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Abstract—This paper investigates the modelling and closed-
loop tracking control issues of a novel elastic underactuated 
multibody system. A torsional inverted pendulum cart-pole 
system with a single rotary actuator at the pivot of the cart 
is proposed. The system dynamics which incorporates with 
motion planning is firstly described. An optimization 
procedure is then discussed to plan the feasible trajectories 
that not just meet the performance requirements but also 
obtain optimality with respect to the cart displacement and 
average velocity. A closed-loop tracking controller is 
designed under collocated partial feedback linearization 
(CPFL). Subsequent presentation of simulation 
demonstrates that the proposed system is promising as 
compared to the previous work. The paper concludes with 
the application of our novel scheme to the design and 
control of autonomous robot systems. 
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I.  INTRODUCTION  

Long term practical utility of inverted pendulum 
systems as benchmark for new control techniques has 
demonstrated the useful effect of various control 
approaches in such a manner that approximate the control 
issue of systems in real circumstances, as well as standard 
laboratory exercise for students at a number of universities 
and colleges. Moreover, the interest in studying the 
dynamics of the inverted pendulum arises from the fact 
that they are very similar to the dynamics that can be 
found in the systems need to be stabilized like rockets, 
missiles, ships, satellites, legged robots, marine tower, 
capsule robots, ropeway carriers, elastic joint robots, 
underwater vehicles. 

Unlike dealing with the problem of upward pendulum 
stabilization which stabilize the system around its unstable 
equilibrium point, a trajectory tracking issue was raised 
and investigated in our previous works [1-6], which 
replace the force on the cart by a control input torque 
applied on the pivot to rotate the pendulum. As an 
underactuated mechanical system, one of the distinguished 
features of this system is that the friction dominates the 
whole system which is elliptically simplified or omitted in 
other underactuated mechanical systems. Numerous 
challenge issues concerning the control, optimization and 
trajectory planning have been identified and studied. The 
work [3] developed a closed-loop tracking control law 
with a six-step motion strategy were studied. Optimization 
and an open-loop control law were studied by Liu et al. 
[1]. A switch control method, in turn, which is robust 
against uncertainties and simply to implement, was 

introduced in [2]. With the comparison to the closed-loop 
control law, a novel fuzzy control method was 
investigated in [4]. Based on the dynamic model, Liu et al. 
proposed an open-loop control law, a closed-loop control 
law, and a simple switch control law in [5]. Optimization 
and closed-loop control method was studied in [6] for the 
trajectory planning of the system. 

This paper investigates an elastically joint-actuated 
cart-pole underactuated system based on our previous 
work [3]. The torque actuator articulated with a torsional 
spring designed in this paper is one of the distinguished 
features of the proposed system. Many animals are able to 
reduce the metabolic cost of running considerably by 
utilizing the elastic properties of muscles, tendons, and 
bones distributed in their bodies [7] and limbs [8]–[11]. In 
fact, springs for energy storage are pervasive in nature, 
and three generic uses of springs in biological systems are 
discussed by Alexander [12]. 

The majority of elastic actuator mechanisms are based 
on the series elastic actuator (SEA) configuration [13]. 
Elastic actuator has the advantage of high bandwidth 
mechanical compliance and can be used in force control. 
To increase suitability for different situations, a number of 
mechanisms extend the SEA allowing what is termed 
variable, adjustable or controllable stiffness. Adding 
compliance reduces the bandwidth and requires more 
control effort. Different groups ([14], [15]) examined the 
behavior and the controllability of elastic actuator and 
came to the conclusion that this actuation method is ideal 
for a lot of applications, for example haptic devices, 
legged robots or medical rehabilitation devices. This is 
widely existed where low impedance and high shock 
tolerance are more important than a high bandwidth [16] - 
[19]. There are two different ways of saving energy for 
mobile robots by using springs [20]. For losses of kinetic 
and potential energy, springs might be used to store and 
release a certain amount of the wasted energy. Another 
chance of reducing power consumption is when the link 
swings with a certain velocity, then at each end of the 
forward and backward swinging, the energy could be 
stored and released in springs. 

The rest of the paper is organized as follows. In 
section II, the motion generation principle and dynamic 
model are developed. Section III and section IV 
investigate system constraints and the optimization 
procedure to achieve parametric selection. A closed-loop 
tracking controller is developed in section V. Numerical 
simulations of the proposed system are presented in 
section VI. Finally, conclusions are given in section VII. 
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II. SYSTEM DYNAMICS 

A. Description of the system 

The elastically joint-actuated cart-pole system used in 
this paper is shown in Fig.1. This simple multibody 
system consists of a cart and an inverted pendulum. The 
pendulum is mounted on the top of the cart which is in 
contact with a sufficiently wide horizontal ground surface 
through four passive wheels. A torque motor articulated 
with a torsional spring is put on the pendulum pivot to 
swing the pendulum instead of applying the force on the 
cart. 
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Figure 1.  Elastically joint-actuated cart-pole system 

The torque of motor actuation affects the angle of the 
pendulum from vertical by force couples as well as the 
displacement of the cart in the horizontal direction. 
Therefore, both of the angular velocity of the inverted 
pendulum and the displacement of the cart can be 
controlled through only one actuator. Table 1 summarizes 
the parameters of the proposed system. 

B. Definations and assumptions 

In this paper, assumptions are made that the pendulum 
rod has neither mass nor inertia, and the center of mass of 
the whole inverted pendulum is coincide with the center of 
the ball which is fixed rigidly at the end of the pendulum. 
Furthermore, the air frictional resistance is supposed to be 
zero when the pendulum is rotating. The torsional spring 
is un-stretched when the inverted pendulum is upright. 

TABLE I.  PARAMETERS OF THE PROPOSED SYSTEM 

Symbol Description 

A 
B 

M (Kg) 

m (Kg) 
l (m) 

θ (rad) 

k (N*m* rad-1) 
c (Kg*m2 *s-1*rad-1) 

g  (m*s-2) 
μ (N*m-1*s-1) 

τ (N*m) 
Fx  (N) 

Fy  (N) 

fmax (N) 

ri 

Qi  

P1 (rad*s-1) 

rigid body I - the cart 
rigid body II - the inverted pendulum 

mass of cart 
mass of ball 

length of inverted pendulum 
pendulum angle from vertical 

elastic coefficient of the torsional spring 
coefficient of the viscous damper 

gravitational acceleration 
coefficient of the friction between cart and ground 

torque generated by the motor 
force applied on the ball in the horizontal direction 

force applied on the ball in the vertical direction 
the maximal static friction of the cart 

position of point where force is applied 
generalized forces 

desired maximum joint velocity 

Symbol Description 

P2 (rad*s-1) 
P3 (rad*s-1) 

 

  
(rad*s-2) 

 

(q)i   

desired minimum joint velocity 
desired joint velocity at reflection point when the 

cart begins to keep still 
the critical value of the pendulum acceleration 

when the cart keeps still 
Rayleigh dissipation function 

C. Equations of motion 

Let the generalized coordinates be: 

                           1 2q , ,
T T

q x                              (1) 

The equations of motion of the proposed system can 
be achieved as a matrix form 
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where T[0, ]Q   is the generalized force vector,   (q)M  

is the inertial matrix, 
1 1 2 2( , , , )N q q q q   denotes the terms 

of centrifugal and Corioli’s forces, the gravitational forces, 
elastic energy of the torsional springs at joint and the 
external disturbances. 

 The equation of motion of the proposed system can be 
achieved as (for detailed derivation, please see Appendix) 
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D. Motion generation description 

In order to drive the cart to one direction by using the 
torque input only, the pendulum trajectory should be 
analyzed and planned under the coupling nature of the 
system. Thus two phases can be designed as follows: 

 Fast motion phase: rotating the pendulum in one 
direction fast leads to

x maxF f , thus this will 

drive the cart moving forward. 

 Slow motion phase: rotating the pendulum in the 
opposite direction slowly which leads to

x maxF f , this will keep the cart stand still. 

Accordingly, the desired pendulum velocity profile 
shown in Fig. 2 is proposed [3]. The fast motion 
principle consists of phase 1 and phase 2, and the slow 
motion principle includes phase 3 to 6. The parametric 
selection is addressed in the next section. 

III. SYSTEM CONSTRAINTS ANALYSIS 

The aim of this research is to devise a feasible 
solution so that the robot can perform a thrust motion 
with optimality with respect to the cart displacement and 
the use of actuation energy. The constraints are integrated 
with the system dynamics to determine the feasible 



solution for ( )t  . In general, the constraints are as 
follows: 

A. Constraints for the non-bounding motion phases 

      The cart is contact with the ground, a constraint for the 
contact force need to be satisfied for the whole system to 
achieve a non-bounding motion, in other words, the 
contact force has to be greater than zero, which gives 
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B.   Constraints for the non-sliding motion 

      From the duration 4t  to 6t , the robot system remains 

stationary on the ground without any sliding. Thus the 
force of the inverted pendulum applied on the cart in the 
horizontal direction has to be less than the maximal static 
friction, gives 

4 6, [ , ]x yF F t t t                          (5) 

In particular, 
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(6) 

Furthermore, the interactive force from vertical is 
implicitly restricted to be non-negative under the 
constraint above, which essentially in virtue of the 
unidirectionality property of the ground. 

C.   Constraints for the motor 

In order to avoid collisions that occur between the 
swinging inverted pendulum and the cart, meanwhile, the 
DC motor used in the proposed system is not ideal torque 
generator, therefore it should obey the constraint read 

min maxi                                 (7) 

where  min  and max  respectively represent the lower and 

upper boundary of the angular position of the pendulum, 
which are specified as follows in the proposed system 

min 0   ,
max 0                            (8) 

IV. OPTIMAL PARAMETRIC SELECTION 

To maximize the displacement and average velocity 
of the cart, the optimum values of t1~t6, P1, P2, and P3, 
which are in the desired velocity profile, need to be 
determined.  

Using the constraints described above, the boundary 
conditions are defined as 
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Figure 2.  Desired angular velocity profile for one cycle [3] 

During the fast motion phases (phase 1 and 2), i.e.
0x , the friction is negative with its maximal 

magnitude value. Thus integration can be conducted 
twice of dynamic equation (3) and take into account the 
initial condition. To simplify our computation, the 
integration related to angular position is omitted here, 
yields 

1( ) cos sin ( ) 0M m x ml ml M m gt C            

                                                                                          (9)  

0 0

2
1 2

( ) sin cos (sin cos )

1
( ) 0

2

M m x ml ml ml

M m gt C t C

     



    

    
                          

            (10) 

where 
1C  and 

2C  are constants determined by the 

system initial conditions. 

      From (9) the value of  
22 ( )tP    at t2 is 
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      According to Fig.2, two area equations to satisfy the 
position condition for θ hold 
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      Then the desired joint acceleration and position can 
also be calculated through (1). Furthermore, another 
relationship between P1, P2, and P0 can be found as 
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      Therefore, if the duration of each phase is given 
corresponding to the equations above, then P1, P2, and P3 

can also be  determined.  

V. CLOSED-LOOP CONTROLLER DESIGN 

Consider the dynamic model in equation (3), the cart 
acceleration can be achieved as 
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Spong had been studied the control of underactuated 
mechanical systems in his excellent papers [13], thus 
using the collocated partial feedback linearization 
technique and put (13) in (3), a feedback linearizing 
controller can therefore be defined as 
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      And if ( )d t  represents a desired trajectory for the 

elastically actuated joint, then the additional control term 
can be defined as                   

( ) ( ) ( ( ) ( )) ( ( ) ( ))d v d p du t t K t t K t t               (22)            
where Kv and Kp. are m m diagonal matrix of positive 
gains. 
      Applying the control law (19) to (3) yields a linear 
subsystem as 
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Thus appropriate values of the linear gains Kv and Kp 
can be selected to achieve performance requirements. 

VI. SIMULATION AND COMPARISON 

The parameters utilized to carry out simulation are 
listed in Table II. The parametric selection of elastic 
coefficient of the torsional spring, the coefficient of the 
viscous damper as well as the time nodes of the profile 
during one cycle are achieved through empirical approach, 
which will be included into our future works of inverse 
optimization. 

TABLE II.  PARAMETRIC SELECTION 

M 
(Kg) 
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t6 (s) 
 

=6.6 
 

 
Accordingly, the desired velocity profile can be 

generated as 
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Fig. 3 shows the simulation results of the elastically 
joint-actuated cart-pole system under closed-loop control 
strategy for one full stroke (6.6s), in comparison with our 
previous system in [3]. The cart displacement showed in 
Fig. 3 (c) reveals that the proposed cart system moves 
4.1cm within 6.6s, in contrast to 3.4cm of [3]. Moreover, 
it is clearly to see from Fig. 3 (a) that the desired angular 
velocity profile has been tracked with small errors owing 
to the effect of partial feedback linearization technique.  

 
(a) 

Fig. 4 and Fig. 5 demonstrate the trajectories of the 
cart displacement and control input for five and ten full 
cycles, respectively. The proposed cart system moves 
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about 20.5cm and 40.5cm in five and ten cycles, whilst 
the previous system has displacements of 17cm and 
34.5cm. 
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(d) 

Figure 3.  Trajectories under closed-loop control for one full cycle                                                                                                    

 

(a) 

 
(b) 

Figure 4.  Comparison of trajectories of cart displacment and control 
input for five cycles under closed-loop control                                   
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(b) 

Figure 5.  Comparison of trajectories of cart displacment and control 
input for ten cycles under closed-loop control 

The average velocity of the cart calculated from Fig. 5 
for ten complete cycles is 0.53cm/s, while for the 
proposed elastically actuated system is 0.62cm/s. The 
average velocity is calculated by dividing the total 
travelled distance with the total required time. The 
proposed system travels with 16.8% higher average 
velocity using the proposed design, which also meant 
higher energy efficiency. It is more interesting to point 
that after twenty cycles test, the cart displacement is 
81cm under the proposed system, in contrast to 68cm 
under system [3], which means that the cart travels 
almost two more cycles’ displacement than [3].    

VII. CONCLUSION 

In this paper, a framework for the systematic 
modelling, optimization as well as control laws design 
with provable properties for the elastically joint-actuated 
cart-pole underactuated system is proposed, which 
generally shows more biological characteristics than the 
previous work, in particular, in storing and releasing 
potential energy under a predesigned trajectory, improving 
the rate of convergence, providing more powerful 
mechanical energy such that the efficacy of the robot 
system will be improved. The maximization approach of 
displacement and average velocity is adopted in this 
system by considering the system constraints.  

The aim of this research is to investigate a novel 
propulsion mechanism which features more biological 
characteristics. It is worth mentioning that the proposed 
system can be used as a benchmark of elastic multibody 
systems like legged robots and manipulators which has 
extensive applications for robots in the fields of rescue, 
medical rehabilitation devices, haptic devices, etc. The 
further research which is under way focuses on the inverse 
optimization of the hybrid cycle (trajectory cycle mixed 
with spring cycle) system, and the non-integrability of the 
system dynamics, which are unconscious challenges to be 
uncovered. The research achievements will be reported in 
due course. 
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