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Abstract— This paper presents our approach to predicting
future error-related events in a robot-mediated gamified phys-
ical training activity for stroke patients. The ability to predict
future error under such conditions suggests the existence of
distinguishable features and separated class characteristics
between the casual gameplay state and error prune state in
the data. Identifying such features provides valuable insight to
creating individually tailored, adaptive games as well as possible
ways to increase rehabilitation success by patients. Considering
the time-series nature of sensory data created by motor actions
of patients we employed a predictive analysis strategy on
carefully engineered features of sequenced data. We split the
data into fixed time windows and explored logistic regression
models, decision trees, and recurrent neural networks to predict
the likelihood of a patient making an error based on the features
from the time window before the error. We achieved an 84.4%
F1-score with a 0.76 ROC value in our best model for predicting
motion accuracy related errors. Moreover, we computed the
permutation importance of the features to explain which ones
are more indicative of future errors.

I. INTRODUCTION

Among the characteristics that should be proposed by a
training intervention, adaptation merits special attention. It
is a crucial aspect for keeping the user engaged with the
activity [1], while also being a prerequisite to ensure that the
activity is tailored to multiple user-centered dimensions such
as the user’s capabilities, rehabilitation goals, and interests.

Previous studies on gamified and robotic therapy focus on
monitoring the execution of the exercises and provide online
in-game adaptations according to the patients’ impairment
level, the current in-game performance and progress, the
exercise plan and goals specified by the therapist or the
emotional state of the patient [2], [3]. Proposed strategies
include modifying the gameplay through adjusting the game
elements and the difficulty of the game and/or activating or
modifying the assistance of a robotic device [4]. These adap-
tations can provide personalized interventions for individu-
ally tailored user-specific training to increase engagement
and active participation by providing optimum challenge
level for each patient [5].

In order to provide optimum challenge level, the current
performance needs to be monitored and task parameters have
to be adjusted throughout the training to create a state of
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Fig. 1: An example gameplay of a stroke patient while
manipulating a robot with the hand of the affected side on
a paper maze with the theme of arcade Pacman game.While
the patient collects red targets on the maze with yellow walls,
another autonomous ghost robot chases the user.

flow for the patient [6], [7]. This optimal challenge level
should be accomplished in a way that the challenges are
not greatly higher than the skills of the user, which would
lead to frustration or anxiety, and the user’s skills are not
greater than the proposed challenge level, which would lead
to apathy or boredom [6], [7], [8].

In previous studies, real-time performance-based adapta-
tion strategies, such as Bayesian methods [3] as well as
ad-hoc methods, use the interaction or performance history
of the player in the game and then modifies the difficulty
level to match the skills of the patient. In this research
effort, we propose the integration of future error probabilities
into the adaptation strategies and as an initial step towards
this goal, we introduce using different ML methods to do
predictive analysis of future errors during gamified training.
We believe that together with previously used metrics such
as the performance history, a possible prediction of future
errors is beneficial for the development of more personalized
systems.

Although one of the main triggers for user frustration
might be errors, previous research exploring the value of
users’ possibility of failure suggests that avoiding the mis-
takes is part of the challenge for the user. The joy of success
is dependent upon the possibility of failure [6]. Since the
failures have a crucial role in engagement, combining the
previous failure information of the user along with the future
probability of doing an error might be a valuable contribution
to the design of more robust adaptive strategies. The addition
of early error prediction to the previously suggested adaptive
strategies, which rely on adapting the intervention according



to different parameters (e.g. the performance, frustration
level, gaze, brain signal, or muscle activity of the user), might
result in a more optimized adaptation strategy.

Apart from determining which aspect or element of the
task to adapt (e.g. robot speed, the difficulty of the game)
and which metric to adapt for (e.g. performance or muscle
activity of the user), in an online personalized system, it
is also important when and when not to implement the
corresponding adaptation (e.g. after an error or low perfor-
mance, after a game failure or according to some thresholds),
especially for assist as needed therapeutic interventions [4].
These assist as needed systems such as therapy robots
and integrated neuro-muscular stimulation devices are used
for the patients who cannot actively continue the physical
therapy exercises for long due to weak muscle control or
fatigue [4])/ Timing of the use of such technologies’ aid
is crucial for the therapy. Previous studies investigate the
best timing for adaptive assistance for those patients through
measuring error-related potential through brain signals [4].
The second possible advantage of early prediction of the
errors in therapy might be using the error prediction for
determining the timing of activating these assist-as-needed
platforms in a combined system approach that integrates
our proposed game with such systems. We believe that the
addition of early error estimation might help to decrease
the uncertainty of robot aiding time beforehand the event
of the error. Therefore, apart from using error prediction
information as an additional metric in adaptive strategy it
can also be useful in determining the timing of the adaptation
for assist as needed technologies.

In this work, we explore various machine learning methods
to predict the probability of an error happening in the
next time frames in the future gameplay. We used the
data collected from 29 stroke patients during the gameplay
of Tangible Pacman which is designed as an upper limb
rehabilitation exercise [9] to provide easy to use and intuitive
gamified rehabilitation intervention by using tangible robots
and paper game spaces as can be seen in Fig. [I]

We compare the performances achieved by different mod-
els, including logistic regression, random forests, XGBoost,
feed-forward neural networks, recurrent networks, and fine-
tuned various problem hyperparameters, such as the window
size, and the number of backward and forward time frames
considered for predictive analysis of two types of errors. We
further analyze the models to explain what features are more
indicative of future errors, gaining more insights into the
relationship between the motor performance of the patients
and the errors.

II. DATA COLLECTION

A. Robot-Mediated Gamified Training Activity and Error
Types

Gamification is defined as the use of game design elements
in non-game contexts which is also integrated into therapy
as a strategy to increase patient engagement [10]. It has
been proposed that when designing gamified applications for
rehabilitation, two game design principles are of particular

importance: meaningful play and challenge [11]. In the light
of these principles, Tangible Pacman was iteratively designed
as a novel upper extremity rehabilitation game for mainly
targeting shoulder and elbow exercise with tangible robots
involving diverse patient groups such as stroke patients and
children with hemiplegia, from 3 to 77 years old within
different therapy environments [9].

Tangible Pacman consists of two to three Cellulo robots
including one called Pacman, which is manipulated by the
player to collect six target apples on a printed paper maze
(see Figure ??. Each Cellulo robot is a palm-sized, mouse-
like object which has multiple sensors and through sub-
mm accurate localization on the dot patterned paper it can
measure the motion performance of the patients with sub-
mm accuracy, please see [12], [13] for the detailed design of
the robotic system and [9], [14] for the detailed game design.

The goal of the game is to collect the all apples as soon as
possible while running away from the ghosts robots (which
are autonomously chasing the Pacman robot through the
gamespace and not crashing into the walls. If an autonomous
ghost robot catches the Pacman, the player loses all pre-
viously collected apples, and the game restarts. This event
is one of the error events in our predictive analysis and
is called as ghost catch error throughout this paper. The
game consists of several tunable game elements co-designed
with stakeholders such as the number of ghosts, speed of
the ghosts, haptic assistance (which is the direction based
informative assistive feedback with a maximum force of 1
Newton applied upon crashing the wall, the robot moves
towards the middle of the path and it does not actively move
patient’s hand) and wall crash penalty rule, for more detailed
information please see [9]. During the data collection, the
game configuration is adapted to the impairment level of
the patients, and the difficulty of the game is increased over
time to avoid frustration as well as boredom. Some example
adaptations are as follows: for the patients who move slowly,
the ghost speed and number of the ghosts are decreased, a
penalty rule is implemented for the patients who are able to
move fast, and a turn rule is introduced for the patients who
are able to manage to rotate the robot.

Our second error type is related to the penalty rule. If
the rule is on when the player crashes into a wall of the
maze by crossing the wall borders, the last eaten apple is
lost as a penalty for the crash. These wall crash events are
more motion accuracy-related events and it is the second
error type, named border cross error, we focused on in our
predictive analysis work.

B. Dataset

The data set was collected from 29 mildly or moderately
impaired stroke patients (27 to 76 years old with Fugl-Meyer
Upper Extremity (FMA-UE) scores between 20 to 66, who
are able to hold the robot with minimal assistance) with the
approval of The Ethical Committee of Bakirkoy Prof. Mazhar
Osman Research and Training Hospital for Psychiatric and
Neurological Diseases. The data was composed of a total of
810 gameplays with adapted game configurations according
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Fig. 2: Blue dots represent the positions of the player in the
moment of crossing a border, while red ones are positions
of the apples on the map.

to the impairment level of the patients. Three different maze
maps of different sizes and one proper-sized map were used
by each patient according to the ranges of motion of each
patient.

During the game, the system continually logged the play-
ers’ hand position (Pacman robot held by the patient) and
ghosts’ positions in sub-mm accuracy as the time-series data
at a 10 Hz rate. Also, every moment of making an error was
captured, which gave two different data sets based on the
error type. Besides this real-time information, we received
patient specific information, out of which we used the hand
they play with (left or right). We preprocessed the data and
crafted the features to build the model that predicts if a
patient will make an error in the next x seconds of the game.

C. Data Preprocessing and Feature Engineering

Since stroke is related to different motion characteristics of
motor performance, we computed several features by using
position data of the hand of the patient which are among the
highly adopted metrics in the kinematic assessment of upper
limb movements in the literature [15] and mostly focusing
on the speed, accuracy, and smoothness characteristics of the
motion. Features are listed as follows with corresponding
motion characteristics in parenthesis;

e Mean and max values of overall velocity (speed),
acceleration (smoothness and accuracy), and jerk
(smoothness) during the gameplay (v_mean, acc_mean,
jerk_mean, v_max, acc_max, jerk_max) specific means
of velocity and acceleration in x and y directions
(vXx_mean, vy_mean, accx_mean, accy_mean)

e Mean deviance from the middle of the path (deviance)
(accuracy)

o The mean/max ratio of the overall and direction specific
velocity (v_ratio, vx_ratio, vy_ratio) (smoothness)

o The total number of velocity peaks
ber_v_peaks_per_time) (smoothness)

o Time to the maximum velocity peak (time_to_maxpeak)
(smoothness)

(num-

Further feature engineering indicated how making the
error by crossing the border was dependent on the closeness

to the apples (see Fig. 2). This might be an indicator of the
patients’ difficulties in controlling the movement and maybe
overshooting, primarily when their attention was devoted to
collecting the apple. Due to such relations, we computed
distance-related features such as mean distance to the center
of the map (min_dist_to_center) and split the maps into
regions, and added this as a feature called the sector of the
map where the user is moving on the map during the play.
We also used patients’ affected hand sides (left and right)
as a feature since it might affect the error locations on the
map sectors. We standardized all the numerical features by
subtracting the mean and dividing by the standard deviation
of the feature (z-score) and fed this data into the machine
learning models.

Since the two types of possible user errors might have
different causes, we prioritized different features for each
error to better train our models. For instance, when predicting
if ghosts will catch the player, we considered the ghosts’
positions in time and distance of Pacman to the nearest and
the farthest ghost.

III. METHODS

The first challenge was modeling the foretelling of in-
game errors. Foretelling of an event based on some features
poses a complex task, a prediction problem, which could be
addressed by machine learning methods. Given the nature
of the features that derived from the hand movements, our
approach relied on predictive modeling on time series data.
Such models use past and current data in time to reliably
forecast trends and behaviors in the future. We stated an
initial binary classification problem of whether an error will
happen in a specific time window from now, considering a
fixed number of windows in the past.

A. Imbalance of Error-Bearing and Error-Free Windows

For feature extraction and error prediction, a certain win-
dow size should be selected to divide the data. However, by
decreasing the size of the time frame (e.g. from 10s to 3s), we
were able to capture the granularity of the movements more,
but given the comparatively small number of errors during
the total gameplay, we increased the imbalance of error-
bearing and error-free windows significantly. For the window
size of 3-second in a ~2,5 minutes game, the number of
windows with a ghost error was 1 compared to 48 error-free
windows.

To address the issue, we applied two new methods to
increase, artificially, the number of errors. The first was to
increase the number of error-bearing windows via labeling
a fixed number of time frames preceding an error with an
increasing probability of an error happening. The second
was classification, like predicting if an error will happen
or not during the next five time frames (for a window size
of 3 seconds, that would be in the next 15 seconds). The
latter approach proved to work best together with our models
and the imbalance was reduced to 15 errors-free to 1 error-
bearing window.



B. Model Evaluation Metrics

The errors are unlikely events in our data therefore it is
more important to identify one error window (TP) than to
identify many error-free windows (TN) in our prediction.
Precision tells us what proportion of positive identifica-
tions is actually correct (TP/(TP+FP)), and recall explains
what proportion of actual positives is identified correctly
(TP/(TP+FN)). To be able to consider both metrics at the
same time, we decided on the F1 score as the primary metric
while comparing the performances of different models. F1
score is the harmonic average of the precision and recall
scores. We also considered the area under the ROC curve
(AUC) score as a metric well, which explains how well a
model distinguishes between classes.

C. Models

We focused our analysis on five models: Logistic Re-
gression (LR), Random Forest (RF), XGBoost (shallow and
deep), feed-forward neural network, and a recurrent neural
network (LSTM). Acquiring multiple models increased the
trust in the relevance of features. One could expect the
models to perform similarly well as long as the features are
relevant. We used cross-validation with five splits to choose
hyper-parameters, such as the number of backward steps
(previous windows to consider), the learning rate, the time
frame size, the regularization factors, and the recurrent lay-
ers’ sizes. We concluded our analysis to pick five backward
steps (input being a sequence of 5 consecutive time frames),
each having a window size of 3 seconds, and using a time
frame for our future prediction of 15 seconds.

The logistic regression run for at most 1000 iterations.
For the random forest and XGBoost, we considered 300
estimators with a depth of 5. We also considered a shallow
variant of the XGBoost, employing only 200 estimators with
a depth of 3. These hyperparameters were chosen by a grid
search.

The architectures of the neural networks are presented
in Fig. B] The feed-forward was composed of two fully
connected layers, first of 128 units, using a leaky rectified
linear activation for its hidden units to avoid the activation
value of 0.0, and one layer for the final classification using
a soft-max activation to output the probability. Both the
feedforward and the recurrent model were trained using a
categorical cross-entropy loss.

For the recurrent neural network, we employed a stacked
long short-term memory (LSTM) architecture. The LSTM
units [16] use a gating mechanism to retain or forget data
from the previous state and preserve information, solving
the vanishing gradient from traditional RNNs, outperforming
traditional methods employed in time series analysis [17].
Furthermore, stacking LSTM units had better performance
in detecting anomalies (abrupt changes) on multiple datasets
[18]. Leaky rectified linear activation for the first layer was
used. We found the sizes of 100 and 80 units respectively for
the LSTM layers to perform better. Increasing the number of
units greatly increased the model’s complexity, so we needed
to prevent overfitting. We accomplished this by using dropout

with a factor of 0.5 before the classification layer and using
in both LSTM layers an L1, and L2 regularization [19] with a
factor of le-5, which performed better than Lasso and Ridge
regression alone on our problem.
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Fig. 3: Model architectures for feed-forward neural network
(left) and recurrent neural network (right).

For both models, we ensured the batches have equal
numbers of errors and non-errors via oversampling. We used
a batch size of 32, the Adam optimizer [20] with a learning
rate of 0.001, and we trained the models until the validation
loss decreased with the patience of 15 epochs, for the model
with the minimum validation loss.

To ensure the correctness of the model, we further per-
formed leave-one-out cross-validation by removing each
patient from the training set and analyzed the model’s ability
to generalize its learning to new patients, as it is critical to
ensure it will be able to address patients with different stroke
levels or age. A similar approach was applied to leaving a
percentage of full games in the validation set to see how
the model generalizes new games played. The models were
developed by Keras, XGBoost, and Scikit-Learn libraries.

IV. RESULTS

The results are presented in Table [I] for models trying to
predict ghost errors and in Table [lI| for models trying to
predict the border-cross errors. The LSTM-based architecture
performs better, followed by the feed-forward neural net-
work. We observed that the neural network performs better
with lower window sizes since it leads to a bigger dataset
for training. Simultaneously, this increases the imbalance,
therefore for LR, RF, and XGBoost models, a larger window
size led to a better result but not the best results.

Metric LSTM | Feed Forward | LR RF XGBoost | Shallow XGBoost
F1 0.529 | 0.327 0.2644 | 0.267 | 0.2198 0.3108

Accuracy || 0.917 | 0.805 0.7334 | 0.7558 | 0.9326 0.908

Precision || 0.432 | 0.214 0.162 | 0.167 | 0.4754 0.3098

Recall 0.68 0.689 0.7194 | 0.6702 | 0.1432 0.312

AUC 0.807 | 0.751 0.727 | 0.7162 | 0.566 0.6312

TABLE I: Results for prediction of ghost catch errors

Among two different ways to split the data into training
and validation, leave-one-patient-out cross-validation led to
an average validation F1-Score of 0.749, which means it



Metric LSTM | Feed Forward | LR RF XGBoost | Shallow XGBoost
F1 0.844 | 0.533 0.5162 | 0.5182 | 0.4688 0.5182
Accuracy || 0.781 | 0.515 0.6664 | 0.6868 | 0.7366 0.7066
Precision || 0.885 | 0.904 0.4308 | 0.4506 | 0.5296 0.4738
Recall 0.806 | 0.378 0.6446 | 0.6104 | 0.421 0.5718
AUC 0.759 | 0.633 0.66 0.663 | 0.639 0.6648

TABLE II: Results for prediction of wall crashing errors

performs reasonably well on new patients. Another attempt
of splitting the dataset by individual games to check the
model’s ability to learn from a couple of initial games led
to an average F1-Score of 0.717.

A. Importance of Features

In order to interpret the results in relation with the ex-
tracted features, we computed the permutation importance
of the features [21] on the best model and measured the
increase in the F1 score after permuting each feature’s values.
Permutation breaks the tie between the feature and outcome
that is, if a feature is important, the score is significantly
affected.

Fig. [ and Fig. [5] present the importance of the features
on prediction of the errors. We observed that smoothness
(v_ratio, vy_ratio), accuracy (deviance), speed of the motion
(vy_mean) and the players affected hand information have
highest importance in predicting the border-cross errors. The
distance to the center of the map is also important in both
error predictions. When the players are moving towards the
sides of the map, they tend to do more errors. Possible
reasons behind it might be hardness in controlling the arm
movements when it is extended or flexed and overshooting
the targets which are mostly (4 out of 6 apples) close to the
corners of the maps. Similarly, ghost errors might occur when
they are far from the center. We observed that features related
to the position of the both ghosts (nearest_ghost_diff, near-
est_ghost_diff_y, farthest_ghost_diff x) become more promi-
nent in ghost error prediction. An interesting observation
is that accuracy (deviance) and smoothness related metrics
have higher importance in predicting ghost catch errors
while velocity does not play more crucial role. This might
be due to the velocity adjustments of ghosts according to
the impairment level of the patients. On the other hand,
since ghost avoidance needs more planning and cognitive
load, non-smooth and less accurate motion might require
more attention towards the motion and the patient might not
be attentive enough for the ghosts. Further investigation is
needed to understand the relationship between in game motor
performance, cognitive load and the motor impairment level
of the patients.

V. DISCUSSION

LSTMs have been known for their capability of high-
quality feature extraction from time-series data [22]. Their
architecture allows them to capture the trends and character-
istics of sequences. Since most of our features are derived
from sequence data it is expected to observe that the LSTM
model performs better with higher F1 scores than other
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Fig. 4: Features with high importance when
predicting border-cross errors
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Fig. 5: Features with high importance when
predicting ghost catch errors

models which do not consider the periodicity and inner
correlation of the time series data.

Since the number and the speed of the ghosts were adapted
by the doctor to the impairment level of the patient to
avoid frustration, especially ghost catch errors become rare
events. On the other hand, since the size of the pathways
are same across the all maps, there are more occurrences
of wall crashing events. Therefore, the data of cross-border
errors is less imbalanced than the ghost-catching errors, and
accordingly, the prediction scores of the models are higher
in cross-border errors compared to the ghost catch errors.
Despite our efforts there is still a need for further approaches
focusing on skewed datasets. Using the models in real-time
to predict the errors earlier, and then engineering harder
configurations that causes more errors may be considered
in the future for collecting more balanced datasets.

Another inherent challenge of the dataset is the variation of
motion performances of stroke patients. The stroke patients’
movements do not have similar means, have very high
variance, and come from distinct movement distributions
based on their impairment levels. These make it harder for
models to generalize the game-play features and detect the
errors with a limited number of patients. One can intuitively
assume that the models perform better with more data.

VI. CONCLUSION

In this research effort, we modeled the error prediction
in a game as a predictive analysis problem and explored the
ability of 5 machine learning models’ early prediction of two
different types of errors. Our analysis showed promising re-



sults on the usage of an LSTM-based network for predicting
motion-accuracy-related errors with an F1 score of 0.844,
and for predicting ghost catch errors with an F1 score of
0.529 with AUC (ROC) values 0.759 and 0.807, respectively.

Being able to reliably predict the errors from the game
data paves the way for a tailored game design according to
the present as well as feature expected performance of each
patient. By investigating performance data prior to the error,
one can identify the uncontrolled movements of the player
that caused the error. Game setup may later be altered to
urge or avoid a particular action depending on the treatment
need of the patient.

We furthermore adopted an explainable machine learning
approach by computing the permutation importance of the
features to investigate the relationship between errors with
motor performance metrics and game-related features. Re-
sults highlight the importance of error types that might be
due to motor impairment or cognitive load of the game which
needs further investigation.
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