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Abstract—This paper investigates the locomotion principles 
and nonlinear dynamics of the periodically pendulum-
driven (PD) systems using the case of a 2-DOF viscoelastic 
jointed model. As a mechanical system with underactuation 
degree one, the proposed system has strongly coupled 
nonlinearities and can be utilized as a potential benchmark 
for studying complicated PD systems. By mathematical 
modeling and non-dimensionalization of the physical 
system, an insight is obtained to the global system dynamics. 
The proposed 2-DOF viscoelastic jointed model establishes a 
commendable interconnection between the system dynamics 
and the periodically actuated force. Subsequently, the 
periodic locomotion principles of the actuated subsystem are 
elaborately studied and synthesized with the characteristic 
of viscoelastic element. Then the qualitative changes are 
conducted respectively under the varying excitation 
amplitude and frequency. Simulation results validate the 
efficiency and performance of the proposed system 
comparing with the conventional system. 

Keywords-pendulum-driven systems; periodic motion; 
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I.  INTRODUCTION 

Applications of underactuated mechanical systems 
(UMSs) have been penetrated into extensive branches of 
technology in the domain of robotics and control 
communities. These systems are excel in performing 
complicated tasks with a reduced number of actuators, 
which imply an increased manoeuvrability, optimized 
energy consumptions as well as reduced cost.  

Starting with these viewpoints, the motions with a 
repeated pattern at periodically intervals raise interests for 
various applications, for instance, the walking or running 
of the creatures, which under a regular pattern in their 
implementation. This attracts significant devotions to the 
trajectory planning and nonlinear control of UMSs by the 
robotics and control communities during the past few 
decades. The researchers are addressing both the 
theoretical difficulties [1]–[3] and the practical challenges 
[4]–[6]. Among these researches, the UMSs employing a 
pendulum or a system of the pendulums, which is referred 
to as PD UMSs, permits the investigations on selecting 
different important nonlinear effects. Attentions have been 
paid to the classical pendulum UMSs, as benchmarks, 
including the Acrobot [7]–[9], the Pendubot [10]–[12], the 
cart-pole system [13], the crane systems [14], [15], Furuta 
pendulum systems [16], [17]. Besides, numerous 
applications of such systems are known in engineering, for 

instance, in vibro-absorption problems [18], [19], in 
trajectory tracking control of PD systems [20]–[22]. 
However, making a stabilized periodic motion trajectory 
(limit cycle) through feedback laws has been proved to be 
essential for nonlinear control. 

The employment of viscoelastic property in the 
applications of UMSs has many advantages. For instance, 
higher bandwidth mechanical compliance, larger working 
space, better manoeuvrability, higher convergence rate 
and lower energy consumption are regarded as important 
indexes to evaluate the performance of the robot systems. 
Viscoelasticity has been studied extensively in the past 
two decades, including impact force reduction [23], 
trajectory planning [24], nonlinearities analysis such as 
hysteresis and friction [25], dynamic and static stability 
[26], etc. However, challenges are still remained in 
trajectory planning and controller design for the UMSs in 
the presence of strong coupled nonlinear dynamics, i.e., 
how to govern the dynamics for the underactuated 
locomotion. 

This paper investigates the periodic locomotion 
principles in the case of a 2-DOF PD system, which has 
potential applications such as pipeline inspection, medical 
assistance and information acquisition in disaster rescues. 
The aim of this paper is to shed light on the 
aforementioned nontrivial challenges by calling attentions 
to the issue of periodic motion trajectory synthesis and 
nonlinear dynamic analysis through numerical 
investigations of the characteristics of the proposed 
system. 

The rest of the paper is organized as follows. Section 
ܫܫ  describes the formulation of the problem. Periodic 
locomotion principles synthesis is provided in Section ܫܫܫ. 
Section ܸܫ  investigates the system nonlinearities, and 
analyses the periodic and chaotic behaviours under 
varying excitation amplitude and frequency. Simulation 
results are presented in Section ܸ. Finally, conclusions are 
given in Section ܸܫ. 

II. PROBLEM FORMULATION 

This study considers the nonlinear viscoelastic model 
shown in Fig.1, which consists of an inverted pendulum 
coupled with a 2-DOF spring-mass-damper system and is 
subjected to a periodical actuation applied at the pivot. 
The masses, spring and the dashpot in the 2-DOF system 
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are all identical and the locomotion of the proposed 
system is in horizontal plane.  

 
Figure 1.  The 2-DOF spring-mass-damper system coupled with a 

nonlinear pendulum 

It is assumed that mass of the pendulum rod is omitted 
and the centre of mass of the rotating mechanism is 
coinciding with the centre of the ball which is fixed 
rigi1dly at the end of the pendulum. Furthermore, the air 
frictional resistance is supposed to be zero when the 
pendulum is rotating. The torsional spring is un-stretched 
when the inverted pendulum is upright. 	ܯ and ݉ are the 
masses of the base and the ball, respectively. ݈  is the 
length of the inverted pendulum, ߠ  and ݔ  dipict the 
configuration variables of the rotational and the horizontal 
movements, i.e. ݍ ൌ ሾݍଵ		ݍଶሿ் ൌ ሾߠ		ݔሿ் , ݇  and ܿ 
represent the stiffness and damping coefficients, 
respectively. It is also assumed that the configuration 
variables ߠ  and ݔ  are measured from the equilibrium 
position of the inverted pendulum and the original point of 
the base. 

Employing the Coulomb friction model to describe the 
resistance force between the proposed PD locomotive 
system and the environmental surface, gives 

݂ ൌ ൜
ሶݔ																												,0 ൌ 0
ሶݔሺ݊݃ݏሺ݃ሻ௬ܨߤ ሻ, ሶݔ ് 0                  (1) 

where ߤ  is the Coulomb friction coefficient, ܨሺ݃ሻ௬ 
represents the force applied on the platform in the vertical 
direction. 

Based on the aforementioned assumptions and 
definitions, the equations of motion governing the 
dynamic behaviour the proposed model can be derived 
using the Euler-Lagrangian approach 
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where ܮሺݍ௜,  ሶ௜ሻ reflects the difference between the kineticݍ
energy ܧሺݍ௜, ሶ௜ሻݍ  and the potential energy ܸሺݍ௜ሻ  ሶ௜ሻݍሺܦ ,
describes the disspipative energy. ܤ ∈ ௡ൈ௡ܴܫ  is a 
constant matrix, ݑ is the control input, ܳచ represents the 
effects of uncertainties and disturbances. 

The developed dynamic equations of motion are  
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(4) 

where ்ߠ is the rotational controlled torque applied to the 
inverted pendulum. 

Our goal is to create periodic progression of the 
proposed system via an elaborate design of the rotational 
trajectory of the inverted pendulum and an appropriate 
feedback action. Consequently, the following desired 
periodic function and its derivative are adopted 

்ߠ ൌ െݏ݋ܿܣሺΩݐሻ, ߠሶ் ൌ  ሻ             (5)ݐሺΩ݊݅ݏΩܣ

where ܣ  and Ω  are respectively the amplitude and 
frequency of the periodic excitation. 

We further define the following non-dimensional 
parameters 
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Adopting the desired periodic function and the 
parameters above, Eq. (3) and Eq. (4) reduce to the 
following non-dimensional form 

ሾࣧሿሼԮሽᇱᇱ ൅ ሾԧሿሼԮሽᇱ ൅ ሾԳሿሼԮሽ ൅ ሾℚሿ ൌ ሼԼሽ        (7) 

where  
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and the aforementioned derivations are operated with 
respect to the dimensionless time ߬ and the configuration 
variables in the dimensionless time coordinate become 

ሼԮሽ ൌ ൜
ଵߦ
ଶߦ
ൠ ൌ ቄߠ

ܺ
ቅ. 

Remark 1: In essence, the proposed PD locomotive 
system is a 2-DOF mechanical system with underactuation 
degree one. The underactuated nature results in the 
unavailability in the direct control of the locomotion of the 
platform. Furthermore, notwithstanding the fact that the 
proposed system is simple in structure, strong coupling 
and high nonlinearity exist in the dynamics which are 
originated from the trigonometric functions and the signal 
function. It is important to note that the sliding friction in 
the horizontal direction plays a vital role in the locomotion 
of the platform. This motivates the authors to scrutinize 
the characteristics of the periodic rotational torque and 
precisely design the locomotion principles for the actuated 
 .subsystem–ߠ



III. PERIODIC LOCOMOTION PRINCIPLES SYNTHESIS 

In this section, the periodic locomotion principles are 
generated for synthesizing the rotational motion of the 
inverted pendulum and the harmonic property of the 
viscoelastic element. It is considered that the nontrivial 
characteristic of viscoelastic element is equivalent to the 
existence of the periodic trajectory manifold with 
homologous arguments.  

To effectively utilize the rotational motion of the 
pendulum and optimally drive the proposed 2-DOF 
system moving forward, the viscoelastic property is 
considered to synthesize the different periodic motions 
between the dissipated pendulum and the torsional spring, 
thus synthesized periodic locomotion principle is 
developed. In particular, three stages below are defined to 
generate the desired periodic locomotion. 

 Initialization stage (߬ ൌ 0 ) and re-initialization 
stage (߬ ൌ ߬଻) (Fig. 3): one cycle of progressive 
motion begins and ends respectively with the 
initialization and re-initialization stages. In 
initialization stage, the pendulum and the torsional 
spring are constrained and kept stationary at a 
predesigned negative angle to the opposite 
direction of the retraction of spring, which stores 
potential energy in such a manner that more 
mechanical power is injected into the whole 
system; at the end of the motion, the pendulum 
gradually returns to the initial position by 
following the motion profile (to be described 
below), the system then is reinitialized with stored 
elastic energy. 

 Progressive stage (߬ ∈ ሺ0, ߬ଷሻ) : the torque motor 
drives the pendulum fast in the forward direction, 
together with the energy-releasing of the torsional 
spring, leads the system to overcome the maximal 
dry friction and therefore, a continuous 
progression of the whole system is obtained; 

 Restoring stage ( ߬ ∈ ሺ߬ସ, ߬଻ሻ ): the pendulum 
gradually returns to the initial position since the 
resultant force in the horizontal direction is less 
than the maximal dry friction, that is, the whole 
system is kept stationary in this stage of duration. 

In view of the aforementioned locomotion principles, 
the desired periodic motion trajectory profiles of the 
dissipated pendulum and the torsional spring are presented 
in Fig.2, respectively. 

 
Figure 2.  Synthesis of the periodic motion trajectory profiles 

It is worth mentioning that the net progression during 
one full motion cycle occurs in the progressive stage, in 
which the synthesis procedure is mainly carried out. 
Moreover, as one of the key elements regarding to the 
progression of the whole system, the friction between the 
platform and the sliding surface is taken into account for 
designing the restoring stage through the consideration of 
the system constraints. Therefore, the synthesized periodic 
locomotion profile generated using Eq. (8) is shown in 
Fig. 3, wherein the zoom up window demonstrates the 
detailed profile in the progressive stage. 
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where 	 ଵܲ  and ଶܲ  respectively describe the upper and 
lower boundary of the trajectory, ଷܲ  is the critical 
boundary when the system begins to keep stationary, ߱ is 
frequency of periodic excitation. 

 
Figure 3.  Synthsized periodic locomotion profile for one full cycle  

The explicit description of the periodic locomotion 
principles are as follows: 

 Initialization  

߬ ൌ 0 ሺ߬ሻߠ : ൌ ௠௜௡ߠ ൌ െߠ଴ , ܺሺ߬ሻ ൌ 0 ሶሺ߬ሻߠ , ൌ
0,	 ሶܺ ሺ߬ሻ ൌ ሷߠ	,0 ሺ߬ሻ ൌ 0, ሷܺ ሺ߬ሻ ൌ 0 

The pendulum together with the torsional spring is 
kept stationary at a predesigned negative angle 
െߠ଴ to the opposite direction of the retraction of 
spring, which stores potential energy such that 
more mechanical power will be injected into the 
system. 

 Phase ܫ 

߬ ∈ ሺ0, ߬ଵሻ ሺ߬ሻߠ : ൌ ߠ ൐ 0 , ܺሺ߬ሻ ൌ ݔ ሶሺ߬ሻߠ , ൐
0,	 ሶܺ ሺ߬ሻ ൐ ሷߠ	,0 ሺ߬ሻ ≫ 0, ሷܺ ሺ߬ሻ ൐ 0 

The torque motor begins to move under the 
synthesized angular velocity and simultaneously 
the stored potential energy is released from the 



stretched torsional spring. This results in a motion 
with maximal angular acceleration of the 
pendulum pushing the base moving forward with 
acceleration; 

 Phase ܫܫ 

߬ ∈ ሾ߬ଵ, ߬ଶሻ ሺ߬ሻߠ : ൌ ߠ ൐ 0 , ܺሺ߬ሻ ൌ ݔ , ሶߠ	 ሺ߬ሻ ൐
0, ሶܺ ሺ߬ሻ ൐ ሷߠ	,0 ሺ߬ሻ ൌ 0, ሷܺ ሺ߬ሻ ൐ 0 

It is noted that once the potential energy is 
released, a short period of time is required to let 
the potential energy fully transfer into kinetic 
energy of the proposed system. This leads to a 
more efficient energy consumption. Thus a short 
period of uniform motion of the pendulum is 
designed. During this period, the pendulum 
swings forward with the maximal angular velocity 
while driving the base accelerating continuously; 

 Phase ܫܫܫ 

߬ ∈ ሾ߬ଶ, ߬ଷሻ ሺ߬ሻߠ : ൌ ߠ ൐ 0 , ܺሺ߬ሻ ൌ ݔ , ሶߠ	 ሺ߬ሻ ൐
0,	 ሶܺ ሺ߬ሻ ൐ ሷߠ	,0 ሺ߬ሻ ൏ 0, ሷܺ ሺ߬ሻ ൏ 0 

The torque actuation exerts an opposing force on 
the pendulum under the synthesized angular 
velocity together with the contractility of the 
torsional spring. This leads to a forward 
deceleration motion of the pendulum as well as 
the base; 

 

Figure 4.  Locomotion of the 2-DOF pendulum-driven system in 
progressive stage 

 Phase ܸܫ 

߬ ∈ ሾ߬ଷ, ߬ସሻ ሺ߬ሻߠ : ൌ ௠௔௫ߠ ൐ 0 ,  ܺሺ߬ሻ ൌ ݔ → 0 , 
ሶሺ߬ሻߠ → 0,	 ሶܺ ሺ߬ሻ ൌ ሷߠ	,0 ሺ߬ሻ ൏ 0, ሷܺ ሺ߬ሻ ൌ 0 

In phase ܸܫ , a slow deceleration motion of the 
pendulum results in the stationary of the base, 
which is subjected to the constraints under the 
dissipative force lie in the sliding surface as well 
as the pivot. Moreover, the angular displacement 
of the pendulum is constrained at ߠ௠௔௫ to avoid 
over-actuation and system failure. 

 Phase ܸ 

߬ ∈ ሾ߬ସ, ߬ହሻ ሺ߬ሻߠ : ൌ ߠ ൏ 0 , ܺሺ߬ሻ ൌ ݔ ሶሺ߬ሻߠ , ൏
0,	 ሶܺ ሺ߬ሻ ൌ ሷߠ	,0 ሺ߬ሻ ൏ 0, ሷܺ ሺ߬ሻ ൌ 0 

Phase ܸ is designed to be a short duration and to 
generate a relatively low angular acceleration of 
the pendulum which keeps the base stands still; 

 Phase ܸܫ 

߬ ∈ ሾ߬5, ߬6ሻ ሺ߬ሻߠ : ൌ ߠ ൏ 0 , Xሺ߬ሻ ൌ ݔ∆ܽ , 
ሶሺ߬ሻߠ ൌ െܲ3 ൏ 0 , 	 ሶܺ ሺ߬ሻ ൌ 0 , ሷߠ	 ሺ߬ሻ ൌ 0 , ሷܺ ሺ߬ሻ ൌ
0 

A uniform angular velocity of the pendulum is 
designed for the purpose of gradually stretching 
the torsional spring such that enough potential 
energy is restored for the next cycle. The base 
remains stationary in this phase. ܽ∆ݔ  represents 
the net displacement of the base after the ܽ௧௛ 
cycle. 

 Phase ܸܫܫ 

߬ ∈ ሾ߬଺, ߬଻ሻ ሺ߬ሻߠ : ൌ ߠ ൏ 0 , ܺሺ߬ሻ ൌ ݔ∆ܽ , 
െ ଷܲ ൏ ሶሺ߬ሻߠ ൏ 0,	 ሶܺ ሺ߬ሻ ൌ ሷߠ	,0 ሺ߬ሻ ൐ 0, ሷܺ ሺ߬ሻ ൌ 0 

In phase VII, a low angular deceleration motion is 
generated in a short duration to decelerate the 
pendulum while the base keeps stationary; 

 Re-Initialization 

߬ ൌ 0 ሺ߬ሻߠ : ൌ ௠௜௡ߠ ൌ െߠ଴ , ܺሺ߬ሻ ൌ ݔ∆ܽ , 
ሶሺ߬ሻߠ ൌ 0, ሶܺ ሺ߬ሻ ൌ ሷߠ	,0 ሺ߬ሻ ൌ 0, ሷܺ ሺ߬ሻ ൌ 0 

When the pendulum reaches to the initial angle, 
the torsional spring is constrained to ߠ௠௜௡  such 
that enough elastic energy is stored for the next 
cycle. 

Remark 2: The proposed periodic locomotion 
principles can be utilized for generating a class of 
appropriate trajectory profiles for PD underactuated 
mechanical systems with viscoelastic elements. The 
trajectory synthesis occurred at the progressive stage is the 
main enhancement comparing with  the work in [27]. To 
obtain an optimal progression of the proposed system for 
one full motion cycle and to avoid unpredictable chaotic 
motions, it is necessary to find the optimal amplitude and 
frequency of the periodic force. 

IV. NONLINEAR DYNAMIC ANALYSIS 

Due to the fact that the proposed system is analytically 
unsolvable, a sequence of solutions is numerically 
calculated using the first order Euler algorithm in Matlab. 
In this section, we employ a visual interpretation on the 
dynamic behaviour affected respectively by the amplitude 
and frequency of the periodic force, and the stability 
variance of solutions accompanied by the varying values. 

A.  Qualitative Analysis of Amplitude ݄ 

The bifurcation diagram in Fig. 5 presents a projection 
of the Poincaré map on the dimensionless configuration 
axis. It clearly illustrates the richness of the system 
dynamics along with various transitions in the system 
response. It is noted that a large region of period-one 
response can be observed for ݄ ∈ ሾ0.15, 1.174ሿ . 
Accompanied by increasing the excitation amplitude, a 
large window of chaotic motion is depicted for ݄  in 
ሺ1.174, 2.1ሿ.  
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Figure 5.  Bifurcation diagram of average progression of the 2-DOF PD 

system under varying excitation amplitude 

Fig. 6 describes the trajectories on the dimensionless 
time coordinate, presenting the angular displacement of 
the inverted pendulum computed for various amplitudes of 
excitations. The characteristic of the irregular transitions 
under varying excitation amplitude, behaves atypical 
responses. These originate from the complicated 
interactions between different coexisting periodic obits 
and bifurcations. The time histories of the angular 
displacement are important to appreciate the behaviours 
illustrated. At relatively low amplitude of excitation as 
shown in Figs. 6 (a) and (b), the pendulum employs 
simple but steady oscillation after the initial transients 
have decayed, which would repeat continuously. On the 
other hand, the motions contained in Figs. 6 (c) and (d) 
become chaotic at relatively high amplitude of excitation, 
which are extremely complex nonrepeating functions of 
time. 
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                     (a)  h ൌ 0.6                                      (b) h ൌ 0.8 
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                     (c)  h ൌ 1.25                                    (d) h ൌ 2.1 

Figure 6.  The time histories of the angular displacement of the inverted 
pendulum on dimensionless time coordinate 

B.  Qualitative Analysis of Frequency ߱ 

The parameter dependence on varying frequency ߱ is 
studied as the second branching parameter and clearly 

shown as a bifurcation diagram in Fig. 7. It can be seen 
that the motion of the proposed system behaves atypical 
chaotic response for ߱ ∈ ሾ0.15, 1.575ሿ . On the other 
hand, for ߱ ∈ ሺ1.575, 3.1ሿ, a response of period-one is 
recorded for the rest of the values of excitation frequency. 
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Figure 7.  Bifurcation diagram of average progression of the 2-DOF PD 

system under varying excitation frequency 

The numerical investigation also reveals that the 
characteristic of the irregular transitions, accompanied 
with the decrease of the values of the branching 
parameter, behaves atypical responses from periodic to 
chaotic. These are resulted from the complicated 
interaction between different coexisting periodic obits and 
bifurcations. 

The time histories of the angular displacement 
computed for various frequencies of excitations are 
presented as well, in which the dynamic behaviors are 
illustrated. At relatively higher frequency of excitation as 
shown in Figs. 8 (a) and (b), the pendulum employs 
simple but steady-state rotations after the initial transients 
have decayed, which would repeat continuously. On the 
other hand, the motion contained in Figs. 8 (c) and (d) 
behaves chaotic response when at relatively lower 
frequency, which is an extremely complex nonrepeating 
function of time. 
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Figure 8.  The time histories of the angular displacement of the inverted 
pendulum on dimensionless time coordinate 

V. SIMULATIONS 

In this section, numerical simulations are presented to 
verify the effectiveness of the proposed system by 
employing the closed-loop controller designed in [22]. 
The performance of the synthesized periodic locomotion 
principle is also evaluated. The control objective is to 
make the pendulum track the synthesized locomotion 
trajectory and simultaneously drive the whole system 
moving rectilinearly overcoming the environmental 
resistances.  

The numerical simulation results are obtained through 
MATLAB. The system parameters are selected as 
ܯ ൌ 0.5	݇݃ , ݉ ൌ 0.05	݇݃ , ݈ ൌ 0.3	݉ , ݃ ൌ ଶݏ/݉	9.81 , 
ߤ ൌ 0.01	ܰ ∗ ݉ିଵିݏଵ ߩ , ൌ 1.8 , ߭ ൌ 0.6 , ݄ ൌ 1 , ߱ ൌ
1.7. The initial conditions are adopted as  

ሺ0ሻߠ ൌ െߠ଴ ൌ െ3/ߨ, ሶሺ0ሻߠ ൌ 0, ሺ0ሻݔ ൌ 0, ሶݔ ሺ0ሻ ൌ 0   

      (9) 

A series of simulations are conducted in comparison 
to the pendulum-driven cart-pole system proposed in [27], 
which is referred to as PDC system. Heuristically, the 
parameter selection approach employed here is trying to 
find the optimal values such that the best system response 
is achieved. Note that the numerical investigations in this 
section are carried out in the un-normalized coordinate. 

Fig.9 shows the performance comparing results for 
one cycle in time histories of actuated and passive 
subsystems, respectively. It is noted that the proposed 
system periodically actuated under the synthesized 
locomotion principles behaves steady and intermittent 
progressive motions. More interestingly, the proposed 
system and the PDC system travel 4.15cm and 3.5cm, 
respectively. The trajectories depict in Fig. 9 (b), in 
particular, show the comparison of tracking performance. 
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(b) Trajectory tracking performance 
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Figure 9.  Time histories under closed-loop control for one full cycle  

To further evaluate the sequential performance of the 
proposed system, simulation for ten cycles are conducted 
as shown in Fig. 10. The proposed system and the PDC 
system advance 41.5278cm and 34.9335cm, which 
demonstrate that the PD system has higher efficiencies of 
15.88% in progression calculated from Fig. 10 (a). On the 
other hand, the maximum input torque respectively for 
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the proposed system and PDC system is 0.4582N*m and 
0.5037N*m. The maximum angular displacement 
respectively for the proposed system and PDC system are 
1.2059rad and 1.2775rad. Therefore the energy 
consumptions for the proposed system and the PDC 
system, respectively, are 0.5525J and 0.6435J, which 
means the proposed system has a 16.46% higher energy 
efficiency calculated from Fig. 10 (b). 

 

(a) Base displacements 

 

(b) Input torques 

Figure 10.  Time histories under closed-loop control for ten full cycles 

VI. CONCLUSIONS 

The issues of periodic locomotion principles synthesis 
and nonlinear dynamic analysis are studied in this paper. 
Mathematical models have been established and utilized 
as a benchmark of numerical analysis to optimize the 
excitation parameters. The periodic locomotion principles 
of the actuated subsystem are elaborately studied and 
synthesized with the characteristic of viscoelastic element. 
Then the qualitative changes are conducted respectively 
under the varying excitation amplitude and frequency. 
Time histories of the pendulum demonstrate a wide 
variety of system responses, which vary from periodic to 
chaotic. It is noted that based on the qualitative analysis of 
the system dynamics, a series of optimal parameters can 
be obtained, which sheds light on the linkage between 
nonlinear analysis and trajectory planning for 

underactuated locomotion. The simulation results 
demonstrate the promising performance in more efficient 
progression and energy consumption. 
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