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Abstract— One of the most frequent and severe aftermaths of
a stroke is the loss of upper limb functionality. Therapy started
in the sub-acute phase proved more effective, mainly when the
patient participates actively. Recently, a novel set of rehabili-
tation and support robotic devices, known as supernumerary
robotic limbs, have been introduced. This work investigates
how a surface electromyography (sEMG) based control strategy
would improve their usability in rehabilitation, limited so far
by input interfaces requiring to subjects some level of residual
mobility.

After briefly introducing the phenomena hindering post-
stroke sEMG and its use to control robotic hands, we describe
a framework to acquire and interpret muscle signals of the
forearm extensors. We applied it to drive a supernumerary
robotic limb, the SoftHand-X, to provide Task-Specific Training
(TST) in patients with sub-acute stroke. We propose and
describe two algorithms to control the opening and closing
of the robotic hand, with different levels of user agency and
therapist control. We experimentally tested the feasibility of the
proposed approach on four patients, followed by a therapist,
to check their ability to operate the hand. The promising
preliminary results indicate sEMG-based control as a viable
solution to extend TST to sub-acute post-stroke patients.
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including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

I. INTRODUCTION

Upper limb dysfunction represents a common complica-
tion after a stroke. It affects 80% of subjects early after stroke
[1] and results in permanent disability between 23% [1] and
50% [2] of times. Recovery, when possible, occurs because
the brain reorganizes itself after the injury so that the healthy
tissue takes over the compromised functions of the damaged
area. This phenomenon, known as ”neuroplasticity”, is most
beneficial during the initial three months after the stroke
(referred to as the sub-acute phase). Extensive evidence
[3], [4] has shown that commencing rehabilitation during
this phase leads to superior outcomes in long-term motor
recovery. Active patient participation in the training of the
impaired limb is a necessary prerequisite in this process.

Post-stroke Task-Specific Training (TST), proved very
effective for the functional recovery of the upper limb [5]. It
draws inspiration from the principle of motor learning, and
it is based on intensive goal-directed motor tasks that the
patient has to accomplish repeatedly using the impaired limb
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Fig. 1. Experimental and training hardware setup of the EMG-driven
SoftHand-X system. The figure shows the sub-parts constituting the overall
architecture: the robotic hand (1), the human-arm interface (2), the sEMG
electrode (3), and the remote workstation (4), including laptop, battery, and
the controller for analog acquisition, data exchange, and motor control.

(e.g., reaching, grasping, etc.). At least two factors, however,
hamper TST in the sub-acute phase. First, most patients do
not present sufficient muscular force to perform meaningful
goal-directed motor tasks in this recovery phase. For these
patients, hand rehabilitation is usually limited to passive
mobilization and mirror therapy [6]. Second, the repetitive
and intense flexion movements of fingers and wrist typical
of TST are thought to favor the onset of spasticity [7], a
pathologic condition characterized by an exaggeration of the
stretch reflex. Spasticity, mainly affecting flexor muscles, can
lead to a long-term disability if not treated properly.

Robotic devices have been demonstrated as an effective
tool in rehabilitating sub-acute stroke patients. However, typ-
ical interfaces either use the non-affected limb to control the
device or require some residual movement of the impaired
limb to work [8]. Therefore, their use is limited to subjects
with a certain grade of residual mobility, excluding a large
slice of potential users among post-stroke survivors. This
work investigates how a surface electromyography (sEMG)
based control strategy would improve the usability of robotic
tools in rehabilitation.

In a previous work [9], we provided evidence of the
practicability of a supernumerary robotic limb, the SoftHand-
eXtrathesis (SoftHand-X), as a rehabilitative tool to pro-
vide safe task-specific therapy for sub-acute stroke patients.
Thanks to its control strategy, the SoftHand-X allows per-
forming TST without requiring the activation of flexor mus-
cles, thus avoiding spasticity enhancement.

Moreover, the aspect and movements of the SoftHand-X
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are inspired by the human hand. During the therapy with
the SoftHand-X, patients reported having had the illusion
that the hand they were employing was their real one
[9]. This illusion is supposed to stimulate the same brain
areas activated during well-established therapy for stroke
rehabilitation like mirror therapy [6] and Action Observation
Therapy (AOT) [10], i.e., the mirror neuron system.

This work aims to extend the usability of the SoftHand-X
to subjects in which the mobility is reduced or completely
absent using sEMG-based control strategies. We propose
using sEMG to identify action intention from the muscle
activity of the patients, which often persists in the absence
of visible motion, even for the most severe impairments of
the sub-acute phase.

The paper is organized as follows: Sec. II presents the
strengths and issues of using EMG-controlled devices in
post-stroke rehabilitation. Sec. III describes the hardware
setup employed for the study and, in Sec. IV, the proposed
control algorithms are presented. Sec. V provides the results
of experiments conducted on four patients during TST,
discussed in Sec. VI. Finally, conclusions are drawn in Sec.
VII.

II. POST-STROKE SEMG SIGNAL RECOVERY

After a stroke, EMG can detect electrical muscle activ-
ity even before any movement is observable. Therefore, it
represents a viable alternative to identify motion intention
when limb mobility is severely compromised, to replace
assistive devices relying on the detection of kinematic sig-
nals. However, soon after the episode, patients tend to
develop abnormal muscle activation in the form of muscle
weakness, spastic hypertonia, and impaired movement co-
ordination, which contaminate voluntary EMG activity [11].
Consequently, in existing literature, the emphasis of EMG-
driven devices for the upper limb lies primarily in addressing
the chronic phase of stroke rehabilitation, wherein muscle
control is typically enhanced. [8]. In those studies, multi-
channel EMG is generally used to detect contractions of
different muscles. Pattern recognition algorithms are then
applied to discriminate between different classes of motions
on the model of prosthetic control. While these strategies
accurately recognize motion intention within amputees, con-
tradictory results have emerged about their effectiveness with
subjects with neurological injuries, with recognition accuracy
rated between 25% [12] and 65% [13]. Moreover, better
recognition accuracy was obtained when EMG data were
processed with powerful, time-consuming algorithms [14],
[15]. For real-time applications, models recognizing a limited
set of gestures are best suited since they require fewer input
channels and limit the computational cost. Usually, such
models also feature more intuitive threshold-based control
strategies.

SoftHand-X characteristics are in line with these speci-
fications. Designed only to allow one degree of actuation,
a single input is sufficient for its control. Therefore, it is
reasonable to consider it a good platform for developing an
EMG-based control strategy. Our model employs two pri-
mary control approaches for EMG signals, on-off and propor-
tional, which have been extensively studied and documented
in the literature. In the on-off control mode, a function of the

device is turned on or off (e.g., either constant speed in one
direction, full stop, or constant speed in the other direction)
[16]. The robustness and intuitiveness of this control strategy
explain its continuing popularity [16]. Proportional control
allows instead the user to continuously control a mechanical
output quantity of the actuator (e.g., force, velocity, position,
etc.) by varying the control input within a corresponding
continuous interval. It allows positioning the terminal device
much more precisely than possible with on-off control [16].
Due to the non-idealities of the pathologic EMG signal
following stroke, some corrections have been proposed in
our model to ensure a robust control.

III. THE SOFTHAND-X SYSTEM

The supernumerary system presented in this work is
composed of four functional subsystems (see Fig. 1): (1) A
robotic hand, (2) a human-arm interface to fasten the robotic
hand to the patient’s forearm securely, (3) sEMG electrodes,
and (4) a remote workstation to control and monitor the
system. The software and the electronic framework behind
the system architecture are derived from the open-source
platform Natural Machine Motion Initiative [17]1.

A. Robotic hand

The end-effector employed derives from the Pisa/IIT Soft-
Hand Pro (SHP) [18], originally developed for prosthetic
applications. It is an anthropomorphic robotic hand with
19 degrees of freedom. A single motor moves all the hand
joints according to the principle of under-actuation, which
replicates the synergistic behavior of the human hand. A
single input is, therefore, enough for its control. The soft
structure of the hand allows the finger to autonomously adapt
its movement to the objects to be grasped or manipulated,
providing a secure grip despite different shapes or sizes.
In this way, there is no need to select different hand grips
for different tasks, and the cognitive effort requested to the
user to control the hand is minimized. All these features
make the hand an excellent candidate to be used by subjects
with neurological injuries. The hand integrates the DC motor
driving its motion and the custom electronic board needed
for its control.

B. Human-arm interface

The robotic hand is secured to the patient’s arm through a
rigid splint fixed tightly to the robotic hand. The splint is 3D-
printed in Acrylonitrile Butadiene Styrene (ABS). The whole
system can be fastened to the patient’s forearm through a
wide elastic band that allows a firm hold while reducing
slippage. The design of this interface was optimized, with
respect to the version employed in [19], removing the bulky
gravity compensator in favor of the therapist’s support, and
to the one used in [9], to distribute the weight of the robotic
hand evenly and fit the forearm more comfortably.

C. sEMG electrodes

The acquisition setup is based on Ottobock 13-E200,
double differential surface EMG electrodes commonly used
in prosthetics. These sensors provide an adjustable signal

1NMMI website platform: www.naturalmachinemotioninitiative.com



amplification (2.000-100.000), on board rectification, band-
pass filtering in the range of 90 Hz-450 Hz, and power line
interference suppression. Output is an analog signal between
0-5V already enveloped.

D. Workstation
To minimize the load on the user, the battery powering

the system is installed in a decentralized module. sEMG
electrodes are also connected to this module, which integrates
the microcontroller (PSoC 5, Cypress), managing analog
signal acquisition and serial data exchange between the
robotic hand and PC. The controller transmits and receives
data to and from the PC by a serial connection. On the remote
PC, a Matlab/Simulink program performs input processing
and generates the control signal for the motor. A Graphical
User Interface (GUI) has been implemented to simplify these
operations. The therapists can use the GUI during the therapy
to monitor the patient’s EMG signal and adjust threshold
levels regulating hand activation. The GUI also allows setting
up the proper calibration, recording the sEMG signal during
the entire session, and starting/stopping the system.

IV. PROPOSED APPROACH

SoftHand-X is programmed to control its aperture through
the extension of the wrist and fingers, while closure happens
automatically when the muscles are relaxed. This allows
to safe administer TST in the sub-acute phase, as the
recruitment of flexor muscles is avoided, which is a cause
of spasticity enhancement. We propose a very simple control
system for the SoftHand-X, but effective, based on a single
sEMG sensor, placed on the impaired upper limb in corre-
spondence with wrist and fingers extensor muscles (extensor
carpi radialis, extensor carpi ulnaris). To complete TST, the
use of a single electrode is, in fact, enough to detect the
patient’s intention to move while bypassing issues related to
abnormal muscular activation patterns in post-stroke patients.
As the patient is only asked to extend the wrist and fingers
to drive the SoftHand-X, an increase in the EMG amplitude
recorded from extensor muscles can only correspond to a
voluntary extension intent. This would not be true if two
antagonist muscles, and two electrodes, were employed to
drive the opening and closing of the SoftHand-X. In such
a case, because of co-contraction issues, an increased signal
detected by the electrode placed on the extensors could have
also been caused by the voluntary contraction of flexors and
vice-versa.

A newly developed computer-based control platform (in
Fig. 2) allowed the simultaneous real-time detection of the
sEMG levels and position control of the SoftHand-X. As
soon as the user expresses a motor intention (i), a corrupted
neural signal (iC) is delivered from the brain to the muscle
involved, causing a weak contraction that sEMG can identify.
Once recorded, the sEMG signal needs to be processed. Raw
sEMG signal (v) underwent a conditioning phase of ampli-
fication and filtering. Chosen Ottobock electrodes already
integrate these steps and provide a rectified, enveloped analog
output between 0-5 V, with frequency components in the
range of 90-450 Hz (v̄). The PSoC sampled the signal at
1Khz with a 12-bit resolution. The digital signal was then
transmitted to the PC.

Fig. 2. Schematic of signal processing steps involved in the control of the
SoftHand-X. As soon as a motor intent (i) is triggered in the stroke patient’s
brain, a corrupted neural signal (iC ) is delivered to the muscle involved,
causing a weak contraction. sEMG electrodes can transduce this activity in
a measurable electrical potential (v). After a conditioning phase, in which
it is filtered and rectified (v̄), the signal is sampled by an Analog to Digital
Converter (s) and fed to the PC to be processed. The output is a control
signal (r) sent to the motor to drive the robotic hand.

Data are processed within the Simulink environment, and
the robotic hand’s reference position (r) is generated. A mag-
netic encoder reads the actual position reached by the motor
and closes the control loop. A calibration phase is required
before applying any EMG-based control strategy to the hand.
EMG signals during maximum voluntary contraction (MVC)
and rest phase are measured and used to normalize the input.
Finally, a moving average on 50 samples is applied to smooth
the signal. At each discrete time k, we get a signal EMGk,
to which the control algorithms are applied.

At rest, the robotic hand is fully closed. Two strategies
have been proposed to control the finger opening:

A. On-off

This type of control causes the SoftHand-X to open
entirely as soon as EMGk exceeds a given threshold th. The
hand keeps this position as long as the signal stays above the
threshold; otherwise, it closes again. We chose not to fix the
activation threshold to a predetermined value but to leave the
clinician to set it according to the patient’s signal variability.
The user interface allows the therapist intuitively to tune the
threshold to EMG signal intensity, which is displayed in real-
time.

The control signal obtained is the following:

rk =

{
1, if EMGk > th

0, otherwise
(1)

where rk is the reference position sent to the motor at time k
normalized between 0, when the hand is fully closed, and 1



when it is fully open. On-off control is particularly promising
for this study since it requires the patient to make minimal
efforts to keep the SoftHand-X fully opened. It is, therefore,
suitable also for subjects with more severe motor deficits.

B. sEMG-Proportional

In the proportional control, the SoftHand-X is pro-
grammed to vary its opening level proportionally to the
intensity of the recorded EMG signal. The proportionality is
guaranteed in a range of EMG intensity identified between
two levels:

• A lower threshold sets the minimum muscular signal
useful to activate the SoftHand-X. It is needed to
remove uncertainty at low contraction levels th1;

• A higher threshold identifies the EMG intensity needed
to provoke a full aperture of the SoftHand-X. In this
way, SoftHand-X can be fully opened using a level of
contraction lower than the maximum the patient can
perform, reducing fatigue th2.

Once again, threshold levels are not fixed but can be selected
by the therapist as required on a case-by-case basis.

The resulting reference control signal is:

rk = p · EMGk (2)

p =
EMGk − th1

th2 − th1
(3)

Proportional control is applicable if the user can precisely
control their muscular contraction continuously, which may
not be trivial after a stroke. Fluctuations of the EMG signal
may result in unwanted ripples in the SoftHand-X aperture
level, thus compromising the natural aspect of the robotic
hand. Here, a correction on the signal is applied to neutralize
the impact of unwanted EMG fluctuations on the control of
the hand and stabilize its motion.

To define terms for modeling this correction strategy,
consider the mechanical analogy presented in [20], shown in
Fig. 3. A moving object has a point of contact with a fixed
surface. Dahl models friction by considering two points, one
belonging to the moving object (x) and one defining its
contact point to the surface, called w. In the absence of
friction, any horizontal force applied to the moving object
will make it slip on the surface together with the contact
point w, so that z = x−w = 0 at each time k. If friction is
introduced in the system, during adhesion w is attached to the
surface, and the application of a horizontal force will provoke
relative movement between the two points (z = x−w > 0).
Friction can be modeled as a spring connecting the two
points, and friction force as proportional to strain z. At
z = zmax, the contact becomes fully tense, and w relocates
so that at all times |z| = zmax and the object slides.

We apply the same concept to our problem, with a small
but significant change of perspective. Indeed, we look at
the motions of the point attached to the fixed surface as a
regularization of the motions of the object. By stating

p · EMG = x (4)
r = w (5)

∆ = zmax (6)

Fig. 3. Conceptual explanation of Dahl’s model for friction [20]. When
friction is not considered, any force horizontally acting on a moving object
placed on a fixed surface will make it slip (left). Introducing friction forces
in the system, adhesion may occur between the object and the surface,
causing a change in the object’s motion (right). Dahl’s model is exploited
in this study to operate a correction on proportional control.

where ∆ is the maximum fluctuation intensity of the EMG
signal, considered an unwanted ripple and not a voluntary
contraction variation. We obtain the following reference
control signal for the hand:

rk+1 =


xk +∆, if xk − rk < −∆

rk, if |xk − rk| ≤ ∆

xk −∆, if xk − rk > ∆

(7)

It is then re-scaled through multiplication to adapt the
signal span to the hand aperture.

rk =
rk −∆

100− 2∆
· 100 (8)

In this case, all the input fluctuations of intensity lower than
∆ have no impact on the resulting reference signal at the
cost of a slight latency in the system response. Therefore,
this solution is more robust against EMG non-idealities, and
its use is promising with stroke patients.

V. EXPERIMENTAL VALIDATION

For this explorative study, the efficacy and usability of the
two control strategies were tested with four sub-acute stroke
patients (two males and two females, aged between 60 and
75). Selected subjects had a stroke no longer than two months
before the enrolment and presented minimal or no ability to
extend the fingers of the impaired hand. Patients who did
not present detectable voluntary EMG signals on the muscles
of interest were excluded from the study. Patients recruited
were able to understand and follow the instructions provided
during the experiment and gave written informed consent
to the study. Patients were positioned in a seated posture
facing a table. The right or left version of the SoftHand-X
was employed according to the patient’s impaired side and
fastened to the forearm using the elastic band as described
in Sec.III.b. The skin was cleaned and shaved to optimize
recording, and the electrode positioned in correspondence
with the main activity spot of the wrist and finger, identified
with a therapist’s help. Surgical tape was used to keep the
electrode in position. Electrode analog gain was set to the
maximum (100.000) because of the patients’ EMG signal
weakness. In the initial calibration phase, patients were firstly
asked to keep the arm relaxed, to record the minimum EMG
level, and then to perform a series of maximal extensions of
the selected muscles to record the maximum EMG signal.
This procedure was needed to normalize the EMG signal



Fig. 4. Stroke patient executing grasping tasks using the EMG-controlled
SoftHand-X during the experimental phase. The physiotherapist supports
the arm and forearm, helping the patient in the proximal movements.

during the experiment and to set an initial activation thresh-
old at half the EMG dynamic range, specific for each patient
and each session.

During the experiment, the patient had to modulate wrist
and finger extension to control the SoftHand-X and complete
the grasping actions. Each session had a duration of approx-
imately 20 minutes. Objects employed included foam balls,
wooden cubes normally used for Box and Blocks test [21],
cylindrical shapes, and surgical tape. The physiotherapist
sustained the device’s weight and helped the patient maintain
a good posture during movements, following the protocol
explained in [9]. The photo sequence in Fig. 4 clarifies the
experiment’s setup. During the experimental session, on-off
control and corrected proportional control were tested.

VI. DISCUSSION

Despite preliminary, trial results proved sEMG to be a
viable solution to identify motion intentions even in severely
impaired stroke patients. In this regard, the simple recording
setup based on a single electrode demonstrated to be robust
against stroke-related EMG corruption and functional to sub-
acute TST. Moreover, thanks to the therapist’s help, the
robot hand’s weight did not impact the quality of the EMG
recording during the training. Eventually, the use of a single
electrode detecting, in general, muscle potentials of various
extensor muscles in the forearm did not require the electrode
positioning to be very precise to ensure good detection
accuracy, thus proving another point in favor of this recording
setup. The post-stroke motor recovery, moreover, starts at the
proximal level, and with rehabilitation, it proceeds towards
the most distal areas of the body. In this way, even more
severe patients, able to activate the extensor muscles of the
wrist, but not yet those of the fingers, can be recruited for
the TST with the SoftHand-x in the sub-acute phase. When
the on-off control strategy was employed, all the patients
enrolled could efficiently complete simple grasping/releasing
tasks. Indeed, as it only allows two states of the hand, this
control did not require a perfectly constant level of activation
to keep the hand position. Keeping the EMG level above the
activation threshold is enough to get the hand stably open.
Because of this, even one subject classified with MRC grade
1 (contraction without visible movement of wrist and finger)
was able to perform the exercise successfully.

However, the low effort required is also the main concern
raised by on-off control: the patient, even if able to per-

Fig. 5. Data acquired during the experimental tests with the on-off (top)
and the corrected proportional (bottom) control strategies. In each plot,
the left vertical axis is associated with the conditioned EMG input (cyan
line), horizontal dashed lines indicate the activation thresholds and the right
vertical axis to the position of the SoftHand-X as a percentage of the
maximum aperture. The continuous black line indicates the control signal
sent to the motor with the given input, while the dotted black line shows
the actual position reached by the SoftHand-X, as reported by the encoders.
The horizontal axis indicates times.

form stronger contractions, may get used to performing the
minimum helpful contraction to cross the threshold, as the
extra effort would not correspond to further hand aperture,
thus reducing the effectiveness of rehabilitation. On the
contrary, the corrected proportional control was supposed to
provide more interaction during the training, as it reproduces
a natural hand’s entire range of motion. However, the pro-
portional control resulted more challenging for the patients,
even with the applied correction. The performance largely
depended on the user’s ability to stabilize the contraction
level, disadvantaging the ones affected by more critical motor
impairments. Fig. 5 shows the EMG recording of a patient
with a mild reduction of hand functionality. He managed
to exploit proportional control, adjusting muscle contraction
but, despite the correction, he was unable to keep the robotic
hand stable enough to hold the object after it had been
grasped. This type of control may be used in the later stages
of rehabilitation to sharpen fine hand movements when one
would expect a partial recovery of muscle strength. On-off
control resulted instead the most appropriate for the sub-
acute phase. Future development would also consider making
the control of the correction parameter ∆ available to the
therapist so that the filtering power on the EMG signal could
be customized on the patient.

Moreover, other advantages emerged in favor of the on-
off control strategy. Therapists considered it effective since
it required minimum effort, and therapy sessions could be
prolonged. This is particularly useful for TST, which requires
repeating a single task as many times as possible to pro-



mote neural plasticity. Moreover, an excessive effort during
extension, because of the inability of the pathological sub-
jects to independently recruit antagonist muscles, might lead
to simultaneous, stronger activation of the flexor muscles.
Promoting flexors activation is not recommended in case
of an observable onset of hypertonus. Control approaches
requiring a lower level of muscle activation are therefore
preferable. As shown in Fig. 5 (top), also the on-off strategy
is not immune to unwanted movements of the SoftHand-X.
Oscillations of the EMG activity around the threshold may
provoke jerk movements of the robotic hand. In the future,
we are planning to implement a hysteresis on the activation
threshold to solve this issue.

Finally, the medical staff particularly appreciated the
possibility of customizing the device’s activation threshold.
Contraction abilities may differ significantly from patient to
patient, and a fixed threshold at a given percentage of MVC
could have been unsuitable for all of them to trigger the
hand. Therapists found it helpful to change the threshold in
real-time without needing a new calibration during the same
exercise session. In fact, the EMG signal intensity reduced
during the session because of fatigue. The adjustable thresh-
old prevented this from causing the exercise to stop. The
therapists evaluation showed no sign of increased spasticity
after the treatment.

Comments on the patients use experience were collected.
They appreciated the training with the SoftHand-X in general
and reported a good embodiment of the robotic hand. They
did not find the training difficult to execute nor expressed
fatigue.

VII. CONCLUSIONS

In this work, we investigated the use of the patients
residual muscular activity, recorded with sEMG, to drive
a supernumerary robotic limb, the SoftHand-X, for robot-
assisted sub-acute stroke TST. We proposed and described
two algorithms to control the opening and closing of the
robotic hand, with different levels of user agency and ther-
apist control. Feedback from the therapist was encouraging,
and the patient demonstrated the capability to control and
operate the SoftHand-X. Better results have been obtained
with one of the two proposed control strategies, the on-off
one. The positive outcomes of this study suggest the possi-
bility of performing sEMG-driven task-specific hand training
already from the sub-acute phase using supernumerary limbs.
The main limitation of the study was the reduced sample of
subjects involved in the experimental test, and an extended
clinical trial is programmed to validate these preliminary
results quantitatively.
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