Dynamics and Cachability of Web Sites:
Implications for Inverted Capacity Networks

Sebastian Zander , Grenville Armitage, Clancy Malcolm
Center for Advanced Internet Architectures. Technical Report 03040582
Swinburne University of Technology
Melbourne, Australia
zander @ fokus.fraunhofer.de
{garmitage, cmalcolm} @swin.edu.au

Abstract- The traditional Internet access model involves low
bandwidth last-mile circuits and high bandwidth backbones.
Imagine that in the future the last-mile becomes a high
bandwidth service. In such an inverted capacity network content
caching in the access network becomes essential to avoid
backbone congestion and improve user experience but on the
other hand the high access bandwidth also offers opportunities
for new caching mechanisms. We focus on the Web as the most
important and well established content service. With respect to
caching the question is how much of the web content is cachable
and what is the dynamic behavior?

In this paper we analyze the cachability and dynamic
behavior of a number of web sites and the implications for an
inverted capacity network. In contrast to previous work we use
an active approach for collecting the measurement data to be
able to analyze complete web sites instead of subsets accessed by
a specific user group over a certain time period.

Keywords- Inverted capacity network, World Wide Web, WWW,
cachability, dynamics.

L. INTRODUCTION

The traditional Internet access involves low
bandwidth last-mile circuits aggregating into higher
bandwidth metropolitan, regional, and international
backbones. Consumer market last-mile access typically
involves 56K dial-up, ISDN, cable modem, or ADSL
technologies. Regional backbones are often measured in
gigabits per second, and many international backbones
have capacities in the hundreds of megabits per second.
Imagine that in the future the last-mile becomes a high
bandwidth service in the order of multi-megabits or even
gigabits per second (for example, using emerging
passive optical networking techniques for fibre to the
home or business). The result could be an inverted
capacity network. In such a network the core is the
bottleneck in terms of bandwidth making caching
mechanisms in the access network essential. However a
highly increased bandwidth in the access network also
provides opportunities for new caching concepts as any
customer would have enough bandwidth and storage
capacity to act as a possible content cache for other
nearby customers. Every town library could run content
caches for their neighborhoods, revitalizing their roles as

21st century information repositories. Being able to push
the content close to the user the bandwidth usage in the
backbone network is decreased because the users can
access most content from their local cache. The
reduction of user traffic injected into the backbone
network could also help to reduce the burstiness of the
backbone traffic which would decrease the risk of
congestion. Local or neighborhood content caches would
also exhibit significantly reduced latency and packet loss
rates at the IP level, leading to improved HTTP over
TCP performance and shorter download times.

Despite the recently growing popularity of peer-to-
peer networks the World Wide Web (WWW) is still one
of the most popular Internet services used and web
traffic is a large fraction of the overall Internet traffic.
Therefore this paper focuses on the Web as the most
important and well established content service. The
question is to what extend the existing web service could
benefit from an inverted capacity network. From a
different perspective one could also ask whether
mechanisms such as caching and content pushing can
help to avoid congestion in the core network. In this
paper we analyze the cachability and dynamic behavior
of existing web content. As a first step towards
answering these questions the results of this analysis will
show upper bounds for caching mechanisms. They will
also show whether the existing mechanisms are efficient
enough or must be improved for future networks.

Chapter II discusses related work. Chapter III
describes the approach used for the data collection. The
results and findings are presented in chapter IV. Chapter
V concludes and outlines future work.

II. RELATED WORK

A couple of studies of web traffic have been
performed especially in recent times. These studies
analyze web access traces either from the perspective of
web browsers, web proxies or web servers [1, 2, 3, 5, 7].
Active monitoring of web sites was used by [4, 6] to
measure the changing of web content. Furthermore a
number of trace-driven simulations have been performed

(2].

! Visiting researcher from the Measurement and Network Technologies Group, Fraunhofer FOKUS, Berlin, Germany
% A revised version of this paper will be presented at the 11th IEEE International Conference on Networks (ICON 2003) in Sydney, Australia, September 2003

CAIA Technical Report 030405B April 2003

page 1 of 6

Similar to us [2] also analyses the cachability of web
objects as seen by a web proxy. In this work the
cachability analysis depends on the traffic generated by
the users over the measured time period. In contrast to
this work we have focused on investigating the
cachability of whole Web sites and comparing the
cachability with the real dynamic behavior of the web
objects (e.g. the time interval between changes).

In this paper we take the approach of active
monitoring of web sites where most recent research
focuses on the analysis of traffic traces (passive
measurement). Using an active approach has the big
disadvantage of injecting a large amount of synthetic
traffic into the network. It is however the only way to
collect data on whole web sites whereas in contrast the
analysis of a traffic trace only allows the investigation of
the specific part of web sites accessed by a certain user
group. This is desired by the existing papers because
most are focused on optimizing cache behavior and
strategies but it does not provide a complete picture of
web sites. With our approach it is also possible to collect
data over long time periods unbiased by user accesses.
As shown in [1] the stability of the popularity of web
pages may change completely within two months except
for the very top 10-50 pages and we have seen no
investigation on whether cachability or the dynamic
behavior changes with the user access patterns.

III. DATA COLLECTION

The data collection is based on active web crawling
as used by search engines. We use a modified version of
a web spider [10] originally used for indexing
documents for a search engine. The spider can be highly
configured in terms of the URLs to investigate, the
content types to investigate, the scope (e.g. follow links
with a given path, site or any) and the visit interval. The
set of investigated sites selected are the most popular for
a specific user group as indicated by local web proxy
logs. For our first measurements the spider is configured
to only investigate objects with the same server name as
the homepage. The spider accesses the Internet through a
web proxy which helps to improve performance by
limiting the requests which actually go out into the
Internet and to compare the cachability based on the
HTTP protocol definition [8] with the cachability as
determined by a real cache implementation (see chapter
V).

For each server defined the spider scans the site
starting from the entry point given (usually the index
page). Each HTML document accessed is scanned for
outgoing links which are inserted into an URL list. Each
URL is composed of server, directory, file and parameter
parts. Thus, from the viewpoint of the spider URLs
differ even if they differ only by their parameter part.
Therefore links to a dynamic script where many URLs
point to with different parameters lead to a large number
of different URLs. For each object the spider uses a hash
function to generate a unique ID for the content,
determines the cachability and whether the object has
changed since the last visit. This information together
with the visit timestamp, response status and other
relevant information is inserted into a database [11].

CAIA Technical Report 030405B April 2003

From there the data can be accessed for later analysis.
The overall architecture is shown in Fig. 1.

S <>
Initial Working Object
URLs URLs Data

Fig. 1: Data Collection Architecture

The behavior of the spider upon arrival of an HTTP
response is determined by the response status code and
network errors as encountered at the socket layer. The
behavior is shown in Table 1. ID generation refers to the
process of generating the ID over the response body
(content). Dynamics update refers to the process of
updating the per-visit information, whereas information
update refers to the update of the per-URL information
(such as content type, size and headers etc.). Since
network errors are assumed to be of short duration such
URLSs are rescanned after a shorter time interval than the
usual visit interval.

The spider uses object validation based on the Last-
Modified header and the Etag header [8]. For all
cachable objects all subsequent requests after the initial
will result in 304 “Not Modified” responses which
means the content has not changed and is not sent again.
Even if an Expires or Cache-Control header indicates no
changes over a certain time period the spider will revisit
the particular object again after the configured visit
interval. Currently the spider has the following shortfalls
as compared to passive analysis:

¢ [t can not make any POST requests.
e It does not send cookies (although it receives them).
e [t can not handle HTTP authorization.

We believe that the above does not have a major
influence on our analysis because we focus on
information/news sites which do not involve a high level
of user interaction.

Status Code ID Dynamics Information
generation update update

OK (200, 206) yes yes yes

Redirect yes yes yes

(300-303, 307)

Not Modified no only visit | only specific

(304) time, status headers [8]

Error no only visit | delete existing

(305,400-415, time headers but

501, 502, 505) keep the rest

Network Error no only visit | keep existing

(500, 503, 504, time

network errors)

Table 1: Spider behavior based on response status

page 2 of 6

We have compared the use of CRC32 and MD-5 hash
functions for generating the IDs. An MD-5 ID uses 32
bytes (ASCII encoded) whereas a CRC-32 ID uses only
4 bytes and the computation of the MD-5 ID takes
substantially more time. We analyzed a dataset
containing roughly 575,000 different URLs. With MD-5
we got 509,546 distinct IDs whereas with CRC32 we got
only 509,508 distinct IDs. Obviously using CRC32 we
are experiencing some collisions. Although the fraction
is only 0.007% it may become larger for larger URL
sets. Since the additional resources needed for MD-5 are
not a problem (neither in terms of CPU performance for
the spider nor in terms of space for the database) we
have decided to use MD-5 IDs.

Our cachability analysis is based on the definitions of
[8] and some knowledge about the implementation of the
well known Squid proxy [9]. There are several reasons
why a document is not cachable. Since more than one
reason can apply for a certain URL we have ordered the
reasons and report only the highest reason found for an
URL as reason for non-cachability:

1. Method — The request method is not GET or HEAD
(because we use an active approach this reason
never applies as the spider uses only GET requests).

2. No Freshness — The object has no freshness
information attached i.e. there is no Last-Modified,
Expires or Cache-Control header present

3. Stale — The response is expired according the
Expires and/or Cache-Control headers.

4. Cache-Control — The response is marked as not
cachable by a Cache-Control header. We distinguish
between Cache-Control public and private.

5. Pragma — The response is marked as not cachable
with a Pragma ‘“no-cache” header. Pragma should
only be used for HTTP 1.0 responses.

6. Uncachable Response — certain responses are not
cachable e.g. 302 responses are not cachable unless
explicitly allowed by a Cache-Control header.

7. Cookie — The response includes a Set-Cookie or Set-
Cookie2 header (Squid 2 does allow the caching but
Squid 1 does not).

8. Dynamic URL — The URL contains a question mark
6‘??’ Or “Cgi—bin”

Furthermore we investigate whether an object can be
validated if Last-Modified and/or Etag headers are
present in the response. A future version of our software
will be capable of indicating more than one reason per
object and will also cover authorization headers.
Responses containing authorization headers are usually
not cachable except if explicitly allowed by a Cache-
Control header.

IV. RESULTS

In this chapter we present the results of the
measurements we have done. We have investigated six
(three commercial and three university/government)
popular web sites (as indicated by a local web proxy log)
for a time period of 14 days. The total number of distinct

CAIA Technical Report 030405B April 2003

URLs is approximately 500,000 while the overall
content size is approximately 14.5 GB. The visit interval
for all URLs was set to 24 hours. In case of a short term
network error the URL was visited again in only 6 hours.

Fig. 2 shows the overall response status distribution.
In this figure 2xx and 304 response status have been
summarized as OK. Redirects are summarized under
redirects. 500, 503 or 504 responses status as well as
network errors on socket layer are shown as network
errors. All responses with status code 401, 402, 403 or
407 are counted as other while the remaining response
status codes are errors. The figure shows that over 95%
of the URLs have an OK status while 2% are temporary
network errors, 2% are errors and 1% other and
redirects.

Ratio
oo oo
S

O ——

Error —4
Other —
Redir =

Net Error

Fig. 2: Response status distribution

Fig. 3 shows the content type distribution both as
object count and summarized content size. The content
types are ordered by object count from left to right. Not
surprisingly the most popular content types are HTML,
GIF and JPEG objects. Interestingly these are followed
by PDF documents which would actually be in second
position if the data was ordered by summarized content
length. Probably this would not be seen in passive trace
analysis because wusers will not download PDF
documents as frequently as HTML objects because of
their size.

| | 0jects
Butes
1

Ratio

.
.
0.
0.

L2 S -]

midi o

-wais-source -

E=y- T A=A T el = -]
LLLLL

w-maviden —
x-gtuffit o
w-hdf
unknoun -

octet-gtr
v L mE-e

Wi . nz-poed
H-ph-realau

x-shockuave:

Fig. 3: Content type distribution

Table 2 shows the result of the cachability analysis.
Although we have observed the cachability over a time
period we here show only the cachability statistics from
the latest visit. Although new objects have been created
and some objects seem to have been disappeared the
overall cachability ratios remained almost constant
during our measurement period. Averaging the
cachability over the measurement period provide the
same result. As shown in the table a slight amount of
GIF and JPEG is not cachable while almost all HTML
documents are not cachable. All other content types are
cachable.

page 3 of 6

Content Type Cachable objects Cachable bytes
application/pdf 100% 100%

image/gif 93% 89%
image/jpeg 95% 92%

text/html 3% 1%

Other 100% 100%

Overall 20% 32%

Table 2: Cachability by content type

Fig. 4 shows the main reasons for objects not
being cachable. As mentioned before usually there is
more than one reason. We show only the reason with the
smallest number (highest priority) as explained in
chapter III. The most common reason is either we know
that the object is a dynamic script (92%) or the response
contained no freshness information (7%) which is the
case if the content has been dynamically generated or the
server does not send the headers because of inability or
wrong configuration.

Since newer web caches (e.g. Squid version 2) are
able to cache URLs containing “cgi-bin” we further
investigated the objects classified as uncachable because
of dynamic URLs. First we found that 99.9% of the
URLs containing “cgi-bin” also contain a “?” and URL
parameters.

Stale —

Unknown —
CCtrl Private —

Ratio
Dynamic URL ——
No Freshness —m
Cookie —
Cache Ctrl =
HTTP Method —

Uncachable Res —

Fig. 4: Reasons for being uncachable

As stated in [8] these URLs should not been cached
except explicitly allowed. We then investigated how
many of these URLs explicitly allow caching (Expires,
Cache-Control header) or at least contain implicit
caching information (Last-Modified header). We found
that:

e 0.033% of the URLs we have classified as
uncachable above are explicitly allowed to be
cached by a Cache-Control and/or Expires header,

e (0.007% of the URLs we have classified as
uncachable have a Last-Modified header and

® 063% of the uncachable URLs have an Expires
header which is set to the past to prevent caching
(these URLs also have Cache-Control set to “no-
store”).

The conclusion is that 99.9% of the URLs are still
uncachable because they lack any kind of freshness
information.

We also investigated the content length of cachable
objects and the content length of uncachable objects. As
already suggested by the results given in Table 1 the
uncachable objects are smaller having an average size of
26kB while the cachable objects are 40kB on average.
As expected the tail of the distribution is much longer
for cachable objects with a maximum object size of

CAIA Technical Report 030405B April 2003

61MB versus 1MB for the uncachable objects. Fig. 5
shows the cumulative density functions over a
logarithmical x-axis. Almost all uncachable objects are
between 2 and 63kB in size. Most cachable objects are
smaller than 32kB. However a small fraction is very
large.

1 1
w 0.8 2 0.8
g 08 2 0.6
g 04 £ 0.4
g 0.2 3 0.2
n= I [I [I [0 e oy Sow L |

i1 32 180 987 5393 29443 2
Content Length [kB1 Content Length [kB1

Fig. 5(a): Cachable | Fig. 5(b): Uncachable

Fig. 5(a-b): Cachability and content length dependency for cachable and
uncachable objects

6 14 30 B3 130 267547

Since all of the requests are going through a local
proxy cache we can compare the theoretical amount of
cachable objects with the amount actually cached by the
proxy. This is interesting because assuming an optimal
proxy with virtually unlimited storage space we would
assume that all objects cachable in theory were cached
by the proxy. However our measurements show that
only a small fraction of the cachable content is actually
served from the cache (see Table 3). The actual numbers
vary over time but the overall percentage never exceeded
20%.

Content Type Cachable Cachable bytes
objects cached cached

application/pdf 9% 8%

image/gif 36% 49%

image/jpeg 9% 19%

text/html 7% 7%

Other 0%-43% 0%-43%

Overall 12% 13%

Table 3: Cachability vs. real cache behavior

In contrast to the cachability of the objects we have
also examined the real dynamics by detecting changes of
the content using the MD-5 IDs generated for each
object. Due to our active measurement approach we had
to restrict the visit time interval to 24h. This means we
were not able to detect changes within that 24h period.
However in our investigation we found that the most of
the objects have not changed at all and a significant
amount of objects changed less than once per day on
average. Of the uncachable objects however a large
number change at least once in 24 hours. Probably a
large amount of this content changes much more often as
shown in previous work [1,2,5].

Table 4 shows the average rate of change observed
over 14 days for the most popular content types and
some other faster changing content types. It also shows
the percentage of objects which have not changed at all
during our measurement period. The change rate is
defined as number of changes divided by the number of
visits. Fig. 6(a-d) shows the cumulative density
distributions of the number of changes and the minimum
time between changes per object for the four most
frequent content types (HTML, GIF, JPEG, PDF) over a

page 4 of 6

logarithmic x-axis. We show the minimum time between

changes instead of the average time because the | '‘t+—>————"" | ! —_—
minimum time represents the worst case. & o - 8o
5o o 5o
Content Type Change | Change Unchanged ’ 123 57 1 ’ 12 46 33
rate rate bytes objects # of Changes Hin Change Interval [daysl
objects Fig. 6(b): Number of changes, minimum change time interval (GIF)
application/pdf 1% 8% 96%
application/postscript | 6% 7% 80%
application/vnd. 7% 23% 80% . O_é] . 0_;
ms-powerpoint 2ok - & o
image/gif 6% 11% 92% g§ %4 g 04
image/jpeg 1% 1% 98% =t o =0t A
image/png 4% 0.5% 96% 1 2z 3 5 7 1 2z 3 57 1014
text/html 23% 28% 439 # of changes nin change Interval [days]
video/x-msvideo 14% 15% 75% Fig. 6(c): Number of changes, minimum and change time interval (JPEG)
Other <1% <1% -
Overall 20% 22% 52%

Table 4: Average rate of change over 14 days

Comparing the dynamics with the cachability we find
a big discrepancy between the cachability and dynamic
behaviour of HTML documents. Only 20% are cachable
but 43% have not changed at all within 14 days and of
the documents that have changed 20-40% have a
minimum change time interval larger than 24 hours. The
percentage of PDF, GIF and JPEG objects that does not
change at all is larger than 92%. For GIF images it can
be seen that for almost all changing objects the change
interval is one day or less (see Fig. 6(b)) while for PDF
and JPEG the curve is more rounded (see Fig. 6(c,d))
meaning a larger percentage (20%, 40%) of the objects
have minimum change intervals of two days or more.
We believe the reason for the different behaviour of GIF
and JPEG images is the use of the different image types.
While GIF is used for a lot of images which are updated
very frequently such as counters JPEG images are more
used for photographs which are less frequently or never
updated.

For some sites nearly all uncachable objects changed
frequently. However for some other sites a large number
of uncachable objects changed only very infrequently or
not at all during our measurement period. Depending on
user access patterns this may lead to a large amount of
data which is unnecessarily transferred over the Internet.
This situation could be improved by finding a clever
scheme for generating validation information for
dynamic content which would enable caches to at least

i i
® 0.8 E|—l_,_.——'—;'_'_/ 0.8
g 0.6 g 0.6
e 0.4 = ¥
L M | L | 9 L A
1 g 3 27 s 1 2 » E % 33

be able to validate these objects.
8 0z -
% of Changes Hin Change Interval [days]

Cun Dist

Fig. 6(a): Number of changes, minimum change time interval (HTML)

CAIA Technical Report 030405B April 2003

1 1
o 0.8 - & 0.8 (—_”_r_>
g 0.6 - RS

£ 0.4 — £ 0.4

=

3o

0 - | (. o v [e e B
1 2 3 5 7 1 2 3 5 7 10
of Changes Hin Change Interval [days]

Fig. 6(d): Number of changes, minimum change time interval (PDF)

We also investigated whether there is a correlation
between the object size and the minimum time interval
between changes. Fig. 7 shows a scatter plot with the
minimum change interval over the content size (for
content sizes smaller then 150kB). The figure shows that
small objects (<30kB) have a smaller minimum change
interval (lower part on the left side of the dashed line)
while for larger objects the minimum change interval is
more equally distributed. It clearly shows that large
objects do not have a larger minimum change interval.

Finally we have looked at duplication of objects.
Duplication means objects have a different URL but the
same content as indicated by the MD-5 hash. We found
that 93% of the objects in our data set have no
duplicates. 7% of the object content occurs at least twice
under a different URL whereas in the extreme case one
document was found having over 1,800 different URLs
pointing to it. Actually this document is generated by a
dynamic script which obviously generates the same
content for a large number of different input parameter
combinations.

Duplication is a potential problem if content is highly
duplicated, different duplicates are accessed by a local
user population and the content is substantially large.
Existing caching could be improved by generating
unique IDs such as a MD-5 hash for the objects.
Although a MD-5 hash would experience collisions,
combined with more information such as content type
and size it could be sufficiently unique. Each object with
a unique ID would need to be stored only once in the
cache. Furthermore download times of large objects
could be improved because a cache can supply a cached
duplicate as soon as it would see the content type, size
and unique ID in the header of the server response.

page 5of 6

Hin cChange Interval [days]

Mol e
T L LEBLIL A R N B e S e
0 1 273 4 § 8 7 8 9 40 11 12 13 14 15

Content Size [18kB1

Fig. 7: Objects size and change correlation

With respect to a future inverted capacity network we
find that the poor cachability of HTML documents might
be problematic because a large amount of content can
not be cached. We believe however that the cachability
could be improved by new caching mechanisms. The
possibility that each user has a large network bandwidth
may enable new ways of web caching e.g. peer-to-peer
distribution of web content.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have analyzed the cachability and
dynamic behavior of a number of web sites and the
implications on a capacity inverted network. Our study
is done wusing an active measurement approach
investigating complete web sites. The goal is to get a
complete picture of those sites rather than seeing only a
snapshot chosen by a specific user group. From our
analysis we reach the following conclusions:

® Only 20%/32% of the investigated objects/bytes is
cachable while the rest is not cachable by the current
HTTP protocol. Most of the uncachable objects
probably have been dynamically generated. The
main reason for being not cachable are URLs
containing either an “?” or “cgi-bin” and lack any
freshness information. Uncachable objects are
smaller on average and the tail of the distribution is
much shorter compared to the distribution of
cachable objects. The amount of cachable objects
would probably be even smaller for a passive trace
assuming that each user has a browser cache
enabled.

® 52% of the objects were completely static and have
not changed at all during our measurement period.
Depending on the content type 10%-40% of the
objects are dynamic but seem to be updated more
infrequently in intervals at least 48 hours. Small
objects (<30kB) tend to have smaller minimum
change intervals while large objects do not
necessarily have large minimum change intervals.

® A large discrepancy between the amount of cachable
and changing objects has been observed for HTML
documents. The reasons for this are objects which
are generated dynamically but whose content does
not change at all or does not change with a high
frequency.

® Only 7% of the investigated URLs were at least

CAIA Technical Report 030405B April 2003

duplicated twice while the majority of 93% has no
duplicates.

Future work will include a more detailed statistical
analysis of various other aspects not yet covered such as
the growth of the sites observed. We will also extend our
analysis to more sites observed over a longer time
period. We plan to conduct a passive proxy trace based
measurement for a user group where the above
investigated web sites are popular. This will allow us to
compare the future trace-based analysis results with the
current analysis results and to find out whether the
statistics gathered passively are representative or not.
The combination of data about user specific access
patterns and data about the cachability and dynamic
behavior of web sites is a basis for future work which
will investigate the efficiency of different caching
architectures and mechanisms for capacity inverted
networks.

We will also work on a more efficient active probing
mechanism. We think that such a mechanism can be
realized by using sampling techniques. Using sampling it
would be possible to get representative statistics for
complete sites by only looking at a small subset of
objects. The sampling interval could be adapted
according to the change interval of the content so that it
is possible to more accurately measure the dynamic
behavior of the sampled objects. Another very important
research direction is to find solutions for improving the
cachability of dynamically generated content.

REFERENCES

[1] V. N. Padmanabhan, L. Qiu, “The Content and Access Dynamics of a
Busy Web Server: Findings and Implications”, Technical Report MSR-
TR-2000-13, Microsoft Research, Feb. 2000.

[2] A. Wolmann, G. Voelker, N. Sharma, N. Cardwell, M. Brown, T.
Landray, D. Pinnel, A. Karlin, H. Levy, “Organization-Based Analysis
of Web-Object Sharing and Caching”, In Proc. of the 2nd USENIX
Symposium on Internet Technologies and Systems, Oct. 1999.

[3] T. Kroeger, D. Long, J. Mogul, “Exploring the bounds of web latency
reduction from caching and prefetching”, In Proc. of the USENIX
Symposium on Internet Technologies and Systems, Dec. 1997

[4] W. Koehler, “Digital libraries and World Wide Web sites and page
persistence”, Information Research, Volume 4 No. 4, Jun. 1999

[5] F. Douglis, A. Feldmann, B. Krishnamurty, J. Mogul, “Rate of Change
and other Metrics: a Live Study of the World Wide Web”, In Proc. of
the USENIX Symposium on Internet Technologies and Systems, Dec.
1997

[6] B.E. Brewington: “Observation of changing information Sources”, PhD
Thesis, Thayer School of Engineering, Darthmouth College, Jun. 2000

[71 T. Kelly, J. Mogul, “Aliasing on the World Wide Web: Prevalence and
Performance Implications”, WWW2002, ACM 1-58113-449-5/02/0005,
May 2002

[8] R. Fielding et al. “Hypertext Transfer Protocol -- HTTP/1.1*, IETF
RFC2616, Jun. 1999

[9] Squid Cache, http://www.squid-cache.org, Mar. 2003

[10] MnoGoSearch Engine, http://search.mnogo.ru, Mar. 2003

[11] MySQL Database, http:/www.mysql.com, Mar. 2003

page 6 of 6

