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Abstract

There currently exist no practical tools to identify functional movements in the upper extremities 

(UEs). This absence has limited the precise therapeutic dosing of patients recovering from stroke. 

In this proof-of-principle study, we aimed to develop an accurate approach for classifying UE 

functional movement primitives, which comprise functional movements. Data were generated 

from inertial measurement units (IMUs) placed on upper body segments of older healthy 

individuals and chronic stroke patients. Subjects performed activities commonly trained during 

rehabilitation after stroke. Data processing involved the use of a sliding window to obtain 

statistical descriptors, and resulting features were processed by a Hidden Markov Model (HMM). 

The likelihoods of the states, resulting from the HMM, were segmented by a second sliding 

window and their averages were calculated. The final predictions were mapped to human 

functional movement primitives using a Logistic Regression algorithm. Algorithm performance 

was assessed with a leave-one-out analysis, which determined its sensitivity, specificity, and 

positive and negative predictive values for all classified primitives. In healthy control and stroke 

participants, our approach identified functional movement primitives embedded in training 

activities with, on average, 80% precision. This approach may support functional movement 

dosing in stroke rehabilitation.

I. INTRODUCTION

In the next 15 years, the incidence of stroke is expected to surpass 1 million US adults 

annually, with stroke-related costs expected to skyrocket to $240 billion [1][2]. Two-thirds 

of stroke survivors have significant upper extremity (UE) impairment, limiting autonomy 

and performance of activities of daily living [3]. The cornerstone of treatment for UE 

impairment is rehabilitation training, with a focus on training functional movements. 

Functional movements consist of a reach to, grasp/touch of, action on, and release of a target 

HHS Public Access
Author manuscript
IEEE Int Conf Rehabil Robot. Author manuscript; available in PMC 2018 January 01.

Published in final edited form as:
IEEE Int Conf Rehabil Robot. 2017 July ; 2017: 547–554. doi:10.1109/ICORR.2017.8009305.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



object [4]. From research in animal models of stroke, a high number of functional 

movements in the weak limb is needed to induce neuroplasticity and behavioral 

improvement [5][6]. In humans, however, little has been done to relate the number of UE 

functional movements (i.e. dose) to recovery after stroke, with the exception of a recent trial 

in chronic stroke [7]. Without knowing the training doses required to potentiate recovery in 

humans, therapists must rely on intuited amounts of training, with uncertain ramifications on 

recovery [8].

In order to establish an optimal training dose, it is necessary to identify what and how much 
is being practiced, in a rehabilitation environment. Time spent in therapy sessions, the main 

metric used in most rehabilitation studies, is an inadequate surrogate for the number of 

functional movements trained–if they are even trained [4]. Hand-tallying of observed 

movements, as recently employed [7], is laborious, time-intensive, and impractical for 

clinical implementation. Motion capture with vision-based and optical technologies suffers 

from occlusion, noisy visual backgrounds, a need for multiple viewpoints, and restricted 

work volumes, limiting their application in a busy rehabilitation setting.

Sensor-based technologies use wearable sensors to generate data about movement, and can 

overcome the practical challenges of motion capture in the rehabilitation environment. Some 

groups have effectively used accelerometers to quantify movement, particularly if the 

movement is fairly invariant and has limited degrees of freedom, like gait [9]. For more 

complex movements made in various planes and with multiple degrees of freedom, like 

those of the UE, accelerometers have insufficient data dimensionality for movement 

identification [10]. Functional, non-functional, and passive movements all register as 

“activity” and are afforded equal weight, despite their different effects on neuroplasticity and 

recovery.

A potential solution for functional movement capture is the application of inertial 

measurement units (IMUs), wearable sensors consisting of an accelerometer, gyroscope, and 

magnetometer. IMUs wirelessly transmit their data over a considerable distance, obviating 

the need for a specialized motion capture set-up. Importantly, IMUs capture 3D motion with 

high spatial and temporal precision. Thus, an IMU-based system is ideal for capturing UE 

movement in a busy rehabilitation environment. Like all other forms of motion capture, IMU 

data alone do not identify movements. Rather, specialized analysis must be applied to the 

data stream to detect functional movement primitives, discussed below.

II. RELATED WORK

The technological advancement of robust, powerful and ubiquitous sensor technologies has 

allowed for a better understanding, modeling, and classification of human activity 

recognition (HAR). Sensors such as networks of cameras in the environment [11] and 

accelerometers [12] have been used for tracking and discrimination among certain types of 

physical activities.

These activities include walking, running, stair climbing, feeding, and self-hygiene [13][14]

[15][16][17][18]. Other groups have focused on monitoring general activities of older adults 
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[19][20] and stroke patients [18]. In work by Lemmens and colleagues, activity recognition 

was successfully accomplished in 30 healthy participants and 1 stroke patient performing 

drinking, eating, and hair-brushing activities while wearing IMUs attached to the moving 

UE. Of note, activities are comprised of various functional movements, and differ inter-

individually by the types and sequences of functional movements used to accomplish the 

activity. Because of this variability, identification at the level of activity is challenging, and 

dosing by activity would be expected to have variable therapeutic effects. Hence, the aim of 

this study was to learn and classify movement primitives, the discrete motions that comprise 

a single functional movement. Like phonemes, movement primitives can be strung together 

in various combinations to make a functional movement (analogous to a word), which in 

turn are strung together to make an activity (analogous to a sentence) [21]. For example, a 

string of reach-manipulation-retraction primitives could constitute a functional movement 

for closing a button, within the activity of dressing. We focused on primitives for three 

reasons: (1) because primitives are clinically non-divisible and fairly invariant, inter-

individual identification is improved, (2) because some stroke patients may be unable to 

complete a full functional movement, primitives can provide a more nuanced picture of 

performance, and (3) because motor control and learning are believed to be neurally 

mediated at the level of primitives, they may enable us to more precisely track neural 

reorganization after stroke [22].

Algorithms such as Support Vector Machines (SVM) [23], K-Nearest Neighbor (KNN), 

Decision Trees and Naïve Bayes [24] have been previously employed to perform HAR; 

however, studies have demonstrated that non-statistically exchangeable data are more 

successfully modeled using Hidden Markov Models (HMM) [25]. Sequential Deep Learning 

has also been used for the classification of human activities [26]. Although this algorithm 

demonstrated improved HAR performance compared to other methods, the model was 

trained in a fully supervised way. In contrast, the methodology provided in this paper 

performs the learning and classification of human movement primitives in a semi-supervised 

setting, allowing for use of new unlabeled data for future model training while utilizing the 

previously labeled data for correlation to human movement primitives.

III. APPROACH

A. Sensor Data Acquisition

Data were collected from 10 healthy older individuals and 6 chronic stroke subjects during a 

single visit. We used healthy subjects to develop and train the analysis approach and to test 

its performance. We then tested the performance of the unaltered approach in stroke 

subjects. All testing was performed in an inpatient rehabilitation gym. Subject demographics 

are shown in the (Table I), and did not significantly differ between groups. UE motor 

impairment in the weak arm was assessed with the UE Fugl-Meyer (FM) scale, where a 

higher score (maximum 66) connotes less impairment [27].

Xsens MVN Inertial Measurement Units MTX 2-4A7G6 (Xsens Technologies, Netherlands) 

were used to track motion in the upper body. Each sensor records 3D linear and angular 

accelerations at a sampling rate of 240 Hz. 11 IMU sensors were placed on the following 

body segments: head, sternum, pelvis, bilateral scapulae, arm, forearm, and hand (Figure 3). 
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However, at this stage, data were only used from the right side (7 sensors), which was also 

the weak side of stroke patients. Because the system is wired on the body, subjects wore a 

tight fitting long-sleeved shirt over the sensors to avoid snagging the wires. IMU data were 

transmitted wirelessly to a data receiver and stored on a PC for offline analysis. Software 

recalibration was performed every 5–10 minutes to offset gyroscopic drift. Single-camera 

videography synchronously recorded motion at 30 Hz.

A sample of representative activities was chosen from those typically performed during 

rehabilitation therapy. To determine whether differences in arm/forearm configuration 

affected primitive detection, objects of various weights, shapes, and sizes were used. To train 

the algorithm to detect movement primitives in a natural volume of space [28], targets were 

placed at various horizontal and vertical locations. Each activity was repeated 5 times per 

object and location. Subjects were positioned at a consistent distance from the workspace, 

and were instructed to move at a comfortable speed. Healthy controls performed all 

activities; stroke patients performed the radial activities only because of time limitations. 

The activities were as follows:

Radial Activity: the subject interacted with an object in a horizontal array of targets on a 

table top (Figure 1). Objects were a roll of toilet paper and an empty tin can (light can), 

which prompted a pronated or neutral forearm orientation, respectively, during reach and 

transport. Subjects reached to grasp the object at the center, transported it to one of the 

targets [1, 2, 3, 4, 5, 6, 7, 8], and released the object and retracted the arm back to a resting 

position. They then reached to the object at the target, transported it back to the center, and 

retracted the arm to rest. These movement primitives were repeated for all 8 targets.

Shelf Activity: the subject interacted with an object in a vertical array of targets on shelves 

(Figure 2). Objects were a roll of toilet paper, a full can of beans (heavy can), a light can, a 

box of dish detergent, and a small book. Pronated forearm reaching and transport were 

prompted by the toilet paper and book, whereas a neutral forearm orientation was prompted 

by the other objects. Subjects transported an object from a “0” target to a “1” or “2” target 

within the same column (i.e., A0 to A1 or A2 only), using the same sequences of reach, 

transport, retract, and rest as in the radial activity. These movement primitives were repeated 

for all 6 targets [A1, A2, B1, B2, C1, C2].

Feeding Activity: the subject interacted with objects positioned on a table (Figure 3). 

Objects were a slice of bread in a plastic zippered bag, an individual-sized butter container, a 

plastic fork and knife, and a paper plate affixed to the table. This activity required the subject 

to retrieve the bread from the bag, to open the container and butter the bread, to cut the bread 

into quarters, and to bring a section of the bread to the mouth with the fork. While having an 

overall sequence of steps, this activity allowed subjects to accomplish the task with a more 

unstructured order of movement primitives. Although this activity is bimanual, we focused 

on movement primitives in the right arm, in keeping with the other activities.

Data labeling—Using the MVN software, the video data were used to label components of 

functional movement primitives in the IMU data. These “true” labels were generated to train 

the algorithm, and to determine the accuracy of algorithm-recognized patterns. Labels 
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consisted of the start and finish of movement primitives. All activities contained these 

primitives: rest, reach-to-grasp, and release-to-retract. Each activity had additional 

movement primitives acting on a target object: transport, manipulation, stabilization, and 

their subtypes. These movement primitive subtypes include cyclic manipulation (repeatedly 

engaging a target with the small amplitude distal motions, e.g., buttering the bread), 

stabilization-transport (holding an object still by working across its surface, e.g. successively 

pinning down the bread with a fork during cutting), and stabilization-manipulation (holding 

an object steady but making distal adjustments throughout, e.g., orienting the butter 

container towards the knife). When used, tools acted as extensions of the hand, and we 

labeled the primitive performed with the tool on the target object.

B. Feature Extraction

The IMU software generated, per sensor, 3D linear accelerometer, 3D rate gyroscope and 3D 

magnetometer data. In order to extract the relevant features from the data, a sliding window 

was implemented to segment the data [29]. The sliding window divided the whole dataset 

into a temporal segment of a given size and step. The size represented the number of time-

frames needed to characterize the sensor data; the steps provided the overlapping number of 

time-frames [30]. With larger window sizes, short-duration primitives may be lost; with 

smaller windows sizes, motions’ noise is more likely to be included.

For complex activities, other studies have found that the best trade-off between accuracy of 

classification and speed of processing is to use a sliding window with an interval of 1–2 

seconds [29][16]. However, these studies segmented and classified activities, not movements 

or their primitives. Taking into consideration these previous studies [29] and through cross-

validation, a window of 0.25 seconds and with a step size of 0.004 seconds empirically 

showed the best classification performance.

While performing the segmentation, one method to characterize the signal is to calculate 

statistical descriptors [31]. The statistical descriptors, calculated on each of the dimensions 

of the sliding window, were: mean, variance, min, max, and root mean square (RMS). The 

mean μ over a signal removes random spikes or noise (both mechanical and electrical), 

smoothing the overall dataset. The variance σ2 extracts the variability of the signal, and 

represents the stability of the segmented signal. The minimum and the maximum represent 

the range of the energy of the motion [32], and provide specific information about tasks that 

produce similar range signal but exert a higher or lower energy. In addition, because the 

signal also contains negative values, the RMS enables signal characteristics when the 

average would not suffice. To summarize, using the 7 sensors (head, sternum, pelvis, 

bilateral scapulae, arm, forearm, and hand), 5 vectors (linear and angular acceleration, linear 

and angular velocity, position) each represented by 3 dimensions, orientation (represented by 

4 dimensions) and 5 statistical descriptors, the final dimensionality of the data set is 665. By 

decomposing this dataset through the use of statistical descriptors, the resulting processed 

data provide more descriptive information of the motion.
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C. Hidden Markov Model

A HMM is a temporal probabilistic model whose system is a Markov process with hidden or 

latent states [33]. A Markov process is a stochastic model based on the Markov property. 

This property indicates that the belief state distribution at any given time t is only based on 

the state at time t − n where n ≥ 1. Given a time series of observed sensor data, the model 

will use techniques from probability theory to infer the posterior probability of the hidden 

states that generated those observations.

Notation—The HMM is defined by the following components:

T = length of the activities

N = number of states in the model

X = X1, X2, …, Xn = set of possible states

A = state transition probability distribution

B = observation probability distribution

π = initial state distribution

O = O1, O2, …, OT = observation sequence of processed data points

The length of the observation sequence T represent the duration, in time-frames, of the 

activities. Using cross-correlation, N=25 performed best for modeling the dataset without 

overfitting. The observation Ot is represented by a Gaussian distribution, with unknown 

parameters, conditioned on the state Xt at time t. The matrix  is N × N with aij = P 

(state xj at t + 1 | state qi at t) and A is row stochastic. The matrix B = bj(X) is characterized 

by the mean μ and variance α of the data in state K such that bj(K) = P (observation k at t| 
state qj at t). The HMM model is denoted by λ = (A, B, π) [34].

Problems—There are three fundamental problems that can be solved by implementing a 

HMM [33]:

• Given an observation sequence O = O1, …, OT, find the model λ = (A, B, π) that 

maximizes the probability of actually seeing the observations O. In other words, 

train the model to get the best results based on the observation. 3 HMMs are 

created and trained based on the shelf, radial and feeding tasks. This problem is 

solved by implementing the Baum-Welch (Expectation Maximization) algorithm 

to calculate the transition matrix A, mean μ, variance σ and prior distribution π 
for each of the models.

• Given a model λ = (A, B, π) and an observation sequence O = O1, …, OT, 

choose a corresponding state sequence X = x1, x2, …, xn that best explains the 

observations or uncover the sequence of states (hidden parts). Implementing the 

Viterbi algorithm, for each time frame, the probability of the states is calculated. 

These states, however, do not correlate to human movement primitives; therefore, 

a Logistic Regression algorithm is implemented to map the set of states 
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likelihood to the actual movement primitive, which will be explained in the next 

session.

• Given a model λ = (A, B, π) and an observation sequence O = O1, …, OT, 

compute P (O|λ), the probability of the observation sequence, given the model. 

After the training phase, the likelihood for each of the testing dataset is 

calculated. The HMM with the greatest likelihood is used to classify the data.

D. Logistic Regression Implementation

The HMM calculates the likelihood of each state s ∈ [1, 25] per time frame. Because the 

HMM was trained using 25 states and there were 4 possible movement primitives for the 

shelf and radial tasks (e.g., resting, reaching, transporting and retraction) and 9 possible 

movement primitives for the feeding task (e.g., resting, reaching, transporting, retraction, 

stabilization, stabilization-transport, manipulation, stabilization-manipulation and cyclic-

manipulation), a HMM’s state does not correspond to a specific primitive. For instance, the 

“reaching” movement primitive might be represented by the set of states sk where k ∈ [6, 

12], but “transporting” could be represented by the sequence of states sj where j ∈ [1, 8]. As 

a result, because a set of the same states could be used in the representation of two or more 

movement primitives, the prediction of the HMM cannot be interpreted as the actual human 

movement primitive. A Logistic Regression algorithm was thus used to match those state 

likelihoods to actual human movement primitives.

Sliding Window: a second sliding window is used on the likelihood of the states predicted 

by the HMM. Through cross-validation, a window size of 0.5 seconds and step size of 0.04 

seconds empirically showed the best movement primitive classification. The average of the 

likelihood of states is calculated per segment. Each averaged segmentation is mapped to a 

labeled primitive during the training phase. The resulting training dataset is used to train the 

Logistic Regression algorithm in order to match each time frame to a true movement 

primitive name (as identified by video analysis).

Implementation—The Logistic Regression optimization function is:

Where, β is the coefficient or vector parameters. In order to estimate these coefficients, 

Maximum Likelihood Estimation [35] is performed in the function. Ideally, the goal of the 

estimator is to estimate β0, β1, …, βk such that the predicted probability Pr(X) of labels from 

the HMM correspond as closely as possible to the true labels a human understands. The 

Logistic Regression algorithm was implemented without alterations. The algorithm was 

trained using the HMM’s predictions on the training data and the labeled information. As a 

result, the Logistic Regression algorithm provides an actual movement primitive per time 

frame when implemented on the testing data.
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E. Performance Measurement

In order to inspect the real-world relevance of the algorithm predictions, a comparison 

between the predictions and the true movement primitive labels was performed. We 

calculated the number of true positives (TP; algorithm and label matched in identifying a 

movement primitive), true negatives (TN, algorithm and label matched in not identifying a 

movement primitive), false positives (FP, algorithm identified a movement primitive that did 

not occur), and false negatives (FN, algorithm did not identify a movement primitive that did 

occur).

From these, we estimated the following performance metrics: sensitivity, specificity, and 

positive and negative predictive values (PPV, NPV). PPV and NPV adjust for the prevalence 

of different movement primitives in the activities.

Sensitivity or Recall: given a subject made a particular movement primitive, how often did 

the algorithm correctly identify that primitive, e.g. when the true primitive label was 

“reach”, how often did the algorithm predict “reach”: Sensitivity = TP=(TP + FN).

Specificity: given a subject did not make a particular movement primitive, how often did the 

algorithm correctly not identify that primitive, e.g., when the true label was not “reach”, how 

often did the algorithm not predict “reach”: Specificity = TN=(TN + FP).

Positive Predictive Value (PPV): given the algorithm identified a particular movement 

primitive, how often did the subject truly make that movement primitive, e.g., when the 

algorithm predicted “reach”, how often was it correct: PPV = TP=(TP + FP).

Negative Predicted Value (NPV): given the algorithm did not identify a particular movement 

primitive, did the subject truly not make that primitive, e.g., when the algorithm did not 

predict “reach”, how often was it correct: NPV = TN=(TN + FN).

IV. RESULTS

Results of healthy subjects: the algorithm was trained on 9 of the subjects and was tested 

on each of the remaining subjects (i.e,. leave-one-out cross-validation). Performance metrics 

were calculated for all movement primitives, and the averages from the 10 subjects are 

provided for each activity in (Tables II – IX):

Benchmark of success: To evaluate whether our approach was successful, performance 

metrics for all movement primitives of healthy controls were obtained with HMM-Logistic 

Regression (LR) and averaged across activities, excluding feeding (Table X).

In order to provide a benchmark for success, the same metrics were obtained with only a 

Logistic Regression algorithm:

These results demonstrate the superior performance of the HMM-LR approach. This semi-

supervised approach takes into consideration the non-statistically exchangeable 

characteristics of the data, which other methods, such as the Logistic Regression, do not.
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Results of stroke patients: the trained algorithm was tested on each of the 6 stroke patients. 

The same performance metrics were calculated for all movement primitives and are shown 

in (Tables XII – XIII).

Average performance metrics for activities performed by stroke patients are shown below:

V. CONCLUSIONS

Movement recognition is a challenging task. However, the approach demonstrated here 

robustly captured upper extremity motion using wearable IMUs, and classified functional 

movement primitives using HMMs, with precision generally around 80% for control patients 

and 79% for stroke patients. Previous work in healthy controls and a stroke patient used 

IMUs and 2D convolution to recognize drinking, eating, and hair-brushing, but at the level 

of activities and not their component movements [18].

The present approach was developed to maximize ecological and content validity: motion 

was captured in a rehabilitation gym, and the algorithm was optimized for datasets generated 

by activities normally practiced, with objects commonly used, during rehabilitation training. 

The unadjusted algorithm performed well in chronic stroke patients making horizontal 

functional movement primitives.

Importantly, the algorithm continued to perform robustly regardless of the objects used. 

Because data about hand shape and grasp aperture are not captured by the IMU system, we 

assessed whether arm configuration (particularly forearm and hand position) would 

differentially affect algorithm performance. Despite different configurations, the algorithm 

detected functional reaches and transports in healthy subjects with 81% and 79% precision, 

respectively, with ranges of 70–87% (excluding feeding). Similarly, object weight did not 

appear to affect precision. These performance metrics suggest the generalizability of the 

algorithm to multiple testing conditions.

The use of HMM and Logistic Regression, as presented, generalized with high precision to 

other movement primitives performed by the same subject, as well as to the same primitives 

performed by other subjects. However, this approach does have some limitations: functional 

movement primitives were not detected with 100% precision, particularly in the activity of 

feeding. It is possible that parameters of the movement primitive may affect detection, for 

example, the amplitude or extent of reach. Thus the primitive nomenclature itself may 

require refinement to enable a more successful classification. Clearly, a higher level of 

algorithm performance in unconstrained activities is desired before clinical implementation.

In addition, there was no drop-off in algorithm performance when it was applied to stroke 

data. This good performance may speak to the robustness of the algorithm, or to the relative 

normality of the movement primitives, as all the patients were mildly impaired. Additional 

testing is needed within the full spectrum of motor impairment to determine if the approach 

is sufficiently robust for all stroke patients, or if titration to impairment level is required.

In conclusion, we used a combination of IMU-based motion capture, data pre-processing 

with a sliding window, and an HMM algorithm for pattern recognition to successfully 
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identify functional UE movement primitives in healthy individuals and stroke patients. This 

proof-of-principle study suggests that our approach may be an appropriate means in 

rehabilitating stroke patients to identify functional movement primitives, which can be 

tallied to provide training dose. While other quantitative methods exist, their execution is 

laborious or their outputs are insufficiently granular, limiting clinical applicability. With our 

approach, motion data can be obtained innocuously and primitives identified robustly, 

making it a pragmatic choice for the quantitative dose-response trials so sorely needed in 

early stroke. With refinement, our approach could be expected to vertically advance 

neurorehabilitation research.
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Fig. 1. 
Radial activity
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Fig. 2. 
Shelf activity
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Fig. 3. 
Feeding activity
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TABLE I

Demographics

Healthy Control Stroke Patients

N 10 6

Age* (years) 67.1 (55.1–83.5) 61.7 (46.5–71.0)

Gender (Male:Female) 5M: 5F 4M: 2F

Race (Black:White:Asian) 2B: 6W: 1A 2B: 3W: 1A

Arm Dominance (Right:Left) 10R: 0L 5R: 1L

Impairment*(FM) – 52.8 (45–62)

Time since stroke*(years) – 12.0 (2.0–37.1)

*
Age, impairment and time since stroke are given in mean(range)
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TABLE II

Radial Can

Primitive Sensitivity Specificity PPV NPV

Rest 0.87 0.97 0.77 0.97

Reach 0.81 0.95 0.87 0.93

Transport 0.88 0.90 0.80 0.94

Retract 0.83 0.95 0.86 0.93
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TABLE III

Radial Toilet Paper

Primitive Sensitivity Specificity PPV NPV

Rest 0.88 0.98 0.82 0.97

Reach 0.85 0.95 0.87 0.94

Transport 0.87 0.92 0.81 0.94

Retract 0.86 0.95 0.88 0.94

IEEE Int Conf Rehabil Robot. Author manuscript; available in PMC 2018 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Guerra et al. Page 19

TABLE IV

Light can

Primitive Sensitivity Specificity PPV NPV

Rest 0.89 0.97 0.80 0.96

Reach 0.73 0.92 0.74 0.92

Transport 0.79 0.85 0.74 0.88

Retract 0.73 0.90 0.74 0.90
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TABLE V

Heavy can

Primitive Sensitivity Specificity PPV NPV

Rest 0.88 0.98 0.78 0.98

Reach 0.80 0.94 0.80 0.94

Transport 0.86 0.89 0.84 0.92

Retract 0.80 0.94 0.83 0.92
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TABLE VI

Toilet Paper

Primitive Sensitivity Specificity PPV NPV

Rest 0.83 0.98 0.77 0.97

Reach 0.82 0.93 0.82 0.93

Transport 0.84 0.90 0.80 0.91

Retract 0.82 0.94 0.84 0.93
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TABLE VII

Detergent

Primitive Sensitivity Specificity PPV NPV

Rest 0.81 0.97 0.77 0.96

Reach 0.76 0.97 0.84 0.94

Transport 0.93 0.84 0.85 0.92

Retract 0.74 0.96 0.81 0.94
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TABLE VIII

Book

Primitive Sensitivity Specificity PPV NPV

Rest 0.83 0.97 0.88 0.96

Reach 0.64 0.95 0.73 0.90

Transport 0.87 0.73 0.70 0.89

Retract 0.67 0.94 0.75 0.92
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TABLE IX

Feeding

Primitive Sensitivity Specificity PPV NPV

Rest 0.54 0.97 0.42 0.98

Reach 0.29 0.97 0.48 0.93

TP1 0.68 0.67 0.49 0.81

ST2 0.90 0.98 0.81 0.96

MN3 0.59 0.92 0.60 0.92

ST-TP 0.89 0.96 0.86 0.95

ST-MN 0.49 0.95 0.67 0.94

Cyclic-MN 0.93 0.96 0.82 0.91

Retract 0.77 1.00 0.87 0.97

HMM-Logistic Regression. Where

1
Transport,

2
Stabilization and

3
Manipulation.
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TABLE X

HMM-LR (all tasks except feeding)

Primitive Sensitivity Specificity PPV NPV

Rest 0.86 0.97 0.80 0.97

Reach 0.77 0.94 0.81 0.93

Transport 0.86 0.86 0.79 0.91

Retract 0.78 0.94 0.81 0.92

Overall Perf.1 0.82 0.93 0.80 0.93
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TABLE XI

Logistic Regression (all tasks except feeding)

Primitive Sensitivity Specificity PPV NPV

Rest 0.80 0.96 0.79 0.95

Reach 0.78 0.90 0.77 0.90

Transport 0.63 0.75 0.71 0.79

Retract 0.79 0.91 0.73 0.89

Overall Perf.1 0.75 0.88 0.75 0.88
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TABLE XII

Radial Can

Primitive Sensitivity Specificity PPV NPV

Rest 0.76 0.98 0.73 0.97

Reach 0.72 0.92 0.82 0.88

Transport 0.85 0.79 0.66 0.93

Retract 0.72 0.94 0.85 0.88
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TABLE XIII

Radial Toilet Paper

Primitive Sensitivity Specificity PPV NPV

Rest 0.76 0.98 0.89 0.99

Reach 0.80 0.96 0.91 0.91

Transport 0.59 0.82 0.58 0.95

Retract 0.83 0.96 0.90 0.92
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TABLE XIV

Performance in Stroke

Primitive Sensitivity Specificity PPV NPV

Rest 0.76 0.98 0.81 0.98

Reach 0.76 0.94 0.86 0.89

Transport 0.72 0.81 0.62 0.94

Retract 0.78 0.95 0.87 0.90

Overall Perf.1 0.75 0.92 0.79 0.93

1
The overall performance represents the average of these performance metrics across primitives.
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