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Abstract 
We present a family of protocols to build a multicast tree 
in a network of processes. No processing or storage 
overhead is required for processes not included in the 
tree. The overhead of processes in the tree consists solely 
of the periodic exchange of a pair of messages with their 
parent in the tree. To choose the processes that constitute 
the tree, we take advantage of the existing unicast routing 
tables. In addition, our protocol family distinguishes itself 
from other protocols in three ways. First, the protocols 
are proven correct. Second, the integrity of the multicast 
tree is preserved as the tree adapts to changes in the 
unicast routing table. Third, the protocols are self-
stabilizing, i.e., they tolerate all transient faults.   

1. Introduction 
We present a family of protocols to build a multicast 

tree in a network of processes. The network consists of a 
set of processes interconnected by point-to-point 
communication channels. Multicast routing has many 
applications, such as audio and video conferencing [16], 
replicated database updating and querying, and resource 
discovery [13].  

In multicast routing, a tree is constructed which spans 
all the nodes of a multicast group. Each node in the tree 
corresponds to a process in the network, and each edge in 
the tree corresponds to a communication link between two 
processes. For simplicity, we present a protocol for a 
single process group. The extension to multiple groups is 
straightforward. 

To build a multicast tree, we take advantage of the 
existing unicast routing tables of each process, and use 
them as a guide in the construction of an efficient tree. The 
unicast routing tables define a forest of spanning trees, one 
tree for each process in the network. The multicast tree is 
constructed as a subgraph of one of these spanning trees.  

The maintenance and construction of the multicast tree 
requires minimal overhead from the network. Processes 
involved in the multicast tree simply periodically 
exchange a pair of messages with their parent in the 
multicast tree, and store the process id's of their parent and 

children. Processes not involved in the group tree incur no 
message or storage overhead. 

Many unicast routing algorithms exist in the literature, 
e.g., [1], [2], [11], [12], [15]. These algorithms have many 
differences. However, common to all is the ability to 
change the routing tables in response to varying network 
conditions, such as fluctuations in traffic loads. To make 
our protocols suitable for operating in conjunction with 
any unicast routing protocol, we only make the following 
simple assumption about unicast routing. The unicast 
routing tables may temporarily fluctuate, but they 
eventually converge to a value that, for each pair of 
processes p and q,  defines a path from p to q. 

To maintain the routing efficiency of the multicast tree, 
when the unicast routing tables change, the tree is 
restructured to reflect these changes. For example, 
consider a multicast distribution of a video image. If the 
topology of the network changes, and a network path with 
greater bandwidth is created between the source of the 
video and its destinations, then the multicast tree should 
converge and use this new path.  

In addition, our protocols have the desirable property of 
maintaining the integrity of the multicast tree while the 
unicast routing tables change. That is, no temporary loops 
are introduced, the tree is always connected, and no 
member of the multicast group is temporary removed from 
the tree. In the above example, the multicast tree would 
adapt itself to the best network path without interrupting 
the flow of video to the members of the multicast group.  

Building multicast trees based on the unicast routing 
tables is an existing technique. In [3] [4], a tree is initially 
built from the unicast routing tables. However, the tree is 
static, and does not adapt to changes in these tables. 
Obtaining a broadcast tree from the unicast routing tables 
was first presented in [8]. In [6] [7], the broadcast tree is 
trimmed into a multicast tree that excludes those processes 
not needed to reach the members of the group. However, 
as the unicast routing tables change, the tree may lose its 
integrity and become disconnected, until the unicast 
routing tables converge to a stable value.  

In [5], we presented a multicast tree protocol that adapts 
the tree to changes in the unicast routing tables, without  



 

 

compromising the integrity of the multicast tree. In this 
paper, we present a protocol, which, as the protocol in [5], 
maintains the integrity of the multicast tree. However, it 
has the following powerful additional features.  

First, the root of the tree is not fixed. Previous protocols 
require the root of the tree to be a constant. However, the 
location of the root is crucial for the efficiency of the 
protocol, and the best choice for the root node may vary 
over time.  In our protocol, the root of the tree is allowed 
to change, and during the change the integrity of the tree is 
maintained. Second, our protocol is self-stabilizing [9], 
i.e., if started from any arbitrary initial state, it converges 
to a normal operating state. This makes the protocol very 
robust against transient failures, such as link failures and 
recoveries, and the reception of corrupted messages that 
passed their CRC check. These failures may cause the 
system to be thrown into an arbitrary state. Nonetheless, 
the protocol will converge to a good operating state. 

We present our family of multicast routing protocols in 
three steps. First, we present a basic version of the 
protocol, which maintains a multicast tree and preserves 
its integrity. Then, we enhance the protocol by allowing 
the root of the three to be dynamically chosen. Finally, we 
present the self-stabilizing version of the protocol. 

Due to space restrictions, the correctness proofs of these 
protocols may be found in [17]. 

2. A Loopless Multicast Protocol 
In this paper, we present a family of multicast tree 

protocols. Each protocol consists of a set of processes 
which exchange messages via communication channels. 
The processes and their channels form a network that may 
be represented as an undirected graph. In this graph, each 
node1 represents a process, and an edge between processes 
p and q represents two first-in-first-out communication 
channels, one from p to q and another from q to p.  

In this section, we present a multicast tree protocol, 
similar to the one we presented in [5]. It is based on a 
fixed root, it adapts to changes in the unicast routing 
tables, and preserves the integrity of the multicast tree.  

We present the protocol in three steps. We first present 
the technique to build a multicast tree from the existing 
unicast routing tables. We then show how to ensure each 
node always has a parent in the tree. Finally, we show how 
to eliminate temporary loops in the multicast "tree", 
therefore ensuring we have a well-defined tree at all times. 

3.1 Using The Unicast Routing Tables 
Consider the network in Figure 1, where edges 

represent bi-directional channels between processes. 
Consider process s. The arrows correspond to the next-hop 
neighbor to reach process s according to the unicast 
                                                        
1 Since the network is viewed as a graph, we use the terms node and 
process interchangeably. 

routing tables of each process. That is, the next-hop 
neighbor of p to reach s is q, the next-hop neighbor of q to 
reach s is r, and the next-hop neighbor of r to reach s is s 
itself. Note that the edges denoted by the arrows form a 
spanning tree. 

We take advantage of the spanning tree defined above 
to build a multicast tree. To do so, we designate a fixed 
process in the network as the root (e.g., s = root above). 
The parent of each process p in the multicast tree is the 
next-hop neighbor in the unicast path from p to the 
designated root process. Thus, the multicast tree is a 
subset of the unicast spanning tree whose root is also the 
designated root process.  

Note that the multicast tree must contain all members of 
the process group, plus any additional processes required 
to complete the tree. Process p chooses to join the tree if p 
is a group member, or if it has a neighbor which has 
chosen p as its parent. If neither of these is true, p removes 
itself from the multicast tree. 

To build and maintain the multicast tree, each process p 
requires the following variables: p.par, p.chil, and p.next. 
Variable p.par stores the process identifier of p's parent in 
the tree. Variable p.chil is a set of process identifiers, and 
it contains the identifiers of the children of process p in the 
tree. Variable p.next is the unicast routing table of p, that 
is, p.next[d] gives the next-hop neighbor of p to reach 
destination d. 

Obtaining the values of p.par and p.chil is performed as 
follows. If process p chooses to join the tree, p sends a 
parent message to neighbor p.next[root], i.e., to its next-
hop neighbor to the root of the tree, and assigns this 
neighbor to p.par. Let q = p.next[root]. When q receives a 
parent message from p, it adds p to q.chil, and then returns 
a child message to p.  

Each process sends a parent message periodically to its 
parent. If a process does not receive a parent message 
from a child within some timeout period, it removes the 
child from its child set. If a process has no children and is 
not a member of the multicast group, then it removes itself 
from the multicast tree by setting its parent variable to nil.  

From the above, all network edges (p, p.par) will form a 
multicast tree, and also, q ∈ p.chil if and only if q.par = p. 

When the unicast routing tables change, problems in 

p

qr

s

         
Figure 1 



 

 

unicast routing may arise, such as temporary routing 
loops. We assume these problems are temporary, and the 
unicast routing tables will converge to a consistent value. 

If the unicast spanning tree changes due to changes in 
the unicast routing tables, the multicast tree changes 
accordingly, and becomes a subgraph of the new spanning 
tree. However, while these changes occur, the multicast 
tree may become disconnected, disrupting the flow of data 
messages. We next address how to overcome this problem. 

3.2 Multicast Tree Integrity 
In this section, we enhance our basic protocol by re-

stricting when a process changes its parent. The purpose is 
to ensure that a process that has joined the multicast tree 
remains connected to the tree while changes in the unicast 
routing tables occur.  

To show how a process becomes disconnected, consider 
Figure 2. Assume p.par = q, p.next[root] = r, and all edges 
in the unicast path from p to the root are not in the 
multicast tree. Once p chooses r as its parent, q may time 
out and remove p from its child set, before all the edges in 
the unicast path from p to the root have been added to the 
multicast tree. This temporarily removes p from the tree. 

To prevent this, p should not change its parent from q to 
r until r is connected to the multicast tree. We say that a 
process r is connected to the multicast tree if r.par ≠ nil. 

Recall that process r chooses to join the multicast tree if 
either it is in multicast group, or if its child set is not 
empty. To ensure r's child set is not empty, p sends a 
parent message to r as if r were its parent. Then, r adds p 
to its child set, and returns a child message to p. Each 
child message will include a Boolean bit indicating if the 
sender is connected to the multicast tree. If p receives a 
child message from r with the connected bit equal to true, 
then p may safely choose r as its parent. 

2.3 Loopless Multicast tree 
It is easy to show that for the above protocol, if a 

process p has p.par ≠ nil, then the path obtained by 
following the parent variables starting from p ends in the 
root node, or p is involved in a temporary loop. That is, 

the parent variables could form a loop, in which case p is 
temporarily unreachable from the root of the tree.  

To see this, consider the system state depicted in Figure 
3. In this state, p sends a parent message to r, and r sends a 
parent message to s. Then, s returns a child message to r, 
and r sets r.par = s, and r returns a child message to p. 
Process p sets p.par = r, completing the loop. Note that the 
loop is possible even if the unicast routing tables are loop-
less, as shown in the figure. Thus, restricting the multicast 
tree protocol to work only in conjunction with a loop-less 
unicast routing protocol is not sufficient. The problem 
must be solved by further refining the protocol. 

The refinement consists of introducing a diffusing com-
putation for loop avoidance. Each process p maintains an 
integer timestamp, p.ts. The root process increments its 
timestamp periodically. A non-root process may not incre-
ment its timestamp on its own. Rather, each process 
includes its timestamp in each child message. If a process 
receives a timestamp from its parent that is larger than its 
own, it sets its timestamp to the parent's timestamp. 

Assume the routing tables indicate that p should choose 
a different parent. Call this new parent the tentative parent 
of p. In this case, p ignores the timestamps received from 
its current parent. When p receives a child message from 
the tentative parent, with a timestamp greater than p's 
timestamp, p changes parents by setting p.par to the 
tentative parent, and sets p.ts to the received timestamp. 

The reason no loops are created is simple. All processes 
in the multicast subtree rooted at p have a timestamp at 
most p's timestamp. When the tentative parent provides to 
p a timestamp greater than p's timestamp, it indicates to p 
that it is not part of the subtree of p. Thus, choosing this 
neighbor as a new parent cannot form a loop. 

2.4 Protocol Specification 
We next specify the loopless multicast routing protocol. 

We begin with a brief description of our notation. Each 
process consists of a set of actions, separated by the 
symbol []. Each action is of the form 

guard 
�

 command 
When the guard is true, the command is enabled for 
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execution. Commands from different actions are executed 
one at a time and in any order, provided the command is 
enabled when chosen for execution, and no enabled 
command is continuously ignored for execution. 

The channel from process p to process q is denoted 
ch.p.q. The number of messages of type msg_type in this 
channel is denoted msg_type#ch.p.q. We assume channels 
may lose and reorder messages, but not duplicate them. A 
similar notation may be found in [10]. 

Process p below represents any network process. Its 
variables are par, chil, and ts, which we explained earlier. 
It has three inputs: mbr, which indicates if p is currently a 
member of the multicast group, ngh, which indicates the 
neighbors of p, and route, which is p's unicast routing 
table. Also, p has an identifier, join, which is a shorthand 
for the expression  mbr ∨ chil ≠ empty. 

If p is the root process, then always par.p = p, that is, 
the parent of the root process is itself (it cannot be nil 
since the root must always be connected to the tree). 

The specification of process p is as follows. 
process p 
const  
   root : process_id  
inp  
   mbr : boolean, 
   ngh : set of process_id - { p} , 
   route : array [process_id] of element of ngh 
var 
   par : element of ngh ∪ {p, nil}  
   chil : subset of ngh, 
   ts  : integer  
   j  : ngh 
always 
   join : (mbr ∨ chil ≠ empty) 
begin 
     /*   refresh parent */ 
   timeout (parent#ch.p.par + child#ch.par.p) = 0 ∧  
     par ≠ nil ∧ par ≠ p 

�
 send parent to par 

[] 
/* request new parent */ 

   timeout par ≠ p  ∧ join ∧  
   (parent#ch.p.route[root] + child#ch.route[root].p) = 0 
  

�
  send parent to route[root] 

[] 
/* receive parent message */ 

   rcv parent from any j    
�

  chil := chil ∪ { j} ; 
            send child(par ≠ nil, ts) to j 
[]

 /* receive child message */ 
   rcv child(b, t) from any j 

�
 

         if ts < t ∧ b ∧ j = route[root] ∧ join   then 
   ts := t;  par := j 
         fi 
[]

 /* disconnect from lost child * / 
   timeout   (some j ∈ chil ∧ child#ch.p.j = 0 ∧ j.par ≠ p) 

    
�

        chil := chil - { j}  
[]

 /* leave the tree * / 
   ¬join ∧ par ≠ p  

�
  par := nil 

[]
 /*  root creates the next timestamp * / 

   par = p 
�

 ts := ts+1 
end 

The first action consists of a timeout. This action is 
enabled if there are no parent messages from p to its 
parent, there are no child messages from p's parent to p, if 
p is connected to the tree, and if p is not the root. If so, p 
sends a new parent message to its parent, p.par.  

Even though this timeout guard refers to the contents of 
the channels (which are not visible to a process in a 
message passing system), this guard can be implemented 
using conventional timers, as explained in [10]. 

The second action is also a timeout action. It sends a 
parent message to the next-hop neighbor along the unicast 
path to the root, provided p chooses to join the tree. 

The third action receives a parent message from any 
neighbor. Thus, p adds the neighbor to its child set, and 
returns a child  message with p's timestamp and a bit 
indicating if p is connected to the tree. 

The fourth action receives a child message from any 
neighbor. Process p adopts this neighbor as its new parent 
if it's the next-hop to the root and has a greater timestamp. 

The fifth action is also a timeout. If p waits long enough 
without receiving a parent message from a neighbor, and 
the neighbor is a child of p, it means the neighbor no 
longer considers p as its parent. Then, p removes the 
neighbor from its child set. Again, an action of this form 
can be implemented with conventional timers [10]. 

In the sixth action, process p leaves the multicast tree 
by setting p.par to nil, provided it is not supposed to join 
the multicast tree (i.e., ¬join), and, obviously, if it is not 
the root, since the root should always be part of the tree. 

Finally, in the last action, if process p is the root 
process, it may increase its timestamp at any time. 

4. Making The Root Dynamic 
Above, we presented a multicast tree protocol that 

adapts to changes in the unicast routing tables, while 
preserving the integrity of the multicast tree. In this 
section, we enhance this protocol to allow the root node to 
be changed, in order to obtain a more efficient multicast 
tree. That is, if the current choice of root node becomes 
non-optimal, due to changes in the network topology or 
traffic load, then  a new root node may be chosen, and the 
tree is adjusted accordingly. During this adjustment, the 
integrity of the multicast tree is preserved. 

A root node may be chosen in many different ways. For 
example, it may be chosen to minimize the total delay 
between any node in the multicast group to the root node 
plus the delay from the root node to any other node in the 



 

 

multicast group. This would minimize the delay of 
sending  a packet between any two nodes on the tree.  

However, our objective is not to obtain the best way to 
choose a root node, but rather to adapt the multicast tree 
algorithms to change root nodes. Thus, we simply assume 
there exists a scheme to elect a new root for the multicast 
tree. Also, we assume there is a mechanism through which 
the current root node learns the identity of the next root 
node. E.g., there could be a system of servers, such as the 
Internet's Domain Name System, which the current root 
could use to learn the identity of the next root node. 

Since the root node may change, we must define which 
process is currently the root. Process p is the root of the 
multicast tree if p.par = p. Also, each process has an input, 
called best (best root), which indicates which node in the 
network would currently be the best root. The only node 
making use of this input is the current root of the tree. 

To change the root of the multicast tree without 
compromising the integrity of the tree, it is best to make 
gradual changes to the tree. Therefore, we choose to move 
the root of the tree one hop at a time. For example, 
consider Figure 4. Assume r is the current root (4-a), and t 
should be the next root. In this case, we move the root by 
one hop in the direction of t. That is, if s = r.route[t], then s 
should become the next root, and r sends a root message to 
s. When s receives the message, it adds r to its child set, 
and sets s.par = s, which in effect turns s into the root. 
Process s will return a child message to r, which causes r 
to set r.par = s (4-b). Similarly, since t is the best root for 
the tree, s sends a root message to t, causing t to add s to 
its child set, and set t.par = t. Then t sends a child  
message to s, and s sets s.par = t (4-c). 

Included in the root message is the timestamp of the 
root. This informs the new root of the largest timestamp in 
the tree, and thus, its next timestamp must be greater than 
this value. Note that it is possible that the next root of the 
tree is a descendant of the original root. For example, in 
Figure 4(a), assume the next root should be p rather than t. 

In this case, when p receives the root message from r, it 
sets p.par = p, and r sets r.par = p. Thus, a loop is not 
introduced in the tree. Therefore, even if the new root is a 
descendant of the old root, the technique is sound. 

Notice that since the root changes, then the unicast 
spanning tree that serves as the foundation for the 
multicast tree also changes. To ensure that the multicast 
tree converges to become a subset of the correct unicast 
spanning tree, each child message in the tree, besides 
carrying a timestamp, also carries the process identifier of 
the root node which created this timestamp. In this way, 
all the nodes in the tree will learn who is the current root 
of the tree, and choose their parents accordingly. 

There is one final issue. Assume a node not on the 
multicast tree decides to join the multicast group, and 
hence, also the tree. This node may not be aware of which 
node is currently the root of the tree, and thus, it does not 
know the unicast path to the root. To remedy this, we 
assume there is at least one default node, which is always 
on the multicast tree, and the identity of this node is well 
known. Thus, a node joining the tree will first establish a 
path to the default node. Once the node has joined the tree 
through the default node, it learns the identity of the 
current root, and establishes an efficient path to the root. 

We are now ready to present the specification of the 
dynamic root protocol. Process p has a new input, best, 
which gives the best choice for the root of the multicast 
tree, and a new variable, new, which is the new root, i.e., 
the next hop towards the best root. Also, process p has a 
constant, def, with the default process, and the expression 
join is enhanced to also be true if p is the default node. 

The specification is as follows. 
process p 
const 
   def  : integer 
inp  
   mbr : boolean  
   ngh : set of process_id - { p} , 
   route : array [process_id] of element of ngh, 
   best : process_id  
var 
   root : process_id, /*  current root * / 
   new : ngh ∪ { p} , /*  new root * / 
   par : element of ngh ∪ {p, nil} , /*  parent * / 
   chil : subset of ngh, 
    ts  : integer  
    j  : ngh 
always 
   join : (mbr ∨ chil ≠ empty ∨ def = p) 
begin 
   /* refresh parent * / 
   timeout (parent#ch.p.par + child#ch.par.p) = 0 ∧  
    par ≠ nil ∧ par ≠ p 

�
 send parent to par 

[]
 /* request new parent */ 
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Figure 4: Changing the root node of the tree 



 

 

    timeout par ≠ p ∧ join ∧ par ≠ nil ∧  
    (parent#ch.p.route[root] + child#ch.route[root].p) = 0   
     

�
    send parent to route[root] 

[]
 /* join the tree * / 

   timeout join ∧ par = nil ∧ p ≠ def ∧ 
(parent#ch.p.route[def] + child#ch.route[def].p) = 0 
 

�
    send parent to route[def] 

[]
 /* receive parent message */ 

   rcv parent from any j 
�

   
     chil := chil ∪ { j} ; 
     send child(par ≠ nil, ts, root) to j 
[]

 /* receive child message */ 
   rcv child(b, t, r) from any j 

�
 

    if ts < t ∧ b ∧ j = route[root] ∧ join  then 
    ts := t; par := j;  root := r 
    fi 
[]

 /* disconnect from lost child * / 
   timeout (some j ∈ chil ∧ child#ch.p.j = 0 ∧ j.par ≠ p) 

�
 

     chil := chil - { j}  
[]

 /* leave the tree * / 
   ¬join ∧ par ≠ p  

�
 par := nil; ts := 0 

[]
 /*  root creates the next timestamp * / 

   par = p ∧ new = p 
�

  ts := ts + 1;  new := route[best] 
[]

 /* root asks for a new root * / 
   timeout par = p ∧ (∀ i, i ∈ ngh, root#ch.p.i = 0) ∧  
     new ≠ p  

�
   send root(ts) to new 

[]
 /*  being asked to become the new root * / 

   rcv root(t) from j 
�

 
    if t ≥ ts  then par := p; root := p; new := p; ts := t+1 
    fi; 
    child := child  ∪ { j} ; 
    send child(par ≠ nil, ts, root) to j 
end 

The specification has ten actions.  The first action sends 
a new parent message to the current parent of p, and is the 
same action as in the previous version of the protocol. The 
next action sends a parent message to the new parent, and 
is the same as before, except that the guard is a little 
stronger. The message is not sent if p.par = nil, since in 
this case p does not know which node is currently the root.  

The third action sends a parent message towards the 
default node, which is when p wants to join the tree, but 
does not yet have a parent. The fourth and fifth actions 
receive a parent and child message. They differ from 
before in that the root value is passed in the child message.  

The sixth action removes a child from the child set, and 
the seventh action removes process p from the tree. Both 
are unchanged. The eighth action increases the root's 
timestamp, and is as before, except that the timestamp is 

not increased if a new root has been chosen. Also, if the 
timestamp is increased, a new root is computed. 

In the ninth action, if p.new ≠ p, then, neighbor p.new 
should be the new root, and process p sends a root 
message to p.new. In the tenth action, p receives a root 
message from a neighbor. The root message is accepted if 
it has a timestamp at least p.ts. If it is accepted, p turns 
itself into the root of the tree. Whether accepted or not, the 
neighbor is added to the child set of p. 

5. Tolerating Transient Faults 
In the previous section we presented  a protocol which 

dynamically changes the root of the tree without 
compromising the tree's integrity. Our final enhancement 
to the protocol is to add fault-tolerance, in particular, the 
resulting protocol will be self-stabilizing. That is, if the 
state of the system (its variables and channel contents), is 
arbitrarily changed, the system converges to a good 
operating state. In order to be self-stabilizing, we assume 
that the unicast routing algorithm is also self-stabilizing. 
Many unicast routing algorithms, such as distance-vector 
and link-state routing, are known to be self-stabilizing. 

We next address the problems to be overcome if an 
arbitrary state is to converge to a good operating state. 

5.1 Timeout Implementation 
A process implements a timeout by keeping track of the 

last time it sent a message, such as the parent message, 
and waiting enough time to receive a response message, 
i.e., the child message. However, due to a fault, the 
process may loose track of when it sent the message, or a 
fault may introduce additional messages into the channel. 

This can be overcome as follows. Consider parent and 
child messages. Normally, a process does not send a new 
parent message until the previous parent and child 
messages to and from this neighbor have been received or 
lost. Assume, however, that spurious parent and child 
messages exist in the channel. If the process sends parent 
messages at a rate lower than the rate at which they can be 
consumed by the neighbor, and if the process consumes 
child messages at a rate faster than it generates parent 
messages, then eventually the timeout implementation will 
be correct. That is, a new parent message will be sent only 
of there are no old parent or child messages. 

5.2 Timestamps Out of Order 
In a good state, node timestamps should be decreasing 

from the root to the leaves of the tree. However, due to a 
fault, this may not be true at the initial state. 

In order to re-establish this relationship, each parent 
message will include the timestamp of the child. When the 
parent receives the message, it compares this timestamp 
with its own timestamp. If the child's timestamp is greater, 
then it sets its own timestamp to its child timestamp.  



 

 

By using this technique, eventually the relationship 
between the timestamps of any pair of parent and child 
nodes will be restored automatically. Furthermore, it will 
always be the case that, as long as a node is connected to 
the tree, its timestamp is non-decreasing. 

5.3 Existing Loops 
Once timestamps are in order, no new loops are created, 

since no process will choose one of its descendants as its 
new parent. However, due to faults, the initial state of the 
system may contain chains of nodes whose parent 
variables form a loop. These initial loops must be broken. 

To break these loops, we assume an upper bound D on 
the network diameter. Each node computes an estimate of 
its height in the tree as the maximum of its children's 
height plus one. To inform its parent of its height, each 
node includes its height in each parent message. A loop is 
detected when the node's height becomes greater than D. 

To implement this, each node maintains an array with 
the heights of all its children, and updates this array as it 
receives parent messages. If the maximum of the 
children's heights plus one reaches a value greater than D, 
then a loop exists.2 The node breaks the loop by simply 
turning itself into a root node, i.e., it sets its parent 
variable to itself. There is not much else the node can do, 
since it is likely that the node's information about who is 
the current root node is probably incorrect, due to the loop. 

Obviously, breaking loops will generate multiple trees. 
This is a problem that must be dealt with anyway, since 
faults in the initial state could have created multiple initial 
trees. Notice, however, that under a fault-free execution, 
we always have a single tree. Furthermore, if all the roots 
of these trees have the same value for the best root, then 
all these roots will converge to the same best root, and a 
single tree will be obtained. 

5.4 Relationship Between Local Variables 
The local variables of a process must have the proper 

relationship. For example, if a node has no parent, i.e., if 
its par variable is nil, then its timestamp should be zero. 
To re-instate the right relationship between local variables, 
we will add a few corrective actions that will check for the 
improper relationship and correct it. 

5.5 Protocol Specification 
Finally, we are ready to present the specification of the 

fault-tolerant protocol. It contains an additional array, 
height, which stores the height of each child.  
process p 
const  

                                                        
2 We were tempted to use the depth of a node, rather than its height, to 
break loops, but we obtained an example in which the depth calculated 
by a node is greater than D, eventhough no fault occurred and no loop 
existed. 

   def : process_id 
inp  
   mbr : boolean, 
   ngh : set of process_id - { p} , 
   route : array [process_id] of element of ngh, 
   best : process_id 
var 
   root : process_id, 
   new : ngh ∪ { p} , 
   par : element of ngh ∪ {p, nil} , 
   chil : subset of ngh,  
   height : array [ngh] of 0 .. D, 
   ts  :  
   j  : ngh 
always 
   join : (mbr ∨ chil ≠ empty ∨ def = p) 
begin 
/*  local relationships * / 
     par = p 

�
 root := p 

[]
  j ∉ chil 

�
 height[j] := 0  

[]
  par = nil 

�
 ts := 0 

[] 
/* become root if default node or a loop is found * / 

   (par ≠ nil ∧ par ≠ p ∧  max(height) > D)  ∨  
   (p = def ∧ par = nil) 

�
  

     par := p; root := p; new := p 
[]

/*  refresh parent * / 
   timeout (parent#ch.p.par + child#ch.par.p) = 0 ∧ 
   par ≠ nil ∧ par ≠ p 

�
  

     send parent(ts, max(height)+1) to par 
[] 

/* request new parent */ 
   timeout par ≠ nil ∧ par ≠ p ∧ root ≠ p ∧ join ∧ 
   (parent#ch.p.route[root] + child#ch.route[root].p) = 0 
   

�
    send parent(0, 0) to route[root] 

[] 
/* join the tree * / 

   timeout join ∧ par = nil ∧ p ≠ def ∧ 
   (parent#ch.p.route[def] +child#ch.route[def].p) = 0  
   

�
    send parent(0, 0) to route[def] 

[] 
/* receive parent message */ 

   rcv parent(t, h) from any j 
�

   
   chil := chil ∪ { j} ; 
   if par ≠ nil ∧ t > ts then ts := t; height[j] := h 
   else if par ≠ nil ∧ t = ts then height[j] := h 
   else if par = nil ∨ t < ts then height[j] := 0 
   fi; 
   send child(par ≠ nil, ts, root) to j 
[] 

/* receive child message */ 
   rcv child(b, t, r) from any j 

�
 

 
 
 



 

 

   if (j = route[r] ∨ par = p ∨ (j = par ∧ r ≠ root)) 
       ∧ ts < t ∧ b ∧ then 
      ts := t; par := j; root := r; 
      for each i in ngh 
       height[i] := 0 
  else if ts = t ∧ b ∧ j = par then 
     root:= r 
   else if j = par ∧ ¬b then  
     par := p; root := p; new := p 
  fi 
[] 

/* disconnect from lost child * / 
   timeout (some j ∈ chil ∧ child#ch.p.j = 0) ∧ 
   (∀ t,h,  t > 0,  parent(t,h)#ch.j.p = 0) ∧ j.par ≠ p    

�
  

    chil := chil - { j} ; 
    height[j] := 0 
[] 

/* leave the tree * / 
   ¬join ∧ par ≠ p 

�
 par := nil; ts := 0 

[] 
/* root creates the next timestamp */ 

   par = p ∧ new = p  
�

 ts := ts+1; new := route[best] 
[] 

/* root asks for a new root * / 
   timeout par = p ∧ new ≠ p ∧  
   (∀ i, i ∈ ngh, root#ch.p.i = 0) ∧  
   (parent#ch.p.new + child#ch.new.p = 0) 

�
 

    send root(ts) to new 
[] 

/* being asked to become the new root * / 
   rcv root(t) from any j 

�
 

  if t ≥ ts then par :=p; root := p; new := p; ts := t+1 
   fi; 
   child := child  ∪ { j} ; 

 send child(par ≠ nil, ts, root) to j 
end 

The protocol contains few additional actions. The first 
three correct some relationships between local variables. 
The next action makes p a root node if a loop is found or if 
p is the default node and it has no parent.  

The parent message has a timestamp of zero if the child 
is not yet pointing to the new parent, and a timestamp 
greater than zero if it is pointing to the new parent. The 
timeout to remove a neighbor from the child set is 
strengthened to make sure no incoming parent messages 
with nonzero timestamps exist from the neighbor.  

6. Concluding Remarks 
The propagating-timestamps technique has been used in 

unicast routing protocols [1]. The timestamp's purpose in 
these protocols is to quickly break routing loops that form 
in networks whose topology changes quickly, such as 
mobile networks [14]. In our protocol, we use the 
technique somewhat differently. The timestamps are used 
to ensure that the multicast tree remains loopless. 

The use of an unbounded timestamp is a weakness, 

since no value in reality is unbounded. However, there are 
several techniques that may be used to bound the 
timestamp. For example, a clock synchronization protocol 
can be run in the network, and the root of the tree ensures 
that its new timestamp is never greater than the real-time 
clock. In this way, if a node has a timestamp greater than 
the real-time clock, it reduces its timestamp to the clock 
value, and does not accept a message timestamp whose 
value is greater than the real-time clock. 
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