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Abstracf-A new measure tor network performance evaluation 
called topology lifetime was introduced in 141, see also [SI. This 
measure is based on the notion of unexpected trafc growth 
and can be used for comparison of topologies. We discuss some 
advantages and disadvantages of the approach from I41 and 
suggest some modrcations to this approach. In particular we 
discuss how to evaluate the in uence of a subgraph to the lifetime 
measure and introduce the notion of the order of a path. This 
notion i s  useful if we consider a possible extension to the set of 
working paths in order to support the trafc for the time that 
is needed for installation of new facilities. 

I. INTRODUCTION 

The ability of a telecommunication network to support the 
expected growth in demand is an important characteristic 
of the network (see, for example, [l], [2], [3]). However, 
it is not enough to consider only the expected growth: an 
unexpected growth can often occur due to some technological 
innovations and the increasing popularity of the internet (see 
[4] for a corresponding discussion). A quantitative m e a w e  
for telecommunications topology design was suggested by N. 
Maxemchuk, I. Ouveysi and M. Zukerman in [4]. This measure 
was called topology lifetime. Possible unexpected changes 
in load have been taken into account in [4]. Note that the 
topology lifetime measure depends not only on topology hut 
also on the set of working paths. In the current paper we 
discuss some advantages and disadvantages of the approach 
from [4] and its possible modi cations. Two other topics are 
also discussed in this paper. The 1st is the notion of the order 
of a path (a special measure for comparison of paths). We 
need such a measure for the evaluation of paths that can be 
added to the set of working paths, if it is necessary to support 
the trafc when large unexpected changes in load arise. The 
second topic is the evaluation of the lifetime measure of a 
sub-network of the given network. We use some modi cation 
of the approaches from [6] for this purpose. We concentrate 
mainly on theoretical aspects of the problem. The topic of 
further research is to apply the proposed approaches to some 
real world topologies and analyze the results obtained. 

11. PRELIMINARIES 

Consider a network dened by the graph G = @',E) 
with the set V of vertices (nodes) and the set E of edges 
(arcs, links). Our approach is suitable for both directed and 
undirected topologies. For the sake of deniteness we will 

consider undirected topologies, so we consider G as a non- 
oriented graph. Assume that capacities &,[ ((k, 1) E E) are 
given. Since we consider an undirected topology, it follows 
that C ~ J  = C I , ~ .  Recall that.a path p = (U, i ,  . . . , j, w') between 
U,U' E V is a sequence of links (w, i ) ,  (i, k), . . . , (j, U'), which 
does not contain cycles. The number of links in p is called 
the length of p. Since the graph G is non-oriented, a path 
(U, i ,  . . . , j, U') coincides with the path (U', j ,  . . . , i, w). 

The set of all paths generated by G is denoted by P(G). 
We take into account only a small subset P*(G) of working 
paths. We use the following notation: 

P;,JG) is the set of paths from P'(G),  which contain the 
link (k, I); 

P * ( i , j ; G )  is the set of paths from P'(G) with the end- 
points i and j. 

Denote by zp the amount of ow sent through a working 
path p. The totality of all ows is called a traf c 
generated by set of working paths P*(G) .  We will consider 
only feasible traf cs . Feasibility means that zp 2 
0 for all p E P' (G) and 
1) the total ow transmitted through each link (k, 1) E E does 
not exceed the capacity ck,[ of this link: 

zp < C k , i i  (k ,O E E ,  
PEP;,, (G 

2) the traf c requirement constraints are satis ed. 
In order to explain 2) we assume that the present trafc 

demand is represented by a nite collection 7 of trafc 
matrices T.  Each T E 7 describes the traf c demand between 
all OD pairs at a certain time period. Let T = (tij). Then t i j  
is the traf c demand from node i to node j at the time period 
under consideration. Since we consider undirected traf c, we 
have t i j  = t j i .  Clearly tii = 0 for all i. Traf c (zp)pEp.(q 
satis es traf c requirement constraints if 

for all i , j  t V, i # j and for all T = (tij) E 7. 

111. FEASIBILITY AND GROWTH FACTOR OF TRAFFIC 
MATRIX 

Consider a traf c matrix T E 7 : T = ( t i j ) .  Let P*(G) 
be the set of working paths. Consider the system of linear 
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inequalities: 

x p C P > t i , j ,  i , j€ I ’ , i# j  (1) 

x p  5 % I ,  (k 1 )  E E (2) 

p ~ P . ( i , j ; G )  

ptP;,,(G) 

x p  2 0,  P E P*(G) 
If this system has a solution, the matrix T is called a feasible 
matrix. (Sometimes the different de nition of feasibility is 
used, where the inequality in (1) is replaced with the equality. 
However the form of feasibility which we use is more natural.) 

The growth factor $,(T) of the trafc matrix T ( see [4]), 
is the the largest number $ such that the traf c $T = ( $ t i , j )  

is feasible. (The authors of [4] used the de nition of feasibility 
with equalities in (l).) Thus.&(T) is a solution of the linear 
programming problem: 

maximize $ subject to ( ( X ~ ) , ~ P . , ~ / J )  E X ( T )  

where X ( T )  consists of all the collections ( ( X ~ ) ~ ~ P . ,  $) such 
that ?1, 2 0, (2) holds and 

The number +,(T) indicates the biggest possible uniform 
growth of the trafc T. The number v(7) = m i n { v ( T )  : 
T t 7) is the biggest possible uniform growth of the traf c 
represented by the collection 7. 

The denition of the growth factor is based on a multi- 
plicative approach to traf c extension, since we consider the 
products of the form $ .  t i , j .  One of possible approaches to 
the lifetime measure is to consider an optimization problem 
with constraints (3) where not only x p  and li, but also t i j  
are variable. Such a problem arises if we want to estimate 
the worst performance with the respect to a set of matrices 
T. Unfortunately constraints (3) are bilinear with respect to 
the totality $ , t i , j .  Currently problems of high dimension with 
such constraints can not be numerically solved. 

Iv. UNEXPECTED TRAFFIC GROWTH 

An unexpected growth of traf c was discussed in [4] sepa- 
rately for OD pairs and for nodes. First we consider OD pairs. 
Let T he.a traf c matrix and (i,j) be an OD pair. Assume that 
the traf c between i and j increases by U. Then it is suggested 
in [4] to consider a new trafc matrix T’(U)  T’ ( i , j ) (U)  
with 

t! . = (1 + U)ti . t‘. . = t’. “1 .I’ I,% %,1 

and 

t!, 1 13 ., = ri,jti,,j,, ( i ’ , j ‘ )  # ( i , j ) ,  (i’, j ‘ )  # ( j ,  i ) .  

Here riJ is the wef cient which provides the equality 

Thus T’ describes a shift in load without growth. A family 
of matrix T’(i,j) corresponding to each OD pair ( i , j )  is 
considered in [4]. In other words it is assumed that an 
unexpected growth of traf c can occur only for one pair of 
OD, and this pair is unknown. The growth factor &(T’(i,j)) 
then calculated for each matrix T’(i,j) and the number 
P.(T,U) = min~; , j~tv$*(T‘( i , j )  is considered as a pa- 
rameter that characterizes an unexpected trafc growth U 
corresponding to the matrix T. If a collection I of traf c 
matrices T is given, then we need to apply the described 
procedure for each matrix 2’. Then we get a new collection 
of traf c matrices, which consists of all matrices T’(i,j) 
for all T E 7 and all i , j  E V, i # j .  The number 
min{’€”,(T, U) : T E 7) characterizes an unexpected trafc 
growth U corresponding to collection 7. 

The similar approach was suggested in [4] for the case 
when single nodes become active. For a particular node j we 
consider a matrix T T ( j )  with 

t . .  -E . .  - ( r3 - 3% - 1+U)tij ,  i # j 
and 

t i j ,  = r . t - . ,  3 11 1 j‘  # j ,  i # j‘, 
where r j  is the coef cient which provides the equality 

c fw = c t P V  
P,VEV P.VEV 

The described approach is very interesting and can be used 
for comparison of different topologies. However, this approach 
is based on strong enough hypotheses. We only comment on 
the case of OD pairs. The construction of matrices T’(i,j) 
is based on the assumption that the uniform redistribution 
of the amount 2Uti,j is carried out between all OD ( i ’ , j ’ )  
with (z’,j’) # ( i , j )  and ( i ’ , j ‘ )  # ( j , i ) .  This uniformity does 
not always hold in real world networks. The assumption that 
an unexpected growth can occur only for one pair of OD is 
also not valid in many cases. The following situation should 
be also taken into account. Assume that unexpected growth 
occurs for a pair ( i , j )  at the end of the 1st year. This leads 
to a change of the collection 7 of traf c matrices. So we 
have a different collection 7’ of traf c matrices in the second 
year and cannot use the results obtained for the collection 7. 
This means that we need to recalculate the lifetime measure 
in the second year. However, the proposed lifetime measure is 
used for the evaluation of topology design so we should not 
recalculate it each year. It is therefore important to consider a 
modi cation to the construction from 141 that is not based on 
the two mentioned assumptions. 

We suggest the consideration of the additive approach rather 
than the multiplicative approach for the denition of the 
lifetime measure. 

Let U be a positive number that indicates the total amount 
of an unexpected trafc growth for the required period of time. 
Consider the system of linear inequalities 

X , > U + t i , j ,  i , j € V , i # j  (4) 
p € P * ( i , j ; G )  
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xp 2 0, p E P*(G). (6) 

Composing (4) we suppose that unexpected trafc growth 
U can happen in many arcs and nodes simultaneously. This 
situation is more realistic than that suggested in [4], where 
only a single node (or a single ark) becomes more active. 
Indeed, the increase of activity in a node can lead to the 
increase of activity in many different nodes. One of the main 
reasons for unexpected growth is the internet. A server farm, 
which provides a popular service can suddenly appear and 
then the load to the corresponding part of network increases. 
However, the same reasons that lead to appearance of this farm 
will also lead to appearance of different farms in different parts 
of network in different years of the period of time r under 
consideration. So it is important to take into account many 
nodes simultaneously. Note that U is an upper bound for the 
total unexpected increase of load for the time period 7 for 
each OD pair ( i , j ) .  

The suggested approach is pessimistic, because we assume 
the worst thing that can happen (unexpected increase in all 
nodes simultaneously). We are forced to take into account 
arbitrary unexpected traf c growth if we do not have any 
forecasts. Usually some forecasts are known. They can narrow 
the area of unexpected trafc growth. We can either exclude 
unexpected growth for some links or consider them with 
coef cients, less than one. This means that instead of (4) we 
can consider the following: 

c sp2a,u+ti,j, i , j € V , i # j  (7) 
~ 

p € P * ( i , j ; G )  

where 0 5 a, 5 1. For the sake of simplicity we assume that 
cvij = 1 for all i, j. Note that we do not need to consider links 
and nodes separately. 

In order to check that the system (4)-(6) is feasible it 
is enough to solve a linear programming problem with an 
arbitrary linear objective function f and constraints (4) - (6). 
The most appropriate objective function in this situation is the 
total traf c: 

f(X) = % 
P € P - ( G )  

where X = ( Z ~ ) ~ ~ ~ . ( G ) .  Thus we shall consider the following 
linear programming problem LP(T,U): 

subject to constraints (4)-(6). The system (4)-(6) is feasible 
if and only if the maximum in (8) is nite. The value of 
this maximum is denoted by X(T, U). If the system (4)-(6) 
is unfeasible then the maximum in (8) (that is, the maximum 
over the empty set) is equal to -03, so X(T, U) = -CO. It 
is easy to check that the X(T, U) is a decreasing and concave 
function of U for each T. 

The number X(T, U) indicates the greatest possible total 
traf c that can provide (4) and (5) for a given matrix T. 
We consider this number as a certain lifetime measure of 
a topology under consideration for the trafc matrix T. Let 
a collection 7 of traf c matrices T be given. Assume that 
systems (4)-(6) are feasible for each T E 7, then the 
unexpected traf c growth X ( 7 ,  U) corresponding to 7 can 
be calculated as the minimum of X(T, U) over the set 7. We 
consider X ( 7 ,  U) as a lifetime measure for the given topology, 
the given collection 7 and the given set P*(G) of working 
paths. 

Thus we suggest the use of a simple one-step procedure 
for the de nition of lifetime measure instead of consecutive 
two-step procedure from [4]. 

v. EXTENSIONS OF THE SET OF WORKING PATHS 

Let U be a number such that the problem LP(T,U') is 
feasible for U' < U and LP(T,U') is unfeasible for U' > 
U. Assume that the problem LP(T,U) is feasible and let 
( ( X ~ ) ~ ~ ~ . ( C ) )  be its solution. If all the inequalities (4) hold in 
the strong sense then there exists U' > U such that LP(T,U') 
is also feasible, which contradicts the de nition of U. Hence, 
(4) holds as the equality for at least one link. Links (k, 1 )  E E, 
where the equality holds, indicate the bottleneck that does not 
permit an unexpected load greater than U. 

If the load distribution that occurs due to unexpected load 
growth, exceeds the network possibilities then new facilities 
should be installed. In order to support the traf c for the time 
that is needed for installation of these facilities, the set P*(G) 
of working paths needs to be extended. We can attract new 
paths that do not contain links (k, l ) ,  where the inequality in 
(2) holds as the equality. It is easy to nd examples, where 
even a few such paths allow us to signi cantly increase the 
capacity to handle an unexpected load. 

Clearly it is henecial to use only fairly short paths in 
the telecommunication networks. Usually the shortest paths 
or rst k shortest paths with k > 1 are considered. It is more 
convenient to introduce a special notion of the order of a path 
and then consider paths only with small enough orders. Using 
this notion we can compare paths for different OD and say 
for example, that it is bene cia1 to include new working paths 
only for OD pairs (il,jl),(i2,jz), (isij3) and consider 1st 
k shortest paths with k = 1 (k = 2, k = 3, respectively) for 
(i1,jl) ((&,.+Z), ( k j 3 ) ,  respectively). 

VI. ORDER OF A PATH 

Different notions of the order of a path can he introduced 
for estimating its quality. We consider three different notions 
of the order. 

Let U, w' E V, w # U'. The length of the shortest path with 
the end -nodes zi and w' is denoted by i (z i ,  w'). Consider now 
a path p = ( U , .  . .,vi.. . , U ' )  with the same end-nodes and 

the length X(p). The number ul(p) = __ '@) indicates how 

many super uous links are contained in t e path p Note that 
U I @ )  2 1. If u l ( p )  is a large number then the path p contains 

Xh"'"" , 
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many superuous links. We can consider u l ( p )  as the order 
of the path p. 

The order u l ( p )  is not suitable for the description of a 
situation, where only a certain part of the path contains 
super uous links. 

Example 6.1: Consider a path p = (wI,. . . ,ut ,  wt+l , .  . . , 
ut+.), where (211,. . . , u t )  is the shortest path between 711 and 
wt and there is link l,,,,,+s, such that the shortest path between 
"1 and is (q,. . . , v ~ , v ~ + ~ ) .  Then X ( U I , V , + , )  = t + 1 
and X ( p )  = t + s so u l ( p )  = - ' + Assume that s is xed. 

t + l '  
If t is a large enough number then u l ( p )  can be closed to 
1, so accordingly to the factor UI, the whole path p is good 
enough. However the sub-path (u t , .  . . , U,+,) contains many 
super uous links. 

In order to re ect the in uence of sub-paths to the quality of 
a path we can use the following construction. Consider a path 
p = (WO, wl, . . . , t1-1, ut) and all sub-paths pi,j = (vi,. . . , wj) 
of this path. Let 

u2@) = i = ~ , , , , ~ ~ ; < j ~ ~ u l ( P i , ~ )  

The number u z ( p )  can be considered as another order of a 
path p. This order indicates the quality of the worst sub-path 
of this path. If this number is large then the path contains 
a sub-path with relatively large amount of super uous links. 
In contrast with u l ( p ) ,  the number ~ ( p )  does not re ect the 
quality of the whole path. We can consider one of the numbers 
ul(p),uz(p) or both of them for estimation of the quality of 
a path. Sometimes it is convenient to consider a combination 
of orders ul(p)  and u z ( p ) .  A number 

1 d P )  = +(P) + 4.P)) 

also can be considered as an order of the path p ,  which re e W  

the in uence of a path itself and its sub-paths. We use this 
characteristic as the order. The order of a path is a convenient 
tool for comparison of different paths of the same length. 

In the same manner we can de ne the order of a path in 
terms of cost. It is easy to nd examples where k-shortest paths 
between different OD ( i , j )  with the same k have different 
orders. In order to increase the growth factor, we can use some 
additional working paths with the small order U. 

VII. USING FORECAST OF GROWTH OF POPULATION 

In order to have a more precise lifetime measure we need 
to use forecasts of growth of population and migrations ows. 
Usually such forecasts are known. We can suppose that trafc 
between two nodes is proportional to the population of these 
nodes with a certain coef cient of proportionality y which 
depends on different issues, in particular, on the rate of 
migration. Assume the a forecast suggests that the set of nodes 
V can be presented as the union of two disjoint sets V' and 
V": V = V'UV". The population of nodes U' E V' will grow 
and the population of nodes U" t V" will remain the same. 
Let U be the rate of growth of population at cities i E V' (we 
assume for the sake of simplicity that both U and the coef cient 

of proportionality y do not depend on a node i E V'.) Let 7 
be the set of current traf c matrices and T = ( t i j )  E 7. Then 
a new trafc matrix ST(U) has entries sij  where 

s . .  %J - -yZ(l+u)2t,, i , j  E V' 

s . '  %J - t . .  - 2J, i , j  E V". 

The set of matrices S = {&(U) : T E I} should be 
considered instead of 7 for the calculation of the lifetime 
measure in the situation under consideration. 

VIII. USING SUBGRAPHS 

Different parts of the network have a different in uence on 
the lifetime measure. Thus we need to consider the developed 
approaches not only for a given graph G but also for some 
its subgraphs G'. In order to do this we need to determine 
the restriction of the traf c matrices T to a subgraph G'. The 
following de nition is useful. A node i E V' is called an outer 
node for G' if there are links (k, i )  E E with k 6 V' and ( i , j )  
with j E V'. 

Let G' = (V', E') be a subgraph of G. Denote by V" the 
complement to V': V" = V \ V'. We now classify all paths 
from P*(G) with respect to G', namely we consider three 
classes of paths. 
1) Paths p, which do not go through G'. This means that p 
does not contain links from E'. Note that some nodes of p 
can belong to V', in such a case these are outer nodes of V'. 
2) Paths p, which go through G' once. We say that a path p 
goes through G' once if p has the form 

p = (U,. . . ,i,. . . , j , .  . . , U ) ,  (9) 

where i, j E V', i # j and the path p' = (i, . . . ,j) is located 
in G' (the latter means that p' consists of links, which belong 
to E'); It is possible that w = i and/or j = U. If w # i, then i 
is an outer node and the path (m, . . . , z )  does not go through 
G'; if j # U then j is an outer node and ( j ,  . . . , U )  does not 
go through G'. If w = i and j = U then p is a path with the 
end-nodes i and U, which is located in G'. Thus an arbitrary 
path, which is located in G, is going through G' once. 
3) Paths p, which go through G' more than once. This means 
that p contains more than one piece of the form (i,, . . . ,ja) 
with i, # j , ,  which is located in G'. 

The analysis of paths, which go through G' more than once 
is dif cult. The simplest way to handle these paths is to divide 
them into parts which go through G' once and examine these 
parts separately. Thus we can assume that the set P'(G) 
contains only paths that either do not go through G' or go 
through G' once. We use the following notation: 
P&(G) is the set of all working paths p E P"(G) going 
through G' once. 
P&(i,j; G) is the set of all working paths of the form (9) 
with xed i , j  E V'. 



If nodes i , j  E V’ are not outer nodes of G’ then 
Pp( i , j ;G‘)  coincides with the set P(i, j;G’) of all paths 
of G’ with the end-nodes i and j .  

Let U be a size of an unexpected growth in trafc and 
let (Zp)pEp+ be the set of paths such that ((Zp)pEp.(Gl is a 
solution of problem LPp,U). Let G’ = (V’, E’) be a subgraph 
of the graph G and let i,j E V’, i # j . Consider a total ow 
yil, which should be transmitted from the node i to the node 
j through paths from P ( G ’ ) ,  which go through G’ once: 

y;,j = zp. 
PEP:, ( i , j ;G) )  

We also put yid = 0. Consider the matrix Y = ( Y ~ ~ ) ~ , ~ ~ “ .  
Clearly Y is symmetric, y i j  2 0 and yii = 0 for all i so we 
can consider Y as a traf c matrix for the undirected traf c 
corresponding to the subgraph G’. 

If i and j are not outer nodes of V’ then P&(i , j ;G) 
coincides with P*(i , j ;  G’), hence the boundary conditions 
yi,j coincides with traf c demands tij .  If i is an outer node 
and j is not an outer node, then Y,,~ is the total ow on 
the paths p = (v,, . , , i, . . . ,j), which go from either end- 
nodes v outside G‘ or i through G‘ once to j .  If both i and 
j are outer nodes, then yi,i is the total ow, on the paths 
p = ( U , .  . . , i, . . . , j ,  . . , ,U), which go once through G‘. (Here 
either v $ V’ or U = i and either U 

The matrix Y depends on a traf c matrix T, subgraph G’ 
and a ow (Zp). We can consider a procedure suggested in 
Section IV and calculate the number X(Y, U) for the given 
matrix Y. Since V’ is smaller than V, the calculation of 
X(Y, U) is simpler than the calculation of X(T, U). 

V‘ or U = j . )  

IX. CONCLUSIONS 
We have discussed some issues related to lifetime measures 

for telecommunication networks. Such measures are important 
for comparing networks. A lifetime measure should take into 
account not only the expected growth in demand but also an 
unexpected trafc growth. 

We demonstrated some advantages and disadvantages of the 
topology lifetime measure that was introduced in the pioneer- 
ing paper [4]. In particular, we showed that this measure is 
based on strong enough hypotheses. We introduced a more 
realistic lifetime measure and discussed its properties. 

Lifetime measures depend not only on the topology of the 
network hut also on the set of working paths. Sometimes this 
set should be extended (for example, we need to extend this 
set in order to support the traf c for the time that is needed for 
installations of new facilities). It is convenient to use special 
measure for comparing paths in order to choose new working 
paths. We suggest a possible measure (the order of a path) for 
comparing paths and discuss its properties. 

We show that forecasts of growth of population and migra- 
tion ows can be used in the de nition of lifetime measures. 

Different parts of the network have a different inuence 
on the lifetime measure, so it is important to examine the 
restriction of a given traf c to some parts of the network. We 
suggest an approach to such an examination. 
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