Loading [a11y]/accessibility-menu.js
Preliminary study of a robotic foot-ankle prosthesis with active alignment | IEEE Conference Publication | IEEE Xplore

Preliminary study of a robotic foot-ankle prosthesis with active alignment


Abstract:

Robotic prosthetic foot-ankle prostheses typically aim to replace the lost joint with revolute joints aimed at replicating normal joint biomechanics. In this paper, a pre...Show More

Abstract:

Robotic prosthetic foot-ankle prostheses typically aim to replace the lost joint with revolute joints aimed at replicating normal joint biomechanics. In this paper, a previously developed robotic ankle prosthesis with active alignment is evaluated. It uses a four-bar mechanism to inject positive power into the gait cycle while altering the kinematics of the ankle joint and pylon segment to reduce loading on the residual limb. In a single-subject biomechanics analysis, there was a 10% reduction in peak limb pressures and evidence of greater gait symmetry in ground reaction forces when active alignment was implemented compared to walking with the daily use prosthesis. These results provide preliminary evidence that an alternative lower limb prosthesis may be capable of improving gait characteristics over traditional revolute designs.
Date of Conference: 17-20 July 2017
Date Added to IEEE Xplore: 14 August 2017
ISBN Information:
Electronic ISSN: 1945-7901
PubMed ID: 28814000
Conference Location: London, UK

References

References is not available for this document.