
Power Saving of Real Time Embedded Sensor for Medical Remote Monitoring

Frédéric Fauberteau, Serge Midonnet,
Université Paris-Est,

Laboratoire d’Informatique Gaspard-Monge -
UMR CNRS 8049, France

{fauberte, midonnet}@univ-paris-est.fr

Dan Istrate
ESIGETEL - LRIT

1, Rue du Port de Valvins, Avon, France
dan.istrate@esigetel.fr

Abstract

The power saving is one of the important issue in the
embedded systems. To reduce the consumption of the mi-
croprocessor of such a system, a way is to power down it
when it is inactive. Theoretically, the time during which the
microprocessor is inactive represents a pure gain of energy.
But practically, we must consider that this time comprises
a slot of time during which the clock must be synchronized.
We propose to aggregate the idle times of the microproces-
sor to power down it the least possible but for the longest
time possible. This aggregation can be perform by using a
Slack Stealer algorithm.

1. Introduction and Application context

The context of the present study of power saving is
the medical remote monitoring for elderly. The propor-
tion of elderly is increasing in all societies throughout the
world. As they are becoming older, they want to preserve
their independence, autonomy and way of life. Several re-
search teams have developed a number of systems for in-
home health care monitoring and prevention towards day
life risks. These systems are based on the deployment of
several sensors in home in order to prevent and/or detect
critical situations. They offer the comfort and independence
of staying at home, the security of daily monitoring and
proper medical attention. These sensors need to communi-
cate with a central unit which take the decision to send the
emergency in a distress case. In order to install the sensors
a wireless solution is the only acceptable but which imply
also a good autonomy.

To provide one answer to the medical remote monitoring,
we assembled a group of researches from different back-
grounds within a consortium (QuoVADis1) in order to de-
velop a platform for several uses and to meet the needs iden-

1http://quovadis.ibisc.univ-evry.fr/

tified above. QuoVADis is a French National project which
aims to answering two of the problems arising from keeping
elderly people at home: cognitive stimulation and the safety
indoor.

The first platform developed within this project [2] man-
ages a system consisting of three modalities: a set of mi-
crophones disposed into the living rooms of the home of
the elderly, a portable device that can measure heart rate,
detect posture and possibly the fall of the person equipped
and a set of infrared sensors that detect the presence of the
person in a given part and also the standing posture of the
person in question. The output of these three heterogeneous
systems are collected, processed and fused through a multi-
modal platform (EMUTEM) [6].

The sound environment is used like an important
source of information about the possible distress situations
(screams, glass breaking, dishes, distress expressions). All
microphones in the current implementation are connected to
a central unit (embedded PC) in order to analyze the sound
environment [3] in real time. We Analise currently the pos-
sibility to decentralize the treatments and to allow the use
of embedded system based on DSP. This study concerning
the task organization aims to evaluate the cost in terms of
precessing time and power consumption in the case of de-
centralization of sound environment analyze.

The paper is organized as follows. In Section 2, we give
a model representing a theoretical view of a sensor embed-
ded system. In Section 3, we present several kind of class of
Slack Stealer algorithm and we justify our choice. In Sec-
tion 4, we show results of simulation. Finally, we conclude
in Section 5 and we introduce future work in Section 6.

2. Preliminary Definitions

2.1. Sensor Model

Because we propose a general solution instead of a par-
ticular implementation for a specific system, we must intro-
duce a model representing a sensor embedded system. This

model is made of three modules : a set of sensors, commu-
nication and processing modules.

CommunicationProcessingSensors

Decision

Reduction

Control

Figure 1. A model for a sensor embedded
system

The sensors module corresponds to the sensor part of the
sensor node. The sensor part collects data about its environ-
ment. This module generates a stream of messages which
will be sent to the processing module.

The communication module enables a sensor node to
communicate with other sensor nodes. Other sensor nodes
collect data which can be received by this module and the
suitable streams of messages are sent to the processing mod-
ule. In the same way, locally processed data can be sent to
other sensor nodes.

We will consider the processing module as a real-time
system since it processes the streams of received messages
which have time constraints. We divide this module in three
functions.

• The control function is the most important one for our
study. It provides controls over the system. In fact it
can decide the admission of a new stream or the turning
out of the processor,

• The decrease can apply operations over the stream to
reduce the quantity of data. These operations can be
logical : AND, OR, arithmetic : plus, average or more
complex,

• The decision function can generate events according to
the different dart’s in the streams.

2.2. Real-Time Systems

Real-time systems are sets of tasks which have a priority,
a cost and a deadline. The cost of a task is a worst case ex-
ecution time. These tasks must not run over their deadline.
The scheduler executes the available task with the highest
priority. In our study, we consider preemptive scheduler
with fixed priority. In such a scheduler, priority are not in-
heritable and a task can stop another task which has a lower

priority. We can simply define the slack time in such a sys-
tem as the period when the system is inactive.

Several kinds of task exists:

• periodic tasks which have a period. At each period,
they are activated and an instance of these tasks must
be executed,

• sporadic tasks which have a pseudo-period. They have
the same properties that the periodic tasks but the
pseudo-period is the minimum inter-arrival period. We
can consider the worst pseudo-period for this type of
task and it becomes easily assimilated with periodic
tasks,

• aperiodic tasks which have no period. We cannot ex-
pect the arrival instant of these tasks.

In order to make our solution conceivable, we must con-
sider aperiodic tasks as not the main type of task in the sys-
tem. We can suffer aperiodic task in so much as their arrival
is infrequent. Otherwise any speculation is possible.

2.3. Idle Times

A simple way to manage idle times is the scheduling of
a task which has the priority the lowest. We can fix for this
task an arbitrarily high cost. We just want this task to be ex-
ecuted when the system is inactive. This task could power
down the processor. But without any scheduler modifica-
tion, it can not predict its execution time. If the execution
time of the sleeping task is lower than the necessary time to
start the processor, some tasks can be postponed and don’t
meet their deadline. So we must add the time to power down
and restart the processor in the worst case execution time to
each periodic task. The advantage of this method is its sim-
plicity. But we must increase the cost of the tasks because
we can not know the length of the period of inactivity.

Because the over-cost of the first method is too high,
we propose the use of a periodic task called “task server”.
We set its periodic cost called its capacity. So the time for
starting the processor can be incorporated in the server cost.
This method avoids to don’t modify the worst case execu-
tion time of each periodic tasks. But the polling server can
use not all the available idle times.

This method builds on slack stealer algorithms. These al-
gorithms allow to compute the maximal value of slack times
postponing periodic tasks with the constraint that they meet
their deadline. We present these algorithms in the next sec-
tion. The advantage of this method is that many scattered
slack times can be aggregated. So the processor can be pow-
ered down less often but longer.

3. Slack Stealer Algorithms

The Slack is the maximum time that all tasks of the real-
time system can be delayed without missing their deadline.
We present in the following paragraphs several classes of
algorithms called Slack Stealer which compute the Slack
and we justify the choice of the last class, the approximate
Slack Stealer algorithms.

The class of static algorithms is historically represented
by the Lehoczky and Ramos-Thuel algorithm [7]. These al-
gorithms compute the Slack value for each instance of each
task before the starting up of the system and store it. Dur-
ing the execution of the system, the value of the Slack is
known at t instant without more computation. These al-
gorithms seem attractive because their don’t require com-
putation when the system is on-line. But they assume that
the instants of the activation of the tasks are known. This
assumption is restrictive in our case. Furthermore, a non
negligible space is needed to stock the Slack values. This
class of algorithms is not a good choice to implement our
solution.

The class of dynamic algorithms is well represented by
the Davis algorithm [1]. Contrary to static algorithms,
they don’t perform precomputation and so, they don’t stock
Slack values in memory. These algorithms compute the
available Slack in the system on demand. They also seem at-
tractive, but the complexity of the computation is in O(n2)
where n is the number of tasks. Thus the implementation of
such an algorithm is not possible for our solution.

The class of approximate algorithms is known to com-
pute estimation of the Slack value. The algorithms of [7]
and [1] give optimal values. Even if the algorithm presented
in [5] give values which can be non maximal, it compute
the Slack with linear complexity function of the number of
tasks. This class of algorithms offer a good compromise
between the computation time and the correctness of the re-
sult. We can implement such an algorithm for our solution.

: Sleep mode

: Clock synchronization

b)

a)

50

t

10 15 20

50

t

10 15 20

: Task (representing an event)

Figure 2. The sensor is powered down during
idle times : a) without Slack management, b)
with Slack management.

We show in Figure 2 the idea of our solution. We rep-
resented in a) a task representing the treatment of a event.
This task is periodic and we power down the system when

it is idle. In b), we show that the time during which the sen-
sor is powered down can be increased by delaying the task.
Slack Stealer algorithms allows us to know the length of the
delay. In our example, we fix the cost of the task to 2 units
of time and we fix the clock synchronization duration to 1
unit of time. During the clock synchronization, the system
is restarted but it is not usable. Without the Slack manage-
ment, the system can be powered down during 7 × 4 = 28
units of time. With the Slack management, the system is
powered down 2 times instead of 4 and during 2× 15 = 30
units of time.

4. Simulation Results

The results of simulation presented in the following sec-
tion was obtained from a real-time simulator which was de-
veloped by Masson [4].

Firstly, we consider the instants when the processor can
be switch off. Secondly, we compare various methods to
exploit idle times.

τ 1

τ 2

τ 3

Slack

Value

t

5 10 15 200

t

5 10 15 200

5 10 15 200

Exact Slack

Approximate Slack

t

5 10 15 200

0

2

6

4

t

Figure 3. A system of 3 tasks with the asso-
ciated slack at each instant.

We represent in Figure 3, a system of 3 periodic tasks. The
task τ1 is the most priority and τ3 the less priority. When
many tasks are active in the same time, the most prior-
ity are executed. We also represent the value of the Slack
at each instant t. “Exact Slack” corresponds to the value
computed from a dynamic algorithm [1] and “Approximate
Slack” corresponds to the value computed from an approx-
imate algorithm [5].When just one line is represented, the
value estimated by the approximate algorithm is the same
as the value computed by the exact algorithm. We remark
that the approximation offers good results with regard to
the exact value. To provide the better efficiency, we must
power down the processor as few as possible because the
restarting process represents a non-negligible cost. We re-
mark that there is peak values for the Slack and they occur

when a task is finished. To compute the Slack, the algorithm
considers the current deadline of the active tasks. But when
a task finished, the algorithm considers its next deadline.
So we can say that a finished task reload the Slack. The
approximate algorithm updates the Slack estimation at the
beginning and at the end of each task. So we know at the
end of each task if we have enough Slack to power down the
processor and restart it without tasks miss their deadline.

T
im

e
(m

s)

Length of threshold (ms)

 0

 50

 100

 150

 200

 250

 5 10 15 20 25 30

Length of idle times

Background Task
Polling Server

Slack Stealer

Figure 4. Average length of an idle times.

We compare in Figure 4 the average length of an idle
times function of a power down threshold. 10 systems of
10 tasks has been generated; each system has a CPU load of
80%, so 20% of time is idle.

The simulations go on 800 seconds. We compare 3 meth-
ods to exploit idle times. The first method is a background
task with a priority lesser than all other tasks. We show that
the idle times have a very short length compared with other
methods. The reason is that the idle times are scattered.
The polling server is a better solution because a task is al-
lowed and this task consume the maximum possible time.
But it doesn’t take advantage of all idle times. Therefore,
the Slack appears as the better solution here. Indeed it ag-
gregates idle times by delaying the task.

We compare in Figure 5 the total length of sleeping peri-
ods function of a power down threshold. The same param-
eters of simulation as previously has been used except that
the CPU load was take the values 40%, 60% and 80%. We
show that the total time during which the processor can be
powered down is longer when we use Slack algorithm than
when we use other methods. An exception occurs when the
system is very loaded and the suspend threshold is small.
But we can consider that this situation is critical and it is
not acceptable in our application context. We show by these

T
im

e
(m

s)

Length of threshold (ms)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 5 10 15 20 25 30

Background Task
Polling Server

Slack Stealer

System with 40% cpu load

T
im

e
(m

s)
Length of threshold (ms)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 5 10 15 20 25 30

Background Task
Polling Server

Slack Stealer

System with 60% cpu load

T
im

e
(m

s)

Length of threshold (ms)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 5 10 15 20 25 30

Background Task
Polling Server

Slack Stealer

System with 80% cpu load

Figure 5. Total length of sleeping period.

results that we can optimize the power saving of a processor
by aggregating idle times using an approximate Slack algo-
rithm. If we consider that to start a idle processor represents
a non-negligible cost, this solution can be a good alternative
to passive power saving.

5. Conclusions

We presented in this paper a model to abstract a sensor
node. We used this model to consider a sensor node as a
real-time system. We proposed different methods to man-
age idle period in such systems and power down the pro-
cessor during this period. We proposed to aggregate this
idle period to increase the period of cutting off using slack
stealer algorithms. After the presentation of different slack
stealer algorithms, we proposed to use a approximate algo-
rithm and we explained when power down the processor.
Finally, we presented results of simulation which show the

viability of our assumptions.
This first study of sensor model (in terms of acquisition

and processing) allowed us to go to the decentralization of
sensors signal processing in order to increase the system
reliability and in the same have a good energy autonomy.

6. Future Work

We have to implement this solution on real time embed-
ded sensors to perform measures on a real system. A first
step will be to consider a single sensor and validate the so-
lution. A second step could be to find a distributed solution
for the wireless ad-hoc sensor networks. If the sensors com-
municate with a sink, they can be turned off without impact
on the connexity of the network. But in an ad-hoc network,
we can power down a node only if the graph stay connected.

Acknowledgments

The authors gratefully acknowledge the contribution of
French National Research Association (ANR) in the frame-
work of the QuoVADis Project.

References

[1] R. I. Davis. Scheduling slack time in fixed priority pre-
emptive systems. Technical report, Dec. 08 1993.

[2] D. Istrate, E. Castelli, M. Vacher, L. Besacier, and J.-F. Serig-
nat. Information extraction from sound for medical telemoni-
toring. Information Technology in Biomedicine, IEEE Trans-
actions on, 10:264–274, April 2006.

[3] D. Istrate, M. Vacher, and J.-F. Serignat. Generic implemen-
tation of a distress sound extraction system for elder care.
In 28th IEEE EMBS Annual International Conference, pages
3309–3312, New York City, USA, Aug 30-Sept 3, 2006.

[4] D. Masson. Real-time systems simulator (rtss), 2006.
[5] D. Masson and S. Midonnet. Slack time evaluation with rtsj.

In R. L. Wainwright and H. Haddad, editors, SAC, pages 322–
323. ACM, 2008.

[6] H. Medjahed, D. Istrate, J. Boudy, J.-L. Baldinger, B. Dorizzi,
I. Belfeki, V. Martins, F. Steenkeste, and R. Andreao. A mul-
timodal platform for database recording and elderly people
monitoring. In P. Encarnação and A. Veloso, editors, BIOSIG-
NALS (2), pages 385–392. INSTICC - Institute for Systems
and Technologies of Information, Control and Communica-
tion, 2008.

[7] S. R. Thuel and J. P. Lehoczky. Algorithms for schedul-
ing hard aperiodic tasks in fixed-priority systems using slack
stealing. In IEEE Real-Time Systems Symposium, pages 22–
33. IEEE Computer Society, 1994.

