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Abstract— This paper deals with the improvement of transport
protocol behaviour over the DiffServ Assured Forwarding (AF)
class. The Assured Service (AS) provides a minimum level of
throughput guarantee that classical congestion control mecha-
nisms, like window-based in TCP or equation-based in TCP-
Friendly Rate Control (TFRC), are not able to use efficiently.
In response, this paper proposes a performance analysis of a
QoS aware congestion control mechanism, named gTFRC, which
improves the delivery of continuous streams. The gTFRC (guar-
anteed TFRC) mechanism has been integrated into an Enhanced
Transport Protocol (ETP) that allows protocol mechanisms to be
dynamically managed and controlled. After conformance tests
between ns-2 simulation and our implementation of the basic
TFRC mechanism, we show that ETP/gTFRC extension is able to
reach a minimum throughput guarantee whatever the flow’s RTT
and target rate (TR) and the network provisioning conditions1.

Index Terms— Transport, Congestion Control, TFRC, Diff-
Serv, Assured Service.

I. INTRODUCTION

The increasing capabilities of high performance end-
systems and communication networks have greatly accelerated
the development of distributed computing. Distributed appli-
cations were originally characterized by very basic communi-
cation requirements that could be satisfied by a basic fully re-
liable and ordered transport service. Today, many applications
are demanding more complex requirements, specially in terms
of delay and bandwidth, which cannot be delivered without a
network support such the one proposed by the IETF DiffServ
architecture. In the DiffServ framework, the Assured Forward-
ing (AF) class of service provides a high delivery probability
as long as the aggregated traffic of each site does not exceed
its subscribed information rate [1]. Therefore, the AF class
of service is of special interest for multimedia continuous
flows such video streams which need a minimum guaranteed
bandwidth and can support some losses and take advantage
of excess bandwidth (with layered coding for instance). More
generally, the AF service fits well with traffic generated by
adaptive applications that can increase their throughput as long
as there are available resources and can decrease it down
to a minimum rate when congestion occurs. This minimum
assured throughput (also called target rate) delivered by the
AF service is given according to a negotiated profile with the

1This research work has been conducted in the framework of the EuQoS
European project.

user. Nevertheless, such QoS support alone is not sufficient to
cope with either the full spectrum of application requirements
(e.g., reliability, timing) or the network control requirements.
Indeed, the transport layer is devoted to applying an efficient
adaptation between the network services and the application
requirements. However, TCP is used by the vast majority
of applications. TCP is fully oblivious of the new appli-
cation layer QoS requirements, and applies error and order
control mechanisms that adversely affect continuous stream.
Moreover, TCP applies a congestion control mechanisms that
focuses on the network status while fully ignoring application
layer QoS requirements. The TFRC mechanism has been
introduced in order to reduce the disastrous impact of the
potentially large rate variations entailed by the AIMD based
TCP congestion control mechanism, while preserving the fair
share of the available bandwidth. Although doing one step
further for improving the service delivered to multimedia
applications, TFRC is still oblivious both of the target rate
needed by the application and the one offered in response by
a network service such as AF.

This article focuses on the integration of a first level of
QoS awareness (i.e. the target rate) in the TFRC mechanism.
Our implementation of the basic TFRC mechanism has been
integrated, tested and validated in a compositional transport
protocol, named Enhanced Transport Protocol (ETP) [2]. We
show that this implementation is compliant with the TFRC
RFC [3] thanks to a cross-comparison between real measure-
ments and the ns-2 reference implementation. Nevertheless,
we show that when using TFRC in an AF network service, it
has difficulties in reaching a guaranteed throughput. In order
to solve this problem, thanks to the compositional transport
architecture, we propose to make the mechanism QoS-aware
following the proposal presented in [4]. This previous study
based on ns-2 had shown the benefit of using gTFRC in a
DiffServ Assured Forwarding (AF) class. In this paper, we
validate and quantify the impact of this contribution from real
network measurements. This paper is structured as follow. The
section II presents the context of this study and provides some
background about the compositional framework. Section III
tackles a validation of the ETP/TFRC implementation. Section
IV evaluates QoS aware TFRC implementation and finally
section V gives some perspectives of this work.
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II. CONTEXT

Many research works have been carried out on Quality of
Service mechanisms for packet switching networks over the
past ten years. The results of these efforts have still not lead to
multi-domain network providing QoS guarantees [5]. Without
loss of generality, this study takes place in the EuQoS project.
The EuQoS project [6] is an integrated project under the Euro-
pean Union’s Framework Program 6 which aims at deploying a
flexible and secure QoS insurance system over a pan-European
testbed environment. The EuQoS System aims at delivering
QoS insurance to many applications requiring QoS guarantees
such as voice over IP, video on demand or medical applications
over multi-domain heterogeneous environment such as WiFi,
UMTS, xDSL or Ethernet technologies.

For this purpose, the EuQoS System integrates various
architectural components such as signaling protocols, traffic
engineering mechanisms, QoS routing, admission control to
resource reservation scheme and tackles also the issue of QoS
aware transport protocols. In this context, network configura-
tion (i.e. resource allocation and reservation) is done according
to the user’s SLA and applications’ requirements. This config-
uration is performed following a complex signalling process2

which leads to the production of a QoS session descriptor.
This descriptor is implemented in an XML based language
named xQoS [7]. XQoS session descriptors give all the details,
related to the current session, that can be supported by the
EuQoS service (with respect to the users’ profile and the
network status) including application level information (e.g.,
coding schemes, application data unit types, etc.) and the
underlying network’s QoS features. This document owns all
the details regarding the current session including application
level information (e.g., coding schemes, application data unit
types, etc.) and the underlaying network’s QoS characteris-
tics. This session descriptor can be used to decide which
transport level service, protocol and mechanisms offer the
most efficient adaptation between the application needs and
the offered network services. In this context, the Enhanced
Transport Protocol (ETP) [2] has been introduced for offering
a generic transport service and a dynamically configurable
transport protocol. ETP is a connection oriented and messages
oriented transport protocol. ETP offers among other things,
a partially ordered, partially reliable, congestion controlled
and timed controlled end-to-end communication service. ETP
has been designed to be statically or dynamically configured
according to the application layer QoS requirements. ETP
services are implemented by the composition of configurable
micro-mechanisms suited to control and manage the QoS
needed by sessions’ flows. The figure 1 (a) shows a high
level view of the ETP architecture composed of control,
management and provisioning processing modules that can be
dynamically bound and configured. The processing modules
represent micro-mechanisms, such as a rate control, reliability
control, multiplexing, time control.

ETP framework has been initially modelled and evaluated
in a best-effort network [2], [8]. However the context of
the previously mentioned EuQoS system allows the transport

2The details of this signaling process is out of scope of the present study.
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Fig. 1. Enhanced Transport Protocol

protocol to be informed of the underlying network’s QoS
characteristics. In such context, the network service description
can be provided to ETP through an Extended Application
Programming Interface (E-API) for deciding which micro-
mechanisms to compose in relation to the associated ETP
session. This configuration scheme can be modelled as de-
scribed in figure 1 (b). In this figure the EUQoS CAC3

module represents the interface between the application and
the negotiation of the EuQoS system. This module provides
the XML configuration document as describe above.

We have implemented the TFRC mechanism as a processing
module in this compositional architecture. This TFRC mech-
anism has been enhanced, as described in the following, in
order to take into account the QoS delivered by the underlying
network. ETP uses an object oriented approach to instantiate
dynamically micro mechanism. The Java language has been
used for implementing ETP, because of its object oriented
properties. The rest of this paper focuses on this mechanism
and its behavior in the DiffServ/AF service. We show that
the basic TFRC mechanism is not able to use efficiently the
underlying level of service and then propose an extension
which improves the QoS delivered to continuous flows.

3Call Admission Control
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III. NON FUNCTIONAL CONFORMANCE OF TFRC
IMPLEMENTATION

In this section we present a part of the validation measure-
ments that have been achieved on both the ns-2.28 simulator
(named in the following the reference TFRC implementation)
and the ETP framework (named in the following ETP/TFRC )
with an underlying network of which the behavior is emulated
and controlled by the Dummynet tool [9]. We made several
tests and give in this section an overview of this validation.

A. General hypothesis and model

In order to validate the TFRC implementation, we used the
simple topology given in figure 2 for ns-2 simulator and the
real testbed.

1 Mbits/s

100 Mbits/s

RTT = 50ms or 250ms

Router

Fig. 2. The simulation topology for TFRC validation

The real testbed is composed by two end-stations on
GNU/Linux, and one router with FreeBSD. We use a Dum-
mynet pipe in order to emulate RTT and a packet loss rate
(PLR). For both simulations: the packet size is fixed to 1000
bytes; the router queue size is 50 packets; measurements are
carried during 180sec. For each experiments, we compute the
average throughput at the server and at the receiver side.

B. Network with constant bandwidth

In the scenario presented in figure 3, we show that in a
network without any loss and with a constant bandwidth,
ETP/TFRC implementation using the framework described in
section II acts like the reference implementation. Figure 3 (a)
shows the reference implementation results and figure 3 (b) the
ETP/TFRC results. In this scenario, the bandwidth is fixed to
1000Kbits/s and the RTT = 50ms. No loss is introduced in
the network.
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Fig. 3. BW=1000Kbits/s RTT=50ms PLR=0

These figures show that at receiver side, the measured
throughput is identical on both figures. The throughput os-
cillations on the sender side are more important on 3 (b)
than on 3 (a). This slight difference can be explained by the

different environments (i.e., simulation and real systems) and
particularly in the real implementation host processing and
the CPU load influences the packet treatment and as a result
the delay in the network oscillates more. Nevertheless, the
ETP/TFRC behavior remains strongly similar to ns-2 and the
most important result is that on the receiver side, the same
throughput is obtained.

C. Impact of losses and end-to-end delay

The aim of this experiment is to show that in case of
high RTT (250ms) and with 1% of losses, the ETP/TFRC
implementation reacts in a similar way than the reference
implementation and that the convergence toward the available
rate is identical after a loss period. In the figure 4, we show
that ETP/TFRC implementation answers properly to the loss
detection, during a large time period, of a specific packet
loss rate. The readjustment to a normal sending rate is done
in roughly the same amount of time (nearly 25sec in this
particular RTT case).
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Fig. 4. BW=1000Kbits/s RTT=250ms PLR=1%

D. Impact of an UDP flow

In this experiment, the bandwidth remains unchanged. There
is no losses and the RTT equals 100ms. An UDP flow
with a rate equal to 500Kbits/s is emitted between t =
[30sec, 90sec]. In figure 5, due to the packet multiplexing
with non responsive UDP flow, both implementations brutally
decrease during the UDP emission. Furthermore, ETP/TFRC
implementation answers to the detection of losses due to the
UDP flow in the same way than the reference implementation.
When the UDP flow stops, the response of both implementa-
tions remains similar.

E. Conclusions

We made experiments with several others scenarios similar
to those defined in [10] for the TFRC ns-2 validation. As this is
not the purpose of our paper, all these experiments deliver very
similar results and allow us to consider that our ETP/TFRC
implementation complies to ns-2 implementation.

IV. TESTBED MEASUREMENTS IN A DIFFSERV NETWORK

This part deals with the use of ETP/TFRC implementa-
tion in the DiffServ/AF class. We present our adaptation of
ETP/TFRC allowing the application to reach its target rate
whatever the RTT value of the application’s flow is.
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Fig. 5. PLR=0 BW=1000Kbits/s UDP flow 500Kbits/s t = 30sec, t = 90sec

A. Problem statement

In the assured service class, the throughput of a flow
breaks up into two parts: a fixed part which corresponds to
a minimum assured throughput; packet belonging to this part
are marked in-profile and an elastic part which corresponds
to an opportunist flow of packets; packets of this part are
marked out-profile.In the event of congestion in the network,
the in-profile packets are considered inadequate for loss. At the
contrary, out-profile packets are conveyed on the principle of
”best-effort” (BE) and are dropped first if a congestion occurs.
In this study, we assume that the network is well-provisioned
and that the whole amount of in-profile packets belonging to
all the traffics carried does not exceed the resource allocated
to the AF class.

In case of excess bandwidth in the network, the application
could send more than its target rate, so the network should
mark its excess traffic out-of-profile. Then, if the network
becomes congested, many out-of-profile losses occur and the
optimal rate estimated by TFRC could fall down under the
target rate requested by the application. TCP would react in
the same manner by halving its congestion window. As for
TCP in the AF class [11], the TFRC mechanism is not aware
that the loss corresponds to out-profile packet and that it should
not decrease its actual sending rate less than the target rate. For
TCP, the solution was to introduce a conditioner able to better
mark the TCP flows by taking into account the sporadic nature
of the TCP flows [12], [13]. But the proposed conditioners are
not all really efficient in certain network conditions such as
long RTT and are sometimes complex to use.

In contrast to TCP, as TFRC explicitly computes the actual
sending rate with the TCP throughput model given by (1).

X =
s

(RTT ·

√

p·2

3
+ RTO ·

√

p·3

8
· p · (1 + 32 · p2))

(1)

Where the sending rate (X) depends on the packet lost rate
(p), the mean packet size (s) and the Round Trip Time. RTO
refers to the TCP retransmission timeout value. Thanks to this
TCP equation, it is possible to directly act on this rate to
avoid the under-usage of the network service. Therefore, the
present proposal consists of making the sending rate estimator
aware of the target rate. This scheme avoids the indirect
processing of traffic conditioners while enhancing efficiently
the performances in terms of application throughput and TCP-
friendliness.

The target rate is supposed to be known by the transport
layer by the way of the xQoS network service descriptor.
During the session, the transmit rate is computed at sender
side as the maximum between the TFRC rate estimation and
the target rate, with the following equation (2):

G = max(g, X) (2)

Where: G is the transmit rate in bytes/second, g is the
target rate in bytes per second and X is the transmit rate in
bytes/second computed by the TCP throughput equation spec-
ified in [3].The rest of the ETP/gTFRC [4] mechanism follow
entirely the TFRC specification. Thanks to this adaptation, the
application’s flow is sent in conformance with the negotiated
QoS while staying TCP-friendly in its out-profile part.

B. Model and general hypothesis

ETP/gTFRC performances have been evaluated over the
DiffServ testbed presented in figure 6. The hosts are PCs on
GNU/Linux and routers run FreeBSD with ALTQ [14] in order
to implement the DiffServ network. The simulations have been
carried out using the following configuration: the packet size
is fixed to 1500 bytes; the two colors token bucket marker
with a bucket size of 104 bytes is used on the edge router;
routers are configured with a queues size of 50 packets and
RIO parameters in the core router is corresponding to (minout,
maxout ,pout ,minin, maxin, pin)=(10, 20, 0.1, 20, 40, 0.02);
the bottleneck between the core and the egress router is
1000Kbits/s; measurements are carried out during 180sec.

1 Mbits/s

100 Mbits/s

300 ms

10 ms

Edge Router Core Router Edge Router

Fig. 6. The simulation topology for DiffServ experiments

We made experiments with many different RTTs and target
rates configuration and give in this part a representative
measurement of the efficiency of ETP/gTFRC . We measure
the performance obtained by ETP/gTFRC in three scenarios.

C. Exactly-provisioned network

In figures 7, two flows are emitted on the testbed. The
first one has non favorable conditions since it has the highest
target rate to reach and a high RTT (RTT = 300ms, TR =
800Kbits/s). The second flow has the lowest target rate
(200Kbits/s) and a low RTT (10ms). The results for
ETP/TFRC are presented on figure 7 (a) and for ETP/gTFRC
on figure 7 (b). We can see that ETP/gTFRC allows to
reach the target rate more quickly than with TFRC and that
ETP/gTFRC keeps this target rate. The reason is obvious since
at the first rate decrease evaluation of the TFRC algorithm,
ETP/gTFRC evaluates a rate equal to the target rate.

In figure 7 (a), we can see that the decreasing phase occurs
for TFRC around t = 10sec and that ETP/gTFRC does not
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Fig. 7. Exactly-provisioned network

at this time deliver a rate lower than the negotiated target rate
(figure 7 (b)). Figure 7 (b) shows that the flow with the lower
target rate and the lower RTT is constrained to reach its own
target rate of 200Kbits/s.

D. Over-provisioned network

These experiments deal with an over-provisioned network
in two different situation, where respectively, the sum of the
target rates is equal to 800Kbits/s (figure 8) and the sum of
the target rates is 600Kbits/s (figure 9).
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Fig. 8. Over-provisioned network 20%
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Fig. 9. Over-provisioned network 40%

The networks have respectively 20% and 40% of excess
bandwidth. Moreover, the more there is excess bandwidth in
the network, the more the flow with the highest target rate has
difficulty to reach its target rate. This is due to the increase
of the out-profile traffic which involves more losses in the
network. These losses are more prejudicial for the flow with

the highest target rate and the highest RTT than the lowest one.
Indeed, the TFRC algorithm can estimate an ideal rate under
the negotiated target rate and due to a long RTT, the flow can
have difficulty to retrieve its initial throughput as during the
period [80sec, 140sec] on figure 8 (a).

This is not the case with the use of ETP/gTFRC . Never-
theless, we can see in figures 8 (b) and 9 (b) that the flow
with a lower RTT and lower target rate obtains a higher part
of excess bandwidth. It is important to take into consideration
that the proportional sharing of the excess bandwidth was not
the aim of this study. This problem should remain under the
responsibility of the edge router conditioning.

E. Interaction with a TCP aggregate in an over-provisioned
network

The last experiment shows the interaction of TFRC or
gTFRC and a TCP aggregate. In this experiment, two ETP
flows with either TFRC or gTFRC mechanisms are sent versus
an aggregate of ten TCP flows.The TCP aggregate crosses a
token bucket marker with a target rate of 200Kbits/s and
has an RTT equal to 1ms. Both ETP flows have respectively
a target rate of 400Kbits/s and 200Kbits/s for RTT equal
to 300ms and 10ms respectively. Figures 10 give the results
obtained for both ETP flows.
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Fig. 10. Over-provisioned network 20% with ten TCP flows

Concerning the TCP aggregate, the throughput obtained
is respectively for figures 10 (a, b, c) of 447Kbits/s,
403Kbits/s, 362Kbits/s. So the TCP aggregate always
reaches its target rate. In figure 10 (a), we see that with
ETP/TFRC , both flows have difficulties to reach their respec-
tive target rate and that the flow with the higher target rate
and RTT, does not reach a correct throughput value before
t = 120sec. In figure 10 (b), ETP/gTFRC flow reaches easily
its target rate. Nevertheless, due to the increase of the in-profile
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traffic and the aggressive nature of the TCP aggregate, the
other flow with ETP/TFRC strongly decrease its rate. Finally,
on figure 10 (c), both flows use ETP/gTFRC and reach their
target rate while the TCP aggregate still remains aggressive
and reaches its target rate too.

V. CONCLUSIONS AND FUTURE WORKS

This paper has proposed a performance evaluation of an
implementation of TFRC-based mechanisms into a Java com-
position framework named ETP.
ETP/TFRC and ETP/gTFRC are both evaluated on a real
testbed. ETP/TFRC is compliant with [3] and a measurement
campaign shows its conformance with the ns-2 reference
implementation. As an extension, ETP/gTFRC allows to reach
a minimum guarantee throughput in a DiffServ/AF class what-
ever the network conditions and negotiated guarantees are.
These mechanisms are particularly promising in the context
of Quality of Service networks. Moreover, ETP framework
will alleviate their integration with other transport mechanisms
such as partial reliability or timing control. The ETP protocol
is expected to be deployed and evaluated over the pan-
European EuQoS network.
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