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Abstract

This paper develops a body-machine interface for the control of a powered wheelchair using 

upper-body motion. Our goal was to infer a cursor's kinematics from the signals recorded from 4 

Inertial Measurement Units placed on a subject's shoulders. We specified a Kalman filter 

measurement model that assumes the Euler angles, angular velocities, and linear accelerations of 

the shoulders are a stochastic linear function of the position, velocity, and acceleration of the 

virtual cursor. This model learned a system that encodes cursor movement along with training 

data. Experimental results show that taking advantage of the redundancy of the signal improves 

performance during a center-out reaching task. The resulting algorithm provides a platform for 

people with high-tetraplegia to communicate their intended motor actions with the environment 

using specialized assistive devices.
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I. INTRODUCTION

Injury to the cervical spinal cord causes devastating and long-lasting loss of mobility, 

impaired sensory function, and compromised movement coordination. Spinal cord injured 

individuals control assistive devices with their residual motor and sensory capacities in order 

to regain mobility and communicate with the environment. Current specialized interfaces 

like the sip-and-puff system and the head array are designed to match the residual abilities of 

the disabled users. However, once in place they have a fixed functionality and this places the 

burden of learning entirely on the user. The available interactions are strictly constrained 

and fail to promote learning through upper-body coordination, which is critical for people 

with high tetraplegia to avoid collateral effects of paralysis such as muscular atrophy, 

chronic pain, and to recover some of the lost mobility [1–3].

We have developed a novel approach for a system that we call the “body-machine 

interface”, which aims at enabling people with high-level paralysis to communicate intended 

©2013 IEEE

HHS Public Access
Author manuscript
IEEE Int Conf Rehabil Robot. Author manuscript; available in PMC 2015 March 09.

Published in final edited form as:
IEEE Int Conf Rehabil Robot. 2013 June ; 2013: 6650508. doi:10.1109/ICORR.2013.6650508.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



motor actions using their individual motor capacities. Simultaneous recordings of shoulder 

motions were acquired from four Inertial Measurement Units (IMU) attached with Velcro to 

the subject's shoulders. In an experimental setup analogous to [4], unimpaired subjects 

viewed a computer monitor and were instructed to follow a smoothly moving cursor on the 

screen as if controlling it with their shoulder motions. Upper-body kinematics (Euler angles, 

angular velocities, and linear accelerations) from shoulder motions were simultaneously 

recorded and logged with the position, velocity, and acceleration of the moving cursor. 

These data were then used to train a Kalman filter that decoded body motion (observation) 

into the control of a virtual cursor (state) [5]. Our approach builds on previous work with 

brain-machine interfaces [6], [7]. In that case spike trains recorded from cortical neurons 

guided the motion of a cursor on a computer monitor. Here, we consider the application of 

the same concept to infer a desired smooth cursor motion from upper-body kinematics. The 

rationale is to use a non-invasive approach to exploit the residual mobility that remains 

available to the paralyzed users of assistive devices.

Current brain-machine interfaces do poorly at helping subjects efficiently communicate with 

the environment because they are difficult to control [8–13]. Using an algorithm that 

exploits the abundance and redundancy of individuals’ residual body motion might address 

this problem. Such an algorithm would use as much information as possible to “learn” the 

mapping and estimate the state from the observation at each point in time. However, more 

information is not always better, i.e. adding more noisy data might actually degrade 

performance of the reconstruction of cursor motion.

Here, we analyze the role of redundancy on the control of the interface. We designed an 

experiment to test the effectiveness of adding more information in the observation vector of 

the decoding algorithm. We asked subjects in three different groups to perform a reaching 

task by controlling with shoulder movements a cursor on a computer monitor. For each 

group, the “learning” and “decoding” of the algorithm was performed using different 

information in the observation vector. Subjects in the first group (E) used only Euler angles 

from the four IMUs in order to control the cursor. Subjects in the second group (EV) used 

angles and angular velocities, and subjects in the third group (EVA) used Euler angles, 

angular velocities, and linear accelerations. We compared performance between the three 

groups during five epochs of a center-out reaching task.

Subjects in all groups were able to learn and perform the task throughout the whole 

experiment, but performance varied depending on the information included in the 

observation vector. Subjects in the EVA group generally performed better than subjects in 

the other groups across all epochs. However, a learning trend was only apparent for subjects 

in groups E and EV. These results might suggest that subjects who are using all available 

body kinematics information may reach a ceiling in performance from the very first epochs.

This experiment provides us with the platform to transform residual motion into the control 

of a cursor. With appropriate training, the cursor characteristics can be transformed into the 

characteristics of a joystick that controls a wheelchair. The combination of customized 

interfacing and human motor learning might allow people with paralysis to improve their 

independence by enhancing their movement capabilities that survived the injury.
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II. METHODS

A. Experimental Setup

Subjects wore an adjustable size motion vest with Velcro patches on the shoulder areas. Two 

MTi (Xsens) motion sensors were attached to the Velcro area for each of the subject's 

shoulders. The motion sensors were able to capture shoulder elevation, depression, 

adduction, and abduction through the combination of 3-D of freedom accelerometers and 

gyroscopes. Data from the sensors were sampled in real-time (Simulink, Mathworks, MA) at 

a rate of 50Hz.

The 24-dimensional vector ([2-Euler (Roll, Pitch) + 2-Gyroscope + 2-Accelerometer]*4 

Sensors) of sensor values was mapped to the position of the cursor presented on a computer 

monitor via the Kalman filter approach [5] as applied by Wu et al [7].

B. Kalman Filter Algorithm

The main objective was to estimate the state of the cursor on the screen xk = [x, y, vx, vy, ax, 

ay]T
k representing x-position, y-position, x-velocity, y-velocity, x-acceleration, and y-

acceleration at every instant in time tk = k*dt, where dt = 20ms for our experiments. The 

Kalman model assumes that the cursor's states propagate in time according to the model

(1)

where k = 1,2,..., Ak C̵ R6x6 is the coefficient matrix that linearly relates cursor kinematics 

(position, velocity, and acceleration) at time k to the next state at time k + 1. The body 

motion observations are assumed to be linearly related to the state via the stochastic linear 

function

(2)

where zk C̵ R24 is the 24 x 1 vector containing the motion sensor observations at each time 

step k. Hk C̵ RCx6 is the matrix that linearly relates the cursor's state to the body motion. The 

random variable wk represents the process noise term which we assume has zero mean as is 

normally distributed, i.e. wk ~ N(0,Wk), Wk C̵ R6x6. Additionally, qk is the noise term in the 

observations, i.e. qk ~ N(0,Qk), Qk C̵ R24x24.

In practice, Ak, Hk, Wk, and Qk might change with time step k. However, we will make the 

common simplifying assumptions that they are normally distributed and remain constant. 

Therefore, we can estimate them from training data using maximum likelihood (for details, 

see [7]). Different variables in the estimated parameters are mapped to different units 

(position, velocity, acceleration), so analysis for overfitting and redundancy of our 

parameters is a subject that needs to be dealt with carefully in a separate study. One way to 

limit the risk of overfitting is by utilizing sufficiently long sequence of kinematic data in the 

calibration procedure. A discussion of the order of the kinematic variables and overfitting in 

the use of Kalman decoding for brain-machine interfaces can be found in [14].
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C. Protocol

Eighteen healthy subjects (8 men, 10 female, 18-43 years) each gave their informed, signed 

consent to participate in this experiment, which was approved by Northwestern University's 

Institutional Review Board. Subjects were divided into three groups (six subjects each), a 

group with only Euler angles in the observation vector (E), a group with Euler angles and 

angular velocities (EV), and a group with angles, angular velocities, and linear accelerations 

(EVA).

1) Calibration—Subjects sat in front of a computer monitor while wearing the motion vest 

(Fig. 1). They were instructed to follow a moving cursor on an 18x18cm screen as if they 

were controlling it with their shoulders. The cursor made center-out movements to the east, 

north, west, and south directions, so they were instructed to “control” north and south by 

moving their right shoulder up and down (elevation and depression) respectively, and to 

“control” east and west by moving their left shoulder up and down respectively.

Each center-out movement had a cosine velocity profile so that the cursor's position history 

while moving east followed the function:

(3)

(4)

where t = 0:0.02:4 so that the cursor moved from the origin to the east and then back to the 

origin. The cursor had a diameter of 1 cm and the movement range was enclosed by a 

6x6cm box so that the subjects knew when the cursor would stop and start returning to the 

origin and they could plan to move their shoulder accordingly. Each of the four directions 

was reached a total of 6 times for a total training time of 96 seconds. Position, velocity, and 

acceleration of the cursor were recorded every 20ms along with the motion trackers’ Euler 

angles, angular velocity, and linear accelerations. These data were taken as the Kalman 

filter's state and observation vectors respectively and they were used to estimate the model's 

parameters so that the cursor kinematics and body motion were now encoded by equations 

(1) and (2) respectively.

2) Practice—After subjects were assigned to a group and the parameters were estimated 

based on their group, they were now able to control a cursor on a screen by using only their 

body motions. Every subject had one minute to try their mapping by controlling a cursor on 

the screen. There was no specific task or goal, but they were suggested to try moving north 

and south repeatedly, then east and west, and finally make sure that they could reach all 

corners and edges of the screen.

Subjects had to move through their entire range of motion during the filter training phase. 

However, performing these types of movements during the whole length of the experiment 

might become strenuous, so we amplified their movements by 300% for the rest of the 

experiment. This means that subjects would have to move 33% of their shoulder motion 

range in order to reach a target located 5cm from the origin.
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In order to improve stability and introduce a bias towards the origin like in a real joystick, 

the cursor was modeled as a joystick where the x and y outputs of the Kalman filter were 

modeled as forces acting on a mass spring damper system represented by the equation of 

motion:

(5)

where s = [x’, y’]T
k represents the cursor's filtered new position coordinates. Values for the 

mass, spring, and damper coefficients were tuned so that the system had a resulting damping 

ration of

(6)

3) Reaching Task—Subjects performed center-out reaching movements to four different 

targets that appeared in random order on a 36×27 screen. Once the subject remained for 

200ms on the origin, a 4 cm diameter yellow target appeared on the screen. The subjects 

were instructed to reach as quickly and accurately as possible and hold the cursor within the 

target for 1 second. The target turned green while the cursor was inside it and it turned red at 

a 5-second “deadline”, where the trial was logged as a failed attempt and the target returned 

to the origin. Again, the subject had to move 33% of their shoulder motion range in order to 

reach the target 5cm from the origin.

Subjects performed 24 movements per epoch with random target order comprised of exactly 

six reaches in each direction. The experiment consisted on 5 epochs and there was a 30-60 

resting period between them. This protocol allows us to chart an explicit learning curve of 

different performance measures with constant visual feedback.

D. Analysis/Statistics

a) Error rate: was defined the average number of failed attempts per trial.

b) Movement time: was computed as the total time it took for the subject to 

successfully complete the reaching task.

c) Movement error: was the average distance from the sample points to the task 

axis, irrespective of whether the points were above or below the axis.

d) Maximum error: was calculated as the maximum absolute deviation of the 

points from the task axis.

e) Movement variability: measured the extent to which the sample points lie in a 

straight line along an axis parallel to the task axis and was calculated by the 

standard deviation.

f) Path length: was computed as the sum of the Euclidian distance between time-

consecutive points along the reach.

All performance measures were averaged over all movements by epoch. This produced a 

total of five values per performance measure for each subject for the whole experiment. 

Together, these performance measures allow us to elicit differences in the cursor's path and 
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control between the three different groups. The standard error between subjects in each 

group was calculated for the error bars shown in Fig. 3.

A two-factor, mixed-model analysis of variance (ANOVA) for repeated measures with each 

performance measure as the dependent repeated measure, and group and epoch as the two 

independent factors, was used to test the null-hypothesis that the mean between groups at 

each epoch was the same. This test was repeated for each performance measure and allows 

us to reject the null-hypothesis at each epoch at p<0.05.

A two-way mixed model analysis of variance (ANOVA) was performed on each 

performance measure with EPOCH (1, 2, 3, 4, 5) as the within-participant factor and 

GROUP (E EV, and EVA) as the between-participant factor. Corrected violations of 

sphericity were performed using the Greenhouse-Geisser correction. Post-hoc comparisons 

using a Bonferroni correction were performed to test the null-hypotheses that the mean 

between groups at each epoch was the same, and that the mean for the first and last epochs 

within the same group was the same. These tests were repeated for each performance 

measure and allowed us to reject the null-hypothesis at each epoch at p<0.05.

III. RESULTS

As subjects practiced controlling a cursor on the screen by shoulder motions, their 

movements became more accurate. Fig. 2 illustrates a general increase in task performance 

and movement linearity in sample trajectories from a typical subject in each group. The left 

and right panels show reaching trajectories at the first and last epochs of the experiment. 

Reaches to each direction are represented by a different color. Prior to training, controlling 

the cursor was extremely difficult for subjects in groups E, and EV, as shown by erratic 

looking trajectories and high errors in panels a and c of Fig 2. Control before training was 

not as complicated for subjects in group EVA, as illustrated in panel e. After training, 

subjects in all groups exhibit well-established and quasi-linear movements of the cursor. 

This is consistent with evidence suggesting that linear trajectories will dominate the control 

strategy of subjects in reaching movements where visual feedback is available [15–18].

a) The data indicate that final error rate after five epochs was reduced to 

approximately 70% (p = 1.00), of the initial error rate for subjects in the E group 

and 24% (p = 0.04) and 83% (p = 1.00) for groups EV and EVA respectively. 

These final levels or performance correspond to 0.229+/−0.004 failed trials/

trials, 0.073+/−0.003 failed trials/trials, and 0.059+/−0.002 failed trials/trials for 

subjects in groups E, EV, and EVA respectively (values are means +/− 95% 

confidence). The E and EV groups reduced error rate faster than the EVA group 

but groups EV and EVA ultimately seemed to converge to the same level of 

final performance (Fig 3-a).

b) The movement time that subjects took to complete the each reaching movement 

was also demonstrated, and the subjects in groups E, EV, and EVA reduced their 

movement times to 86% (p = 0.67), 71% (p = 0.01), and 91% (p = 1.00) of their 

initial times by the fifth epoch respectively. This corresponds to average final 

Seáñez and Mussa-Ivaldi Page 6

IEEE Int Conf Rehabil Robot. Author manuscript; available in PMC 2015 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



movement times of 3.31+/−0.02 sec, 2.63+/−0.01 sec, and 2.34+/−0.02 sec for 

groups E, EV, and EVA respectively (Fig 3-b).

c) Movement error was reduced to 73% (p = 0.14), 64% (p = 0.03), and 98% (p = 

1.00) of the initial performance of subjects in groups E, EV, and EVA 

respectively. The average final movement error for subjects in groups E, EV, 

and EVA was of 0.94+/−0.007 cm, 0.80+/−0.005 cm and 0.66+/−005 cm (Fig 3-

c).

d) Maximum error on the fifth epoch was 71% (p = 0.15) of the error on the initial 

epoch for group E and 65% (p = 0.07) and 97% (p = 1.00) for groups EV and 

EVA respectively. The final maximum error corresponds to 2.31+/−0.02 cm, 

1.93+/−0.02 cm, and 1.47+/−0.01 cm for subjects in groups E, EV, and EVA 

respectively, (Fig 3-d).

e) Movement variability of subject's reaches decreased as they became more 

familiar with the control of the cursor using their shoulders. After the five 

epochs, subjects in groups E, EV, and PA reduced their variability to 

approximately 73% (p = 0.10), 70% (p = 0.11) and 96% (p = 1.00) of their 

variability in the first epoch. These values correspond to a variability of 0.90+/

−0.006 cm, 0.76+/−0.006 cm, and 0.55+-/0.005 cm for groups E, EV, and EVA 

respectively (Fig 3-e).

f) Path length showed a similar improvement in performance with subjects in 

groups E, EV, and EVA reducing their path lengths to 74% (p = 0.16), 67% (p = 

0.08) and 93% (p = 1.00) of their initial performances by the fifth epoch. These 

path lengths correspond to 13.84+/−0.14 cm, 11.08+/−0.04 cm, and 9.34+/

−0.08cm for subjects in groups E, EV, and EVA respectively, (Fig 3-f).

Between-groups comparison at each epoch failed to show statistical significance for the 

most part (Table 1). Significant differences were only apparent in some epochs between 

groups E and EVA (p-values in bold on the table), which are the groups with the least and 

the most information in the observation vector respectively.

IV. CONCLUSION

We investigated whether a discrete linear Kalman filter algorithm based on upper-body 

motion could help subjects learn to operate a virtual cursor. Our goal was extending to body-

machine interfaces an approach to decoding that has been first proposed for brain-machine 

interfaces [7]. In our experiment, Euler angles, angular velocities, and linear accelerations of 

the shoulders served as the algorithm's observation and were linearly mapped to the virtual 

cursor's kinematics, or the model's state. This approach has a well-understood theory [5] and 

its rigorous probabilistic method of on-line recursive estimation provides a computationally 

efficient filter algorithm.

Subjects in the EVA group achieved a better performance with less training than subjects in 

the other two groups. However, subjects in the EV group ultimately reached the same level 

of performance as subjects in EVA after extended training. Interestingly, subjects in the 
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EVA group failed to improve their performance after prolonged training. This might indicate 

that subjects in this group reached a ceiling in performance early in the experiment. 

Increasing the level of challenge during the reaching task i.e. reaching in directions that 

require combinations of movements, might elicit a more explicit improvement in proficiency 

for this group.

This study investigated the importance of exploiting the abundance and redundancy of body 

motions for the effective control of a cursor's kinematics. In order to remove variability 

caused by individual's control choices, we standardized the “control” strategy that subjects 

used so that they all moved the cursor north and south with their right shoulder and east and 

west with their left shoulder. Every type of injury to the cervical spinal cord is distinct, and 

subjects with high tetraplegia will have unique residual motion and upper-body 

coordination, therefore we can't expect all of them to have equal abilities and preferences in 

performing upper-body motions. Future experiments will let subjects make their own 

choices of control strategies to move the cursor north, south, east, and west.

Different methods have been proposed for people with high tetraplegia to control their 

powered wheelchairs. Inertial Measurement Units were mounted at the back of a user's head 

while orientation values were converted into adequate, steering commands [19]. This 

method provides an intuitive, easy to implement, and computationally efficient control of a 

wheelchair. However, interaction with the interface is constrained to the head only and 

therefore fails to promote upper-body coordination, when the users may still have significant 

residual motion capability. Electroencephalography (EEG) methods for the control of a 

powered wheelchair have also been investigated by different groups [20], [21]. However, 

these methods are more computationally expensive and require a high concentration and 

long familiarization phase from the user. Additionally, users have to rely on external cues 

and the wheelchair follows a predetermined path [20].

Our goal is to develop a non-invasive body machine interface that will adapt to each user's 

unique residual shoulder motion. To develop this interface, we performed preliminary 

experiments on unimpaired subjects. One should not assume that these findings can be 

extrapolated to people with paralysis. We have begun to test the system on spinal cord 

injured participants and we plan to publish the findings as they will become available. The 

future direction of our work is to develop customized interfaces so that subjects can use their 

mapped virtual cursor to communicate with a keyboard, a joystick and a keypad. This will 

allow subjects to practice and improve their control while browsing the internet, writing e-

mails, playing video games, performing increasingly challenging reaching tasks, and 

practice the control of a wheelchair inside a safe and controlled virtual reality environment. 

Enough training and continued use of upper-body coordination might help people who 

suffered an injury to the cervical spinal cord to avoid or minimize comorbidities of paralysis 

and recover some of the lost mobility.
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Fig. 1. Experimental setu for learning
The subject sits in front of a visual display wearing the four Inertial Measurement Units. A 

virtual cursor moves with known kinematics and the subject is instructed to move as if he 

was controlling it with his shoulders.
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Fig. 2. Reaching paths for the first and last epochs for representative subjects in each group
Each reaching direction is depicted in a different color. The task was very challenging 

during the first epoch for subjects in groups E and EV, but not so much for subjects on 

group EVA. Reaching error and variability reduced after training for all groups.
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Fig. 3. Performance averages for each epoch with each group represented on a different color
Subjects in all groups improved their performance after five epochs of training. Groups E 

and EV (blue and green respectively) improved faster and more dramatically than group 

EVA. The error bars represent the standard error for each group
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