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 

Abstract - The main goal of this study is to investigate the 

Leap Motion Controller (LMC) potential for the objective 

assessment of motor dysfunctioning in Patients with Parkinson's 

disease (PwPD). The most characteristic clinical signs in 

Parkinson’s Disease (PD), such as slowness of movements, 

frequency variation, amplitude variation, and speed, were 

extracted from the recorded LMC data. Data were clinically 

quantified by using LMC software development kit (SDK). In 

this study, 16 PwPD and 12 control healthy subjects were 

involved. A neurologist assessed the subjects during the task 

execution, assigning them a score according to the 

MDS/UPDRS-Section III items. Features of motor performance 

from both subject groups (patients and healthy controls) were 

extracted with dedicated algorithms. Furthermore, in order to 

find out the significance of such features from the clinical point 

of view, machine learning based methods were used. Overall, 

our findings showed the moderate potential of LMC to extract 

the motor performance of PwPD. 

I. INTRODUCTION 

Parkinson’s Disease (PD) is a growing neurological 
disorder in the aging society. The most common 
characteristic clinical signs are tremor, muscular rigidity, 
postural instability, bradykinesia and hypokinesia, caused by 
a loss of brain dopaminergic neurons [1]. About 70% of 
PwPD experience tremor in the early disease stage: therefore, 
the tremor measurement is a significant parameter for  
diagnosing and continuously monitoring Patients with 
Parkinson’s disease (PwPD) [2]. According to the 
Parkinson’s Disease Foundation, one million Americans are 
living with PD, and approximately 60,000 Americans are 
diagnosed with PD each year. Similarly, 1.2 million 
Europeans suffer from it and this number is forecasted to 
double by 2030 [3]. To monitor the disease progression  
repeated clinical examinations are required, and this leads to 
high logistic costs and also affects the patients’ quality of life. 
On the same time, visual examination of motor tasks based 
on semi-quantitative rating scales, such as the Hoehn-Yahr 
(HY) Scale [4] and the motor Section of the Movement 
Disorder Society/Unified Parkinson’s Disease Rating Scale 
(MDS/UPDRS-Section III) [5], leads to high inter-rater and 
intra-rater variability due to neurologist subjectivity [2]. To 
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date, there is no standard tool to achieve the objective 
assessment of PwPD on a clinical scale. The main challenge 
is to develop a reliable, high sensitive and fully wearable 
device that minimizes the discomfort of the aging people. 
Many studies proposed methods to automate the PwPD 
assessment by using wearable devices such as wireless 
triaxial accelerometers, triaxial gyroscopes [6,7], virtual 
touchpads, or electro-oculogram (EOG) signal analysis (i.e. 
analysis of the electric signals originating in the eye) [8]. The 
advantages of accelerometers include small size and 
relatively high sampling frequency. The main disadvantage is 
that they need to be attached to the fingers, which may affect 
their motion performance [9]. Furthermore, for each gram of 
additional mass a sensor adds, the peak frequency of finger 
tremor decreases up to 0.85 Hz and also affects the  
acceleration amplitude [10]. Recently, several studies were 
focused on commercially available non-contact optical 
devices, like Leap Motion Controller (LMC) and Microsoft 
Kinect sensors for the objective assessment of PwPD. Motion 
capture of human hand is very complex due to independent 
movements, and the commercial systems have strong 
limitations. The systems based on the three-dimensional (3-
D) infrared camera for the finger recognition or the other 
devices based on the camera recognition, suffer from line-of-
sight obstructions and need heavy computation requirements 
[11]. In the recent years, depth sensors such as LMC and 
Microsoft Kinect sensor which provide 3-D depth data of the 
scene, have much potential for object segmentation and 3-D 
hand gesture recognition [12]. As compared to kinetic sensor 
and other depth sensors cameras, LMC claims to provide 
more detailed information about palm direction, fingertip 
positions, palm center position, distance between two finger 
tips, speed, angle and other relevant points. This information 
provided by LMC dedicated algorithms with no extra 
computational work is needed. Moreover, the precision of 
LMC is also higher than other depth sensors [13]. Some 
studies on LMC were focused on real patients to extract the 
different characteristics of the hand movements to assess the 
tremor. Recent studies showed that LMC was also used in the 
gaming for stroke and PD patients, particularly for upper 
limbs treatment. For example, the study of Hosseinpour [14] 
was focused on mobility therapy for PwPD by using both 
kinetic sensors and LMC: in such a study hand velocity was 
considered to monitor the PD progression. In the Chen et 
al.’s work [9] LMC was used to clinically quantify the 
essential tremor, providing algorithms to describe its 
amplitude. Differently, Güttler [15] aimed to monitor and 
detect hand tremor (essential or parkinsonian), while gesture 
controlling service robots novel approach was introduced. 
Finally, in the study of Johnson [10], Tremorometer and 
LMC were used in order to estimate the potential of both 
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devices to assess the resting tremor in PwPD, essential tremor 
subjects and healthy control subjects. Results showed that 
two features (peak power between 0 and 25 Hz and 
proportional power of peak between 0 and 25 Hz), out of the 
8 characteristics extracted for the resting tremor, were 
statistically different between devices for the healthy control 
subjects group. Overall classification between healthy and 
PwPD showed significant results with resting tremor 
characteristics extracted from LMC. The K-means cluster 
analysis, as a method of classification, was found to have an 
accuracy of 77.5%, while the tuned cross-validated SVM 
classifier was found to have an accuracy of 85%.  

Based on the above studies, few characteristics of hand 
movements were measured to clinically quantify the tremor 
in PwPD. To understand the potential of LMC in a broad 
sense with other characteristics of the hand movements, an 
appropriate experimental protocol composed by 4 
appropriate exercises was adopted for our study: postural 
tremor, hand opening/closing, thumb fore-finger tapping, and 
forearm pronation/supination. Such exercises,  which were 
carefully selected since they would not affect the LMC 
claimed precision, are traditionally used by neurologists for 
visual examination of some items from the MDS/UPDRS-
Section III [16]. LMC was placed on the table (as shown in 
Fig. 1) in all exercises.  

II. INSTRUMENTS 

LMC (Fig. 1), is a commercially available non-contact 
optical device, 45 g in weight, that can detect the hand 
motion and position in 3-D. It consists of 3 infrared (IR) 
transmitters (LEDs) and 2 IR depth data capture cameras 
[17]. Both IR cameras are at a distance of 20 mm from the 
center of the LMC. The field of view in the hemispherical 
area is approximately 150°. The information regarding the 
user's hand, fingers, and gestures is captured as long as the 
hand is between 25 mm and 600 mm above the sensor center 
of the sensor. The hand position carried is relative to the 
center of LMC. According to the manufacturer specifications, 
the accuracy of LMC in spatial measurement can reach 0.01 
mm: in previous studies, however, the error of spatial 
measurement in a static setup was approximately 0.2 mm and 
the average spatial error in continuous motion was 0.4 mm 
[5]. In this study average sampling rate during the data 
acquisition was 35 Hz. The LMC has an attached 
programming interface called Leap Motion software 
development kit (SDK) that uses either high or medium level 
languages (Objective-C, C++, Java) and allows access to 
depth data. From a functional perspective, the LMC software 
is able to provide a data stream in directly time-dependent 
frames, allowing calculation of hand gestures or motion 
above the sensor [17]. LMC is able to distinguish each finger 
individually through the identification algorithm which 
makes easy for each entity to be tracked throughout the 
motion flow. Positional data are provided for each object, 
with sub-millimetre accuracy, on each axis from the device 
centre. LMC software uses Windows or Mac and Linux to 
connect with the LMC-enabled applications. Once the LMC 
services are running, the leap application is connected to the 
LMC through the USB bus. Then, LMC-enabled applications 
have access to the LMC to receive data. Leap motion 

provides two kind of APIs to getting the data from LMC: 
Native interface and Web Socket Interface [15]. 

 

Figure 1. Coordinate system of LMC [8] and experimental setup for each 
exercise: postural tremor, hand opening-closing, finger tapping, forearm 
pronation/supination.  

III. METHODOLOGY 

In this Section, the experimental Protocol of 
biomechanical exercises (carried out by PwPD and healthy 
volunteers under the supervision of neurologists) is described 
in detail. 

A.  Recruited Patients 

Sixteen PwPD (11 men, 5 women; mean age ± SD: 
67.9±6.9 years old; average MDS/UPDRS-Section III scores 
± SD: 20.2±11.9; average Hoehn and Yahr stage ± SD: 
(1.6±0.5) and 12 healthy controls (2 men, 10 women; mean ± 
SD: 64.8±9.1 years old) were asked to participate in this 
study. Exclusion criteria were impairments or diseases other 
than PD (i.e., orthopaedic or neurologic) that could affect the 
task performance. All subjects lived independently in the 
community. Every subject signed an informed consent form 
before the experiment. 

B. Experimental Protocol 

The experimental protocol for the analysis of movements 
of the upper limbs was composed of 4 exercises: 
pronation/supination of the forearms (PSUP); 
opening/closing of the hands (OPCL); thumb-forefinger 
tapping (THFF); postural tremor (POST). They respectively 
correspond to the tasks 3.4, 3.5, 3.6, 3.15 of the 
MDS/UPDRS-Section  III [5]. Subjects were asked to 
sequentially perform the exercises for 3 times and for both 
upper limbs to complete the experimental session. In 
addition, every subjects made a short preliminary training to 
try all required movements. A neurologist assessed the 
subjects during the execution of the exercises, assigning them 
a score according to the tasks in MDS/UPDRS. 

C. Exercise Description 

 PSUP: the subject was directed to assume a sitting 
posture at rest and was asked to put the arm outstretched 
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in front of him/herself, with the wrist stable, the hand in 
prone position and the fingers outstretched 
approximately 1 cm apart from each other. After 5s in 
resting position, subject executed forearm pronation-
supination movements as fast and as wide as possible for 
10 s. Then the subject was directed to keep hand in 
prone position and finger outstretched in resting position 
for 5 s more. 

 OPCL: the subject was directed to assume a sitting 
posture at rest with the arm flexed at the elbow. The 
elbow was fixed on the table keeping the palm of the 
hand in front of the subject. After 5 s in resting position, 
subject alternatively opened and closed the hand as fast 
and as wide as possible for 10 s keeping the forearm and 
the wrist fixed. Then the subject was directed to keep the 
palm of the hand in front of subject in resting position 
for 5 s. 

 THFF: the subject was directed to assume a sitting 
posture at rest keeping the hand outstretch, in front of 
him/herself. In the starting position, the thumb and the 
forefinger were in open position. The subject remained 
for 5 s in resting position, then he/she tapped the 
forefinger against the thumb as quickly and as widely as 
possible for 10 s. Then the subject was directed to keep 
the thumb and forefinger in open position for 5 s. 

 POST: the subject was directed to assume a sitting 
posture at rest and was asked to put the arm outstretched 
in front of him/herself with wrist stable, the hand in 
prone position and the fingers outstretched 
approximately 1 cm apart from each other. He/she 
remained in this position for the whole duration of the 
exercise for 20 seconds. 

 

 

 

D. Extracted Features 

For each exercise that subjects performed using the LMC, 
biomechanical parameters as frequency, amplitude, speed and 
smoothness of the movements were measured (Table I). 
Through the use of the LMC C++ APIs standalone program, 
a simple user’s interface was developed in which the 4 
exercises were selected in order to record the data from 
LMC. Furthermore the acquired data from LMC were 
analysed by means of appropriate algorithms implemented in 
Matlab®R2015b to extract the features from each exercise. 
Since the PD tremor ranges between 5 and 12 Hz and 
essential tremor between 4 and 8 Hz, a band-pass 
Butterworth filter was applied with cut-off frequency 14-Hz 
to eliminate the frequency noise [15]. Since a physical 
guideline was not provided to PwPD to support them in 
correcting placing hand and fingers, some experiments were 
repeated, because of the uncorrected placement of the users’ 
hands.  Peak finder algorithms by Yoder [18] was used in 
order to count the number of movements in all exercises. 
Speed of these movements were recorded using the LMC 
APIs which allows to measure the velocity of the fingers 
from different directions based on the dedicated algorithms. 
Fast Fourier transform was implemented to transform the 
time domain information recorded from LMC APIs into 
frequency domain. Furthermore, power of each frequency 
component was estimated with the power spectral density 
function, in order to measure the frequency and amplitude 
variation due to the tremor in each exercise. Standard 
deviation (SD) of dominant frequency in time (t) segment 
was considered as frequency variation. Similarly, amplitude 
SD in t segments was considered as amplitude variation. For 
postural tremor, in order to estimate the tremor strength 
between 8 and12 Hz, the power of each frequency component 
was estimated with power spectral density function. Since 
each measured finger tremor was composed of several 
different frequencies [9], the average power of all the 
frequency components should provide the adequate strength 
of the hand tremor in the band of interest (8-12 Hz). 

                      TABLE I: Biomechanical Parameters Extracted by all Exercises 

Exercises Extracted Features Acronyms 

PSUP - Number of rotational movements 

- Supination speed 

- Pronation speed 

- Variability of frequency 

- Variability of amplitude 

Num-PS 

wps 

wsp 

fSD-PS 

tetaSD-PS 

OPCL - Number of opening/closing movements 

- Hand opening speed 

- Hand closing speed 

- Variability of frequency 

- Variability of amplitude 

Num-OC 

wop 

wcl 

fSD-OC 

tetaSD-OC 

THFF - Number of thumb-forefinger tapping 

- Opening speed 

- Closing speed 

- Variability of frequency 

- Variability of amplitude 

tapTF 

woTF 

wcTF 

fSD-TF 

tetaSD-TF 

POST - Signal strength of the movement 

- Relative power in the band of interest of postural tremor (8-12 Hz) 

PwrP 

PwrpP2 
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    V. EXPERIMENTAL RESULTS        

A. Test-Retest Reliability with Wilcoxon signed Ranks 

    Before directly focusing on the results related to motor 

skills, the repeatability of the device was tested. For this 

purpose, a non-parametric test Wilcoxon was performed with 

SPSS21. The Wilcoxon Signed Ranks Test was used as a 

two-sided test for the null hypothesis that the differences 

between trials come from a distribution with zero median 

[10]. Test failed to reject the null hypothesis except one 

characteristics as shown in TableII. The only null hypothesis 

that was rejected was the thumb fore-finger tapping closing 

speed (WCTF). Which directs that trail for WCTF had 

significant difference. In all other characteristic’s acquired 

from the device there is no significant difference in two 

repeated trails in all features according to Wilcoxon analysis.  
                                               
 B. Classification 

 

  In order to classify the PwPD and healthy control subjects 

extracted features were entered in to the state of art machine 

learning classifier’s Neural network (NN), Support vector 

machine (SVM) and Logistic Regression (LR). For this 

purpose, subjects were labeled in two classes: 0 for healthy 

subjects and 1 for PwPD. In order to measure the 

classification performance, from the classifier all the aware 

metrics of the diagnostic performance such as sensitivity, 

specificity, positive and negative predicted value, were 

measured. Leave-one-out cross-validation was used in SVM. 

The NN 70% data set was considered a training set. A level 

of 15% was used to validate that the network was 

generalizing and to stop training before overfitting. The last 

15% was used as a completely independent test of network 

generalization with 10 hidden neurons. LR was used with 

tenfold cross validation. The primary concept of LR is to 

estimate the probability of success in the values given by the 

explanatory features. The logistic regression classifier is 

basically used to measure the relationship between dependent 

variables (target labels) and one or more independent 

variables (predictors or features) by estimating probabilities 

using the logistic function or sigmoidal function [19]. The 

results shown in the Table.3 confusion matrix of all 

Classifiers LR, NN and SVM. Maximum obtained 

classification results from LR was 82.14% with 66.7% 

sensitivity and 93.8% specificity, with NN classification 

accuracy was 71.4% with 41.7% sensitivity and 93.8% 

specificity. Similarly, with SVM maximum obtained accuracy 

was 85.71% with sensitivity 83.5 % and specificity 87.5%. 

 

 

 

 

C. Performance of Healthy and Parkinson Subjects. 

 

   Performance of the patients and healthy subjects in all 

exercises shown in the Fig.2. It can be observing in general 

opening movements in healthy subjects are higher than 

PwPD. Some PwPD showed almost same performance as 

healthy control. Similarly, in the case of pronation supination 

in general frequency of pronation supination are higher in 

healthy subjects as compare to PwPD. Similarly, in the 

postural tremor between 8 to 12 Hz healthy control showed 

very low power which is close to zero as expected. PwPD in 

general showed high power between 8 to 12 Hz. In the finger 

tapping taping frequency per second is high in healthy 

control as compare to PwPD. In all exercises some PwPD 

showed almost same performance as healthy control. It is a 

matter of fact continuous treatment with medicine can 

improve the patient motor skills.  

   

 
TABLE II: The results of the Wilcoxon Signed Ranks Test for the 

difference between the two trials. Highlighted p value shows there is 

no significant different between both trials                                                                                                  

 

 

 

 

 

                                              

 

 

 

 

 

 

 

Features 

 

Differences between Trail 1 and 2 

 

 

Wilcoxon Rank Test 

 

   

                            

       Z                                P 

TapTf -0.550 0.583 

WoTf -1.59 0.117 

WcTF -2.59 0.010 

fSD-TF -0.314 0.754 

Tetacv-TF -1.256 0.209 

Num-oc -0.788 0.431 

Wop -1.433 0.152 

Wcl -2.208 0.43 

fSD_OC -1.853 0.64 

tetaSD_OC -1.75 0.86 

Num-PS -0.616 0.538 

Wps -0.800 0.424 

Wsp -0.178 0.856 

fSD-PS 0.000 1.000 

tetaSD-PS -0.533 0.594 

PwrP -0.594 0.552 

PwrP2 -1.153 0.249 
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TABLE III: Classification with LR, NN and SVM between PwPD and Healthy Subjects 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                    Figure2: Performance of PwPD and Control Subjects 

 

V. Discussion 

 

All the seventeen features were found to not be statistically 

different across trials, except one suggesting that device may 

be repeatable for the data acquisition for the same features. 

Overall the classification between PwPD and control subjects 

showed the moderate results. It can be observing the 

sensitivity and specificity in SVM is more than 80%. In 

contrast sensitivity in NN is 41.7% and specificity is 93.8%. 

Similarly, in LR sensitivity 66.7% and specificity was 93.8%. 

Considering that PwPDs involved in this study were mainly 

in advanced stage of the pathology, this problem further 

complicated the symptom analysis    because the repeated 

experiments caused fatigue for the patients, eventually 

affecting the accuracy of the measurements for symptom 

severity. Many of the subjects were likely taking medicine 

that could supress the tremor. Which would make more 

complicated to classify the PwPD and healthy subjects as 

shown in Fig.2 the performance of the both subjects. 

Probably, more pre-processing needed after data collection 

from Leap Motion to overcome these issues.  

  In general, working with Leap Motion is always a bit tricky 

when storing the big output data from the patients by the 

software developed in this study. On the other hand, asking a 

patient to do the predefined exercises in a correct way in 

front of the sensors avoiding the possible errors or noises is 

also a bit hard as well. Some exercises might also be 

dangerous for a group of patients having stability 

impairments [14]. As observed advanced patients failed to do 

the exercises, particularly the finger tapping task. In general, 

LR Classification 

 

Total Instances= 28 

Correctly Classified=23 

Incorrectly classified=5 

NN Classification 

 

Total Instances= 28 

Correctly Classified=20 

Incorrectly classified=8 

SVM Classification   

 

Total Instances=28 

Correctly Classified=24 

Incorrectly classified=4 

 

   Class 0  Class 1 

Class 0 8 4 

Class 1 1 15 

True Positive 

Rate 

66.7% 93.8% 

Accuracy 82.14%  

 

   Class 0  Class 1 

Class 0 5 1 

Class 1 7 15 

True Positive 

Rate 

41.7% 93.8% 

Accuracy 71.4%  

 

 Class 0  Class 1 

Class 0 10 2 

Class 1 2 14 

True Positive 

Rate 

83.3% 87.5% 

Accuracy 85.71%  
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repeatability in the trails in all exercises direct the good 

ability of motion detection of LMC for PwPD.   

 

                VI. Conclusion and Future Works 

 

Moderate potential of LMC to assess the bradykinesia and 

hypokinesia observed in this work, directs the research 

towards the implementation of additional pre-processing 

algorithms to remove the noisy data and to extract the 

meaningful information with novel methods. Since the system 

was not able to correctly work on advanced PwPD, it would 

be beneficial to include the early stage PwPD for future 

investigations. Further, it would be interesting to determine if 

abnormal tremors in PwPD could be correctly classified out 

of the healthy controls with other known artificial intelligence 

techniques. Other supervised and unsupervised methods may 

provide better results. The identification and measurement of 

other potential features could also result to be useful, as well 

as the implementation of a feature selection algorithm, to 

identify the most significant features that could be used in the 

classification. Finally, it would be interesting to investigate a 

variety of different methods to compare the Leap Motion 

Controller with other wearable devices to measure the tremor 

in PwPD in order to study clear potential and applications of 

the LMC. 
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