The cost of reasoning with RDF updates

Sana Al Azwari

John N. Wilson

Department of Computer & Information Sciences, University of Strathclyde, Glasgow, UK,
{sana.al-azwari,john.n.wilson } @strath.ac.uk

Abstract—Many real world RDF collections are large
compared with other real world data structures. Such
large RDF collections evolve in a distributed environment.
Therefore, these changes between RDF versions need to
be detected and computed in order to synchronize these
changes to the other users. To cope with the evolving
nature of the semantic web, it is important to understand
the costs and benefits of the different change detection
techniques. In this paper, we experimentally provide a
detailed analysis of the overall process of RDF change
detection techniques namely: explicit change detection,
forward-inference change detection, backward-inference
change detection and backward-inference and pruning
change detection. The results show that pruning is relatively
expensive by comparison with inferencing.

I. INTRODUCTION

Resource Description Framework (RDF) is an annota-
tion language that provides a graph-based representation
of information about Web resources in the Semantic
Web. Because RDF content is shared between different
agents, a common interpretation of the terms used in
annotations is required. This interpretation is typically
provided by an ontology expressed as RDF Schema
(RDEFS) or Web Ontology Language (OWL). The schema
provides additional semantics for the basic RDF model.
Changes in the domain that are reflected by evolution of
the ontology may require changes in the underlying RDF
data. Since RDF is designed to easily integrate large data
collections from diverse data sources, changes to RDF
may occur in locations distributed across a network. In a
client-server environment, an on-demand update service
would require efficient generation and transfer of RDF
updates. Alternatively in a peer-base network where RDF
is updated locally, the updates would also need to be
generated using the least possible resources. In both of
these scenarios, it is necessary to establish the most cost-
effective way of generating RDF updates.

Initial proposals for change detection schemes are
based on comparing two RDF graphs and computing
the differences between them to generates a set of differ-
ences (delta). These differences represent a set of change
operations (i.e. insertions and deletions) that transform
one RDF graph into another [1]. This change detection
method generates the deltas using set arithmetic for RDF

graphs. For example, If M and M’ are RDF models, then
the delta that transforms M to M’ is modelled as a set
of triple insertions and triple deletions where insertions
is the set difference M’ — M and deletions is M — M’.

This is a straightforward technique. However, it only
handles the syntactic level of RDF and generates the
explicit differences between two RDF models. In addi-
tion, the cost of storing the delta or passing it between
nodes in a distributed environment using this method is
linear with the size of the differences between two RDF
models [1]. Therefore, several approaches for calculating
the delta have been proposed based with a view to
minimizing the delta size in order to reduce the required
bandwidth and storage space for updating RDF data
collections [5], [8], [2], [4]. These approaches aim to
minimize the delta size by exploiting the semantics
of RDF data. The minimisation process requires the
application of RDF inference rules under the RDFS spec-
ification to the triple set [3]. This RDF closure process
results in the derivation of new triples. Considering this
closure (i.e. inferred set of triples) when calculating the
set-differences between two RDF models may reduce the
size of the produced delta.

The basic operations in change detection techniques
are the set-difference and inference operations. A clas-
sification of change detection techniques can be based
on the inference strategy (i.e. the computation of the
closure). The existing strategies are Explicit delta (AE);
Closure delta (AC); the Dense delta (AD); the Dense
& Closure delta (ADC')and the Explicit & Dense delta
(AED). These approaches are inference based strategies
apart from the AFE which is syntactic-based. Due to
limited space in this paper, only AE and AED are
explained since these techniques are used extensively in
the experimental methodology.

As explained above, AE calculates the delta in the
syntactic level of RDF. Given two RDF models M and
M’ each of which represents set of triples ¢(SPO),
the AF that transforms M to M’ is the set of triple
insertions and triple deletions that is computed by:

AE(M, M) = {del(t)|t € M — M’}

U{Ins(t)|t e M' — M} %

Al Azwari, S.M.M., Wilson, J.N.: The cost of reasoning with RDF updates. In: Proc 9th IEEE ICSC. pp. 328-331 (2015)

http://ieeexplore.ieee.org/Xplore/home.jsp

(© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse

of any copyrighted component of this work in other works.

In contrast, AE D, obtains a set of insertion triples by
performing the set-difference operation M’ — M. The
set of deletions is obtained by computing the closure of
M’ (denoted as C(M")) first and then performing the
set-difference operation. AED is computed as follows:

AED(M,M'") = {del(t)|t € M — C(M"))})
U{Ins(t)[t e M' — M)} @
The order of the basic set-difference and inference op-
erations can be used to categorise RDF change detection
methods as forward-inference or backward-inference ap-
proaches. The forward-inference approach follows the
inference-then-difference strategy which, in the case of
AED, computes the entire closure of M’ first and then
calculates the set-differences. In contrast, the backward-
inference approach uses the difference-then-inference
strategy. That is, instead of computing the entire closure
of M’, in the case of AE D, this method calculates first
the set-differences M — M’ and M’ — M, and then checks
every triple ¢t € (M — M') and removes it if it can be
inferred in the M’ set as follows:

Remove ¢ from (M — M') if t € C(M') (3)

Therefore, instead of pre-computing the full closure
in advance, this method infers only triples related to
the result of (M — M’). This would be expected to
improve the time and space required in change detection
in comparison with forward inferencing models. As
explained above, the calculation of RDF closure is based
on applying the RDFS entailment rules provided by the
RDFS semantics specification. The entailment rules infer
new RDF statements based on the presence of other
statements. Only the rules that play a crucial roles in
minimizing the delta size are used [4].

However, although the backward-inference method is
applied to infer only relevant triples, some triples might
be unnecessary for change detection. This provides an
opportunity for pruning unnecessary triples prior to in-
voking backward inferencing [4]. Pruning allows for the
skipping of some irrelevant triples derived from the set-
difference operation (M — M') during change detection
with a consequent potential improvement in efficiency.
After pruning, the remaining triples are checked to see
if they can be inferred in the other set. By contrast
to the approach presented in [2]. The proposed change
detection technique follows difference-pruning-inference
strategy. The general rule for pruning is that if the subject
or object of a triple does not exist in M’ then this triple
cannot be inferred in M, therefore, this triple is pruned
before the inference process begins.

The semantic content of RDF data can be exploited
by both pruning and inferencing to provide opportuni-
ties for improving the performance of updates to RDF
data collections. However the relative merits of these
approaches are not clear. Where data sets are large
and subject to frequent updates, both processes may
require significant computing time. The contribution of
this paper is an analysis of the costs and benefits of
performance improvements by pruning and inferencing
respectively when these operations are carried out over
large real-world data sets.

II. RELATED WORK

Existing RDF change detection tools include Prompt-
Diff [5] which compares the structure of RDF versions
based on heuristic matchers. Although this method over-
comes the problem of different serialization of RDF data
it does not handle the semantic property of RDF. Several
change detection approaches have been proposed to han-
dle the semantic level of RDF and these provide the op-
portunity of minimizing the delta size [8], [1], [9]. Since
most of the data in RDF versions remains unchanged [6],
an alternative approach to forward-chaining inference is
the backward-chaining inference [2] which instead of
computing the full closure of RDF model, computes
only the relevant triples. Choosing backward inference
over forward inference is a trade-off between storage
space and query processing, respectively. Hybrids that
combine the benefits of both strategies have also been
explored [7]. There is also evidence that pruning the delta
can reduce its size in the context of backward-chaining
inference strategies [4].

In general, approaches to managing RDF versions
are focused on part of the problem such as minimiz-
ing delta size or the number of inferred triples rather
than the overall performance of the update process. An
efficient approach for updating RDF knowledge bases
that is designed with the overall performance in mind
provides an approach to addressing the growing size
and complexity of RDF data stores. In the light of
these challenges, the overall aim of this work is to gain
insight into the strengths and weaknesses of different
approaches to managing RDF updates by providing a
detailed experimental analysis of their performance. Its
contribution is a comparative study of different strategies
for using semantic content to generate RDF updates in
the context of the overall performance of the process.

III. APPROACH

This work provides a detailed analysis of different
change detection techniques including: explicit change
detection (denoted as EC), forward-inference change

detection (denoted as FC), backward-inference change
detection (denoted as BC) and pruning-and-backward-
inference change detection (denoted as PBC). EC per-
forms AFE for computing the deltas, while FC, BC and
PBC perform AED.

The RDF triple store was based on the properties sub-
ClassOf, subPropertyOf, Type, and Triple which holds
triples that contain any other property type. In addition,
there are three extra tables which store the result of
performing the set-difference operations M — M’ and
M’ — M, these tables are Del table and Ins table
respectively, and the third table is Inf to store inferable
triples. Using these tables, changes between two RDF
models are detected and updated as follows:

First, the differences between M and M’ are com-
puted using the set-difference operations M — M’ and
M’ — M, the result is stored in the Del table and the Ins
table, respectively.

Next, in the case of ED, the triples in the Del table
and the Ins table are the delta. Therefore, all the triples
in the Del table are removed from M, and all the triples
in the Ins table are inserted into M. This step transforms
M to M'.

The computation of delta in FC follows the inference-
than-difference strategy. Therefore, before computing the
differences and updating M, there is an inference process
that involves the calculation of the full closure in M’.

In the case of BC, a difference-than-inference strategy
is followed so the differences between the two models
are computed first and instead of calculating the full
closure of M’ the inference process checks only the
triples in the Del table if it can be inferred in M’ by
applying the inference rules explained in Sectionl. If
any triple is inferred in M’ this triple is removed from
the Del table.

In contrast, in PBC, prior to the inference process,
some of the triples in the Del table may be pruned. The
pruning process checks every triple in the Del table if
both the subject and the object of the triple is existed
in M’ as a subject and object, respectively, then the
triple may be able to be inferred in M’, and therefore
this triple is inserted to the Ins table. After the pruning
process, only the triples in the Inf table are included in
the inference process and not all the triples in the Del
table. It is worth mentioning that not all the rules are
applied to each triple, but only the rules that correspond
to the property of the triple.

IV. RESULTS AND DISCUSSION

All experiment were performed on Intel(R) Xeon(R)
CPU X3470 @ 2.93GHz - 1 cpu with 4 cores and
hyperthreading, Ubuntu 12.04 LTS operating system and

16GB memory. All change detection techniques were
implemented using Java with Jena. In order to achieve
accurate results, Just In Time (JIT) compilation and
garbage collection were controlled. All measurements
are averages of elapsed time for ten independent runs
recorded after a sequence of five runs to control class
loading.

MySQL was used to store RDF versions and deltas.
The data set used contained both the Gene Ontol-
0gy(GO) vocabulary and associations between GO terms
and gene products including the Uniprot TaxonomyThis
data set was chosen because it is frequently updated
with a new version of it being released every month.
The data set includes the first release from each year
between 2005 and 2014. Annual versions were chosen
to increase the gap between versions and therefore get
more differences between the RDF triple collections.
Using this data set, the oldest version (i.e.the 2005
version) was transformed to the other different versions
starting from the 2006 version and ending with the
2014 version. This gradually increase the number of
differences between the versions when measuring the
delta size with a consequent effect on the performance
of the different change detection methods.

1) (2)

Delta Size Triples used in reasoning
year-range ~ AE AED FC BC PBC
2005-2006 43136 42770 45400 817 562
2005-2007 116710 116228 52449 1457 888
2005-2008 189253 188512 59995 2880 1434
2005-2009 210372 209334 66264 4086 1969
2005-2010 237510 236190 74389 4754 2433
2005-2011 265609 264221 81538 5513 2790
2005-2012 308594 307163 87751 5895 2883
2005-2013 348819 347292 99425 6735 3471
2005-2014 367233 365629 104209 7080 3638

TABLE I: Triple statistics. (1) The total number of

changes collected over the period. (2) The count of
triples participated in the inference process

In Table I column 1 shows the delta size generated
by the EC method using AE. The delta is defined as a
set of deleted triples and inserted triples to be applied
to the base data structure to convert it into the updated
structure . Since the inference-based approaches (FC, BC
and PBC) use the AED, the delta reductions produced by
these methods are identical. Reasoning over RDF dataset
reduces the size of the delta (Table I column 1). Table I
column 2 shows the number of triples participated in the
inference process. FC has the highest number of triples
used in the inference process as a result of calculating
the full closuer. This number is reduced by ~94% when
changes were detected using BC. PBC, on the other

2500
40
2000
? 1500 330
o [}
£ 1000 E2
= =
500 | 10
0 1 0 1 0
43 117 189 239 309 367 43117

Update count (x103)

Fig. 1: Total update time

hand, can further prune ~47% of these triples in BC.

In addition to the delta size and the number of
triples in the inference process, the performance of
the four approaches was also analysed by measuring
their execution time. Reasoning time consists of the
time to complete both inferencing and pruning. Change
detection time is the sum of set difference time and
reasoning time. In addition to change detection, the time
to apply the changes to the original data set (application
time) was also recorded. Figure 1 shows that the total
time (consisting of the sum of all components including
application time increases with the size of the update set.
From Figure 2 it can be seen that the inference time in
PBC exceeds that of BC by about 1.4-2.7 times , and of
FC by about 18.7-32.5 times as a result of the pruning
process. However, although pruning RDF has efficiently
reduced the inference time, the pruning operation in PBC
adds to the overall reasoning time (and consequently
change detection) as shown in Figure 3. Moreover, the
prunning time appears to increase significantly with the
increase in the number of pruned triples. Results from
these experiments show that change detection using PBC
has a penalty of about 17.3-31.1 by comparison with BC
when pruning time is counted as part of the reasoning
process.

V. CONCLUSION AND FUTURE WORK

Updating RDF is a crucial problem and as the under-
standing of the update process grows, new approaches
for its optimization also emerge. The work presented in
this paper contributes to this growing understanding by
presenting an in depth analysis of the update process.
Based on our experimental results, we found that pruning
RDF has a significant effect on reducing the inference
time. However, pruning the RDF requires additional time
for applying the pruning rules, and this time increases
as the size of the structural differences between the
RDF versions increases. The inference time is decreased
~95.8% in BC than in PBC where a pre-inference

Update count (x1 03)

Fig. 2: Inference time

BC =zm PBC =

150

3

2100

[*)

E

& 50

A R

189 239 309 367 43 117 189 239 309 367

Update count (xlO3)

Fig. 3: Total reasoning time

computation is required for pruning. Therefore, this time
increases the change detection time and the RDF update
overall time. Moreover, the delta size is still the same
as pruning RDF does not reduce the amount of data that
need to be stored and exchanged over the network.

The results reported here use RDF/S as a platform
for reasoning. The richer semantic context available in
OWL ontologies provides the opportunity for further
reductions in the delta size. Taking advantage of the
time consumed by pruning to apply more complex rules
could further reduce the amount of data to be stored
and exchanged which is the aim of our future work. In
addition, since the GO data set does not contain ’sub-
PropertyOf” relationship, use synthetic data to evaluate
the performance of the change detection approaches us-
ing different change ratios. Moreover, each relationship,
such as ”’subClassOf”, ’subPropertyOf” and "Type”, will
be analysed separately to measure the complexity of the
inference rules related to these relationships.

REFERENCES

[1] T. Berners-Lee and D. Connolly. Delta: an ontology for the
distribution of differences between RDF graphs, 2004.

[2] J. Broekstra and A. Kampman. Inferencing and truth maintenance
in RDF schema. PSSS, 2003.

[3] P. Hayes and B. McBride. RDF semantics, 2004.

[4] D. Im et al. Backward inference and pruning for RDF change
detection using rdbms. J. Info. Science, 39(2):238-255, 2013.

[5] N. Noy and M. Musen. Promptdiff: A fixed-point algorithm for
comparing ontology versions. AAAI/IAAI, 2002:744-750, 2002.

[6] N. Noy and M. Musen. Ontology versioning in an ontology

management framework. Intelligent Systems, 19(4):6-13, 2004.

W. Shen and Y. Qu. An RDF storage and query framework with

flexible inference strategy. In Frontiers of WWW Research and

Development-APWeb 2006, pages 166—175. Springer, 2006.

[8] M. Volkel and T. Groza. Semversion: An RDF-based ontology
versioning system. In Proc. IADIS Int. Conf. WWW/Internet,
volume 2006, page 44, 2006.

[9] D. Zeginis et al. On computing deltas of RDF/S knowledge bases.
ACM Trans on the Web (TWEB), 5(3):14, 2011.

[7

—

