
as the unicast routing tables change, the tree may lose its
integrity and become disconnected, until the unicast
routing tables converge to a stable value.

In [5], we presented a multicast tree protocol that adapts
the tree to changes in the unicast routing tables, without

compromising the integrity of the multicast tree. In this
paper, we present a protocol, which, as the protocol in [5],
maintains the integrity of the multicast tree. However, it
has the following powerful additional features.

First, the root of the tree is not fixed. Previous protocols
require the root of the tree to be a constant. However, the
location of the root is crucial for the efficiency of the
protocol, and the best choice for the root node may vary
over time. In our protocol, the root of the tree is allowed
to change, and during the change the integrity of the tree is
maintained. Second, our protocol is self-stabilizing [9],
i.e., if started from any arbitrary initial state, it converges
to a normal operating state. This makes the protocol very
robust against transient failures, such as link failures and
recoveries, and the reception of corrupted messages that
passed their CRC check. These failures may cause the
system to be thrown into an arbitrary state. Nonetheless,
the protocol will converge to a good operating state.

We present our family of multicast routing protocols in
three steps. First, we present a basic version of the
protocol, which maintains a multicast tree and preserves
its integrity. Then, we enhance the protocol by allowing
the root of the three to be dynamically chosen. Finally, we
present the self-stabilizing version of the protocol.

Due to space restrictions, the correctness proofs of these
protocols may be found in [17].

2. A Loopless Multicast Protocol
In this paper, we present a family of multicast tree

protocols. Each protocol consists of a set of processes
which exchange messages via communication channels.
The processes and their channels form a network that may
be represented as an undirected graph. In this graph, each
node1 represents a process, and an edge between processes
p and q represents two first-in-first-out communication
channels, one from p to q and another from q to p.

In this section, we present a multicast tree protocol,
similar to the one we presented in [5]. It is based on a
fixed root, it adapts to changes in the unicast routing
tables, and preserves the integrity of the multicast tree.

We present the protocol in three steps. We first present
the technique to build a multicast tree from the existing
unicast routing tables. We then show how to ensure each
node always has a parent in the tree. Finally, we show how
to eliminate temporary loops in the multicast "tree",
therefore ensuring we have a well-defined tree at all times.

3.1 Using The Unicast Routing Tables
Consider the network in Figure 1, where edges

represent bi-directional channels between processes.
Consider process s. The arrows correspond to the next-hop
neighbor to reach process s according to the unicast

1 Since the network is viewed as a graph, we use the terms node and
process interchangeably.

routing tables of each process. That is, the next-hop
neighbor of p to reach s is q, the next-hop neighbor of q to
reach s is r, and the next-hop neighbor of r to reach s is s
itself. Note that the edges denoted by the arrows form a
spanning tree.

We take advantage of the spanning tree defined above
to build a multicast tree. To do so, we designate a fixed
process in the network as the root (e.g., s = root above).
The parent of each process p in the multicast tree is the
next-hop neighbor in the unicast path from p to the
designated root process. Thus, the multicast tree is a
subset of the unicast spanning tree whose root is also the
designated root process.

Note that the multicast tree must contain all members of
the process group, plus any additional processes required
to complete the tree. Process p chooses to join the tree if p
is a group member, or if it has a neighbor which has
chosen p as its parent. If neither of these is true, p removes
itself from the multicast tree.

To build and maintain the multicast tree, each process p
requires the following variables: p.par, p.chil, and p.next.
Variable p.par stores the process identifier of p's parent in
the tree. Variable p.chil is a set of process identifiers, and
it contains the identifiers of the children of process p in the
tree. Variable p.next is the unicast routing table of p, that
is, p.next[d] gives the next-hop neighbor of p to reach
destination d.

Obtaining the values of p.par and p.chil is performed as
follows. If process p chooses to join the tree, p sends a
parent message to neighbor p.next[root], i.e., to its next-
hop neighbor to the root of the tree, and assigns this
neighbor to p.par. Let q = p.next[root]. When q receives a
parent message from p, it adds p to q.chil, and then returns
a child message to p.

Each process sends a parent message periodically to its
parent. If a process does not receive a parent message
from a child within some timeout period, it removes the
child from its child set. If a process has no children and is
not a member of the multicast group, then it removes itself
from the multicast tree by setting its parent variable to nil.

From the above, all network edges (p, p.par) will form a
multicast tree, and also, q ∈ p.chil if and only if q.par = p.

When the unicast routing tables change, problems in

p

qr

s

Figure 1

unicast routing may arise, such as temporary routing
loops. We assume these problems are temporary, and the
unicast routing tables will converge to a consistent value.

If the unicast spanning tree changes due to changes in
the unicast routing tables, the multicast tree changes
accordingly, and becomes a subgraph of the new spanning
tree. However, while these changes occur, the multicast
tree may become disconnected, disrupting the flow of data
messages. We next address how to overcome this problem.

3.2 Multicast Tree Integrity
In this section, we enhance our basic protocol by re-

stricting when a process changes its parent. The purpose is
to ensure that a process that has joined the multicast tree
remains connected to the tree while changes in the unicast
routing tables occur.

To show how a process becomes disconnected, consider
Figure 2. Assume p.par = q, p.next[root] = r, and all edges
in the unicast path from p to the root are not in the
multicast tree. Once p chooses r as its parent, q may time
out and remove p from its child set, before all the edges in
the unicast path from p to the root have been added to the
multicast tree. This temporarily removes p from the tree.

To prevent this, p should not change its parent from q to
r until r is connected to the multicast tree. We say that a
process r is connected to the multicast tree if r.par ≠ nil.

Recall that process r chooses to join the multicast tree if
either it is in multicast group, or if its child set is not
empty. To ensure r's child set is not empty, p sends a
parent message to r as if r were its parent. Then, r adds p
to its child set, and returns a child message to p. Each
child message will include a Boolean bit indicating if the
sender is connected to the multicast tree. If p receives a
child message from r with the connected bit equal to true,
then p may safely choose r as its parent.

2.3 Loopless Multicast tree
It is easy to show that for the above protocol, if a

process p has p.par ≠ nil, then the path obtained by
following the parent variables starting from p ends in the
root node, or p is involved in a temporary loop. That is,

the parent variables could form a loop, in which case p is
temporarily unreachable from the root of the tree.

To see this, consider the system state depicted in Figure
3. In this state, p sends a parent message to r, and r sends a
parent message to s. Then, s returns a child message to r,
and r sets r.par = s, and r returns a child message to p.
Process p sets p.par = r, completing the loop. Note that the
loop is possible even if the unicast routing tables are loop-
less, as shown in the figure. Thus, restricting the multicast
tree protocol to work only in conjunction with a loop-less
unicast routing protocol is not sufficient. The problem
must be solved by further refining the protocol.

The refinement consists of introducing a diffusing com-
putation for loop avoidance. Each process p maintains an
integer timestamp, p.ts. The root process increments its
timestamp periodically. A non-root process may not incre-
ment its timestamp on its own. Rather, each process
includes its timestamp in each child message. If a process
receives a timestamp from its parent that is larger than its
own, it sets its timestamp to the parent's timestamp.

Assume the routing tables indicate that p should choose
a different parent. Call this new parent the tentative parent
of p. In this case, p ignores the timestamps received from
its current parent. When p receives a child message from
the tentative parent, with a timestamp greater than p's
timestamp, p changes parents by setting p.par to the
tentative parent, and sets p.ts to the received timestamp.

The reason no loops are created is simple. All processes
in the multicast subtree rooted at p have a timestamp at
most p's timestamp. When the tentative parent provides to
p a timestamp greater than p's timestamp, it indicates to p
that it is not part of the subtree of p. Thus, choosing this
neighbor as a new parent cannot form a loop.

2.4 Protocol Specification
We next specify the loopless multicast routing protocol.

We begin with a brief description of our notation. Each
process consists of a set of actions, separated by the
symbol []. Each action is of the form

guard
�

 command
When the guard is true, the command is enabled for

group tree edges
unicast routing path

p

q

root

r

Figure 2: Changing Parents

p q root r

t s

unicast spanning tree

mult icast tree

Figure 3: Temporary Loops in Multicast Tree

execution. Commands from different actions are executed
one at a time and in any order, provided the command is
enabled when chosen for execution, and no enabled
command is continuously ignored for execution.

The channel from process p to process q is denoted
ch.p.q. The number of messages of type msg_type in this
channel is denoted msg_type#ch.p.q. We assume channels
may lose and reorder messages, but not duplicate them. A
similar notation may be found in [10].

Process p below represents any network process. Its
variables are par, chil, and ts, which we explained earlier.
It has three inputs: mbr, which indicates if p is currently a
member of the multicast group, ngh, which indicates the
neighbors of p, and route, which is p's unicast routing
table. Also, p has an identifier, join, which is a shorthand
for the expression mbr ∨ chil ≠ empty.

If p is the root process, then always par.p = p, that is,
the parent of the root process is itself (it cannot be nil
since the root must always be connected to the tree).

The specification of process p is as follows.
process p
const
 root : process_id
inp
 mbr : boolean,
 ngh : set of process_id - { p} ,
 route : array [process_id] of element of ngh
var
 par : element of ngh ∪ {p, nil}
 chil : subset of ngh,
 ts : integer
 j : ngh
always
 join : (mbr ∨ chil ≠ empty)
begin
 /* refresh parent */
 timeout (parent#ch.p.par + child#ch.par.p) = 0 ∧
 par ≠ nil ∧ par ≠ p

�
 send parent to par

[]
/* request new parent */

 timeout par ≠ p ∧ join ∧
 (parent#ch.p.route[root] + child#ch.route[root].p) = 0

�
 send parent to route[root]

[]
/* receive parent message */

 rcv parent from any j
�

 chil := chil ∪ { j} ;
 send child(par ≠ nil, ts) to j
[]

 /* receive child message */
 rcv child(b, t) from any j

�

 if ts < t ∧ b ∧ j = route[root] ∧ join then
 ts := t; par := j
 fi
[]

 /* disconnect from lost child * /
 timeout (some j ∈ chil ∧ child#ch.p.j = 0 ∧ j.par ≠ p)

�

 chil := chil - { j}
[]

 /* leave the tree * /
 ¬join ∧ par ≠ p

�
 par := nil

[]
 /* root creates the next timestamp * /

 par = p
�

 ts := ts+1
end

The first action consists of a timeout. This action is
enabled if there are no parent messages from p to its
parent, there are no child messages from p's parent to p, if
p is connected to the tree, and if p is not the root. If so, p
sends a new parent message to its parent, p.par.

Even though this timeout guard refers to the contents of
the channels (which are not visible to a process in a
message passing system), this guard can be implemented
using conventional timers, as explained in [10].

The second action is also a timeout action. It sends a
parent message to the next-hop neighbor along the unicast
path to the root, provided p chooses to join the tree.

The third action receives a parent message from any
neighbor. Thus, p adds the neighbor to its child set, and
returns a child message with p's timestamp and a bit
indicating if p is connected to the tree.

The fourth action receives a child message from any
neighbor. Process p adopts this neighbor as its new parent
if it's the next-hop to the root and has a greater timestamp.

The fifth action is also a timeout. If p waits long enough
without receiving a parent message from a neighbor, and
the neighbor is a child of p, it means the neighbor no
longer considers p as its parent. Then, p removes the
neighbor from its child set. Again, an action of this form
can be implemented with conventional timers [10].

In the sixth action, process p leaves the multicast tree
by setting p.par to nil, provided it is not supposed to join
the multicast tree (i.e., ¬join), and, obviously, if it is not
the root, since the root should always be part of the tree.

Finally, in the last action, if process p is the root
process, it may increase its timestamp at any time.

4. Making The Root Dynamic
Above, we presented a multicast tree protocol that

adapts to changes in the unicast routing tables, while
preserving the integrity of the multicast tree. In this
section, we enhance this protocol to allow the root node to
be changed, in order to obtain a more efficient multicast
tree. That is, if the current choice of root node becomes
non-optimal, due to changes in the network topology or
traffic load, then a new root node may be chosen, and the
tree is adjusted accordingly. During this adjustment, the
integrity of the multicast tree is preserved.

A root node may be chosen in many different ways. For
example, it may be chosen to minimize the total delay
between any node in the multicast group to the root node
plus the delay from the root node to any other node in the

multicast group. This would minimize the delay of
sending a packet between any two nodes on the tree.

However, our objective is not to obtain the best way to
choose a root node, but rather to adapt the multicast tree
algorithms to change root nodes. Thus, we simply assume
there exists a scheme to elect a new root for the multicast
tree. Also, we assume there is a mechanism through which
the current root node learns the identity of the next root
node. E.g., there could be a system of servers, such as the
Internet's Domain Name System, which the current root
could use to learn the identity of the next root node.

Since the root node may change, we must define which
process is currently the root. Process p is the root of the
multicast tree if p.par = p. Also, each process has an input,
called best (best root), which indicates which node in the
network would currently be the best root. The only node
making use of this input is the current root of the tree.

To change the root of the multicast tree without
compromising the integrity of the tree, it is best to make
gradual changes to the tree. Therefore, we choose to move
the root of the tree one hop at a time. For example,
consider Figure 4. Assume r is the current root (4-a), and t
should be the next root. In this case, we move the root by
one hop in the direction of t. That is, if s = r.route[t], then s
should become the next root, and r sends a root message to
s. When s receives the message, it adds r to its child set,
and sets s.par = s, which in effect turns s into the root.
Process s will return a child message to r, which causes r
to set r.par = s (4-b). Similarly, since t is the best root for
the tree, s sends a root message to t, causing t to add s to
its child set, and set t.par = t. Then t sends a child
message to s, and s sets s.par = t (4-c).

Included in the root message is the timestamp of the
root. This informs the new root of the largest timestamp in
the tree, and thus, its next timestamp must be greater than
this value. Note that it is possible that the next root of the
tree is a descendant of the original root. For example, in
Figure 4(a), assume the next root should be p rather than t.

In this case, when p receives the root message from r, it
sets p.par = p, and r sets r.par = p. Thus, a loop is not
introduced in the tree. Therefore, even if the new root is a
descendant of the old root, the technique is sound.

Notice that since the root changes, then the unicast
spanning tree that serves as the foundation for the
multicast tree also changes. To ensure that the multicast
tree converges to become a subset of the correct unicast
spanning tree, each child message in the tree, besides
carrying a timestamp, also carries the process identifier of
the root node which created this timestamp. In this way,
all the nodes in the tree will learn who is the current root
of the tree, and choose their parents accordingly.

There is one final issue. Assume a node not on the
multicast tree decides to join the multicast group, and
hence, also the tree. This node may not be aware of which
node is currently the root of the tree, and thus, it does not
know the unicast path to the root. To remedy this, we
assume there is at least one default node, which is always
on the multicast tree, and the identity of this node is well
known. Thus, a node joining the tree will first establish a
path to the default node. Once the node has joined the tree
through the default node, it learns the identity of the
current root, and establishes an efficient path to the root.

We are now ready to present the specification of the
dynamic root protocol. Process p has a new input, best,
which gives the best choice for the root of the multicast
tree, and a new variable, new, which is the new root, i.e.,
the next hop towards the best root. Also, process p has a
constant, def, with the default process, and the expression
join is enhanced to also be true if p is the default node.

The specification is as follows.
process p
const
 def : integer
inp
 mbr : boolean
 ngh : set of process_id - { p} ,
 route : array [process_id] of element of ngh,
 best : process_id
var
 root : process_id, /* current root * /
 new : ngh ∪ { p} , /* new root * /
 par : element of ngh ∪ {p, nil} , /* parent * /
 chil : subset of ngh,
 ts : integer
 j : ngh
always
 join : (mbr ∨ chil ≠ empty ∨ def = p)
begin
 /* refresh parent * /
 timeout (parent#ch.p.par + child#ch.par.p) = 0 ∧
 par ≠ nil ∧ par ≠ p

�
 send parent to par

[]
 /* request new parent */

tsr

p

b�

c)

a�

r s
t

p

p

r s t

Figure 4: Changing the root node of the tree

 timeout par ≠ p ∧ join ∧ par ≠ nil ∧
 (parent#ch.p.route[root] + child#ch.route[root].p) = 0

�
 send parent to route[root]

[]
 /* join the tree * /

 timeout join ∧ par = nil ∧ p ≠ def ∧
(parent#ch.p.route[def] + child#ch.route[def].p) = 0

�
 send parent to route[def]

[]
 /* receive parent message */

 rcv parent from any j
�

 chil := chil ∪ { j} ;
 send child(par ≠ nil, ts, root) to j
[]

 /* receive child message */
 rcv child(b, t, r) from any j

�

 if ts < t ∧ b ∧ j = route[root] ∧ join then
 ts := t; par := j; root := r
 fi
[]

 /* disconnect from lost child * /
 timeout (some j ∈ chil ∧ child#ch.p.j = 0 ∧ j.par ≠ p)

�

 chil := chil - { j}
[]

 /* leave the tree * /
 ¬join ∧ par ≠ p

�
 par := nil; ts := 0

[]
 /* root creates the next timestamp * /

 par = p ∧ new = p
�

 ts := ts + 1; new := route[best]
[]

 /* root asks for a new root * /
 timeout par = p ∧ (∀ i, i ∈ ngh, root#ch.p.i = 0) ∧
 new ≠ p

�
 send root(ts) to new

[]
 /* being asked to become the new root * /

 rcv root(t) from j
�

 if t ≥ ts then par := p; root := p; new := p; ts := t+1
 fi;
 child := child ∪ { j} ;
 send child(par ≠ nil, ts, root) to j
end

The specification has ten actions. The first action sends
a new parent message to the current parent of p, and is the
same action as in the previous version of the protocol. The
next action sends a parent message to the new parent, and
is the same as before, except that the guard is a little
stronger. The message is not sent if p.par = nil, since in
this case p does not know which node is currently the root.

The third action sends a parent message towards the
default node, which is when p wants to join the tree, but
does not yet have a parent. The fourth and fifth actions
receive a parent and child message. They differ from
before in that the root value is passed in the child message.

The sixth action removes a child from the child set, and
the seventh action removes process p from the tree. Both
are unchanged. The eighth action increases the root's
timestamp, and is as before, except that the timestamp is

not increased if a new root has been chosen. Also, if the
timestamp is increased, a new root is computed.

In the ninth action, if p.new ≠ p, then, neighbor p.new
should be the new root, and process p sends a root
message to p.new. In the tenth action, p receives a root
message from a neighbor. The root message is accepted if
it has a timestamp at least p.ts. If it is accepted, p turns
itself into the root of the tree. Whether accepted or not, the
neighbor is added to the child set of p.

5. Tolerating Transient Faults
In the previous section we presented a protocol which

dynamically changes the root of the tree without
compromising the tree's integrity. Our final enhancement
to the protocol is to add fault-tolerance, in particular, the
resulting protocol will be self-stabilizing. That is, if the
state of the system (its variables and channel contents), is
arbitrarily changed, the system converges to a good
operating state. In order to be self-stabilizing, we assume
that the unicast routing algorithm is also self-stabilizing.
Many unicast routing algorithms, such as distance-vector
and link-state routing, are known to be self-stabilizing.

We next address the problems to be overcome if an
arbitrary state is to converge to a good operating state.

5.1 Timeout Implementation
A process implements a timeout by keeping track of the

last time it sent a message, such as the parent message,
and waiting enough time to receive a response message,
i.e., the child message. However, due to a fault, the
process may loose track of when it sent the message, or a
fault may introduce additional messages into the channel.

This can be overcome as follows. Consider parent and
child messages. Normally, a process does not send a new
parent message until the previous parent and child
messages to and from this neighbor have been received or
lost. Assume, however, that spurious parent and child
messages exist in the channel. If the process sends parent
messages at a rate lower than the rate at which they can be
consumed by the neighbor, and if the process consumes
child messages at a rate faster than it generates parent
messages, then eventually the timeout implementation will
be correct. That is, a new parent message will be sent only
of there are no old parent or child messages.

5.2 Timestamps Out of Order
In a good state, node timestamps should be decreasing

from the root to the leaves of the tree. However, due to a
fault, this may not be true at the initial state.

In order to re-establish this relationship, each parent
message will include the timestamp of the child. When the
parent receives the message, it compares this timestamp
with its own timestamp. If the child's timestamp is greater,
then it sets its own timestamp to its child timestamp.

By using this technique, eventually the relationship
between the timestamps of any pair of parent and child
nodes will be restored automatically. Furthermore, it will
always be the case that, as long as a node is connected to
the tree, its timestamp is non-decreasing.

5.3 Existing Loops
Once timestamps are in order, no new loops are created,

since no process will choose one of its descendants as its
new parent. However, due to faults, the initial state of the
system may contain chains of nodes whose parent
variables form a loop. These initial loops must be broken.

To break these loops, we assume an upper bound D on
the network diameter. Each node computes an estimate of
its height in the tree as the maximum of its children's
height plus one. To inform its parent of its height, each
node includes its height in each parent message. A loop is
detected when the node's height becomes greater than D.

To implement this, each node maintains an array with
the heights of all its children, and updates this array as it
receives parent messages. If the maximum of the
children's heights plus one reaches a value greater than D,
then a loop exists.2 The node breaks the loop by simply
turning itself into a root node, i.e., it sets its parent
variable to itself. There is not much else the node can do,
since it is likely that the node's information about who is
the current root node is probably incorrect, due to the loop.

Obviously, breaking loops will generate multiple trees.
This is a problem that must be dealt with anyway, since
faults in the initial state could have created multiple initial
trees. Notice, however, that under a fault-free execution,
we always have a single tree. Furthermore, if all the roots
of these trees have the same value for the best root, then
all these roots will converge to the same best root, and a
single tree will be obtained.

5.4 Relationship Between Local Variables
The local variables of a process must have the proper

relationship. For example, if a node has no parent, i.e., if
its par variable is nil, then its timestamp should be zero.
To re-instate the right relationship between local variables,
we will add a few corrective actions that will check for the
improper relationship and correct it.

5.5 Protocol Specification
Finally, we are ready to present the specification of the

fault-tolerant protocol. It contains an additional array,
height, which stores the height of each child.
process p
const

2 We were tempted to use the depth of a node, rather than its height, to
break loops, but we obtained an example in which the depth calculated
by a node is greater than D, eventhough no fault occurred and no loop
existed.

 def : process_id
inp
 mbr : boolean,
 ngh : set of process_id - { p} ,
 route : array [process_id] of element of ngh,
 best : process_id
var
 root : process_id,
 new : ngh ∪ { p} ,
 par : element of ngh ∪ {p, nil} ,
 chil : subset of ngh,
 height : array [ngh] of 0 .. D,
 ts :
 j : ngh
always
 join : (mbr ∨ chil ≠ empty ∨ def = p)
begin
/* local relationships * /
 par = p

�
 root := p

[]
 j ∉ chil

�
 height[j] := 0

[]
 par = nil

�
 ts := 0

[]
/* become root if default node or a loop is found * /

 (par ≠ nil ∧ par ≠ p ∧ max(height) > D) ∨
 (p = def ∧ par = nil)

�

 par := p; root := p; new := p
[]

/* refresh parent * /
 timeout (parent#ch.p.par + child#ch.par.p) = 0 ∧
 par ≠ nil ∧ par ≠ p

�

 send parent(ts, max(height)+1) to par
[]

/* request new parent */
 timeout par ≠ nil ∧ par ≠ p ∧ root ≠ p ∧ join ∧
 (parent#ch.p.route[root] + child#ch.route[root].p) = 0

�
 send parent(0, 0) to route[root]

[]
/* join the tree * /

 timeout join ∧ par = nil ∧ p ≠ def ∧
 (parent#ch.p.route[def] +child#ch.route[def].p) = 0

�
 send parent(0, 0) to route[def]

[]
/* receive parent message */

 rcv parent(t, h) from any j
�

 chil := chil ∪ { j} ;
 if par ≠ nil ∧ t > ts then ts := t; height[j] := h
 else if par ≠ nil ∧ t = ts then height[j] := h
 else if par = nil ∨ t < ts then height[j] := 0
 fi;
 send child(par ≠ nil, ts, root) to j
[]

/* receive child message */
 rcv child(b, t, r) from any j

�

 if (j = route[r] ∨ par = p ∨ (j = par ∧ r ≠ root))
 ∧ ts < t ∧ b ∧ then
 ts := t; par := j; root := r;
 for each i in ngh
 height[i] := 0
 else if ts = t ∧ b ∧ j = par then
 root:= r
 else if j = par ∧ ¬b then
 par := p; root := p; new := p
 fi
[]

/* disconnect from lost child * /
 timeout (some j ∈ chil ∧ child#ch.p.j = 0) ∧
 (∀ t,h, t > 0, parent(t,h)#ch.j.p = 0) ∧ j.par ≠ p

�

 chil := chil - { j} ;
 height[j] := 0
[]

/* leave the tree * /
 ¬join ∧ par ≠ p

�
 par := nil; ts := 0

[]
/* root creates the next timestamp */

 par = p ∧ new = p
�

 ts := ts+1; new := route[best]
[]

/* root asks for a new root * /
 timeout par = p ∧ new ≠ p ∧
 (∀ i, i ∈ ngh, root#ch.p.i = 0) ∧
 (parent#ch.p.new + child#ch.new.p = 0)

�

 send root(ts) to new
[]

/* being asked to become the new root * /
 rcv root(t) from any j

�

 if t ≥ ts then par :=p; root := p; new := p; ts := t+1
 fi;
 child := child ∪ { j} ;

 send child(par ≠ nil, ts, root) to j
end

The protocol contains few additional actions. The first
three correct some relationships between local variables.
The next action makes p a root node if a loop is found or if
p is the default node and it has no parent.

The parent message has a timestamp of zero if the child
is not yet pointing to the new parent, and a timestamp
greater than zero if it is pointing to the new parent. The
timeout to remove a neighbor from the child set is
strengthened to make sure no incoming parent messages
with nonzero timestamps exist from the neighbor.

6. Concluding Remarks
The propagating-timestamps technique has been used in

unicast routing protocols [1]. The timestamp's purpose in
these protocols is to quickly break routing loops that form
in networks whose topology changes quickly, such as
mobile networks [14]. In our protocol, we use the
technique somewhat differently. The timestamps are used
to ensure that the multicast tree remains loopless.

The use of an unbounded timestamp is a weakness,

since no value in reality is unbounded. However, there are
several techniques that may be used to bound the
timestamp. For example, a clock synchronization protocol
can be run in the network, and the root of the tree ensures
that its new timestamp is never greater than the real-time
clock. In this way, if a node has a timestamp greater than
the real-time clock, it reduces its timestamp to the clock
value, and does not accept a message timestamp whose
value is greater than the real-time clock.

References
[1] Arora A., Gouda M., Herman T., ``Composite Routing

Protocols'', Proceedings of the Second IEEE Symposium on
Parallel and Distributed Processing, 1990.

[2] Alaettinoglu C, Shankar U., ``Stepwise Design of Distance-
Vector Algorithms'', 12th Symposium on Protocol
Specification, Testing and Verification, 1992.

[3] Ballardie T., ``Core Based Tree Multicast'', Internet RFC,
work in progress.

[4] Ballardie T., Francis P., Crowcroft J, ``Core Based Trees: An
Architecture for Scalable Inter-Domain Multicast Routing'',
ACM SIGCOMM Conference, 1993.

[5] Cobb J, Gouda M, "The Request-Reply Family of Group
Routing Protocols", IEEE Transactions on Computers, Vol.
46 No. 6, June 1997.

[6] Deering S., Cheriton D., ``Multicast Routing in Datagram
Networks and Extended LANs'', ACM Transactions on
Computer Systems, Vol 8., No 2., May 1990.

[7] Deering S. et. al., ``An Architecture for Wide-Area Multicast
Routing'', ACM SIGCOMM Conference, 1994.

[8] Dalal, Y. K., Metcalfe, R. M., ``Reverse Path Forwarding of
Broadcast Packets'', Communications of the ACM, Vol. 21,
No. 12, Dec. 1978.

[9] Gouda M., ``The Triumph and Tribulation of System
Stabilization'', International Workshop on Distributed
Algorithms, 1995.

[10] Gouda M., The Elements of Network Protocols, Wyley
Publishers, 1998.

[11] Gouda M., Schneider M., ``Maximum Flow Routing'', Joint
Conference on Information Sciences, 1994.

[12] Cheng C., Riley R., Kumar S, Garcia-Luna-Aceves J., ``A
Loop-free Bellman-Ford Routing Protocol without
Bouncing Effect'', ACM SIGCOMM Conference, 1989.

[13] Kahle B., Schwartz M., Emtage A., Neuman B., ``A
Comparison of Internet Resource Discovery Approaches'',
Computing Systems, Vol. 5 No. 4., Fall 1992.

[14] Perkins, C. et. al., ``Ad Hoc Networking in Mobile
Computing'', ACM SIGCOMM Conference, 1994.

[15] Shin K. G., Chen M., ``Performance Analysis of Distributed
Routing Strategies Free of Ping-Pong-Type Looping'', IEEE
Transactions on Computers, 1987.

 [16] Wilbur S., Handley M., ``Multimedia Conferencing: from
Prototype to National Pilot'', INET' 92 International
Networking Conference.

[17] Correctness proos for the protocolsl in this paper may be
found in http://www.utdallas.edu/~jcobb

