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Abstract—Semantic Pattern Similarity is an interesting, though
not often encountered NLP task where two sentences are
compared not by their specific meaning, but by their more
abstract semantic pattern (e.g., preposition or frame). We utilize
Siamese Networks to model this task, and show its usefulness in
determining SQL patterns for unseen questions in a database-
backed question answering scenario. Our approach achieves high
accuracy and contains a built-in proxy for confidence, which can
be used to keep precision arbitrarily high.

I. INTRODUCTION

The Semantic Textual Similarity (STS) task [1]], which
places pairs of sentences on a scale ranging from completely
unrelated to perfect paraphrases (with intermediates such as
topic similarity, partial coverage and near-identity), has gained
much attention in recent years. In addition to being inter-
esting on its own as a step towards semantic modeling of
sentences, STS is an important (explicit or implicit) sub-task
for many NLP applications such as Machine Translation, Gen-
eration, Summarization and Question Answering. Sentence-
level similarity is significantly harder than word- or term-
level similarity because of the variant length and semantic
complexity of sentences, which makes it harder to model with
traditional approaches (e.g., bag-of-words, tf-idf and similar
models). Approaches to STS include pooling of word-level
embeddings [_2], fixed-length encodings of sentences [3]-[5],
matrix factorization approaches [6]], [7] and neural similarity
models [8]], [9].

We explore the similar but less frequently encountered
task of Semantic Pattern Similarity (SPS). Similar to STS,
this task brings about its own challenges as a semantic
task and is potentially useful for NLP applications. Semantic
patterns are conceptually templates in which certain types of
arguments are expected, and which model some abstraction
of the semantics of a text unit - often an abstraction of
entities, attributes and relations. One common type of semantic
patterns includes linguistic semantic representations such as
prepositions, frames and AMR [[10]], usually encountered in
the context of the Semantic Role Labeling or Semantic Parsing
tasks; however, semantic patterns may be formed with other
structured representations of text, which result in a different
kind of abstraction.

Like STS, in SPS we are given two sentences. Instead of
modeling the similarity of the sentences, however, we want to
model only the similarity of the underlying semantic patterns.
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For example, the sentences “John sold a car to Mary in
2016” and “Bob bought an apple from Jane on Sunday” have
identical semantic patterns. The model must therefore learn
to distinguish between text relevant to the pattern and text
relevant only to the specific sentence.

In this paper, we use SQL queries as proxies for semantic
patterns. We use the recently introduced WikiSQL data set
[11]], which contains over 87,000 natural language questions
aligned with SQL queries that produce the answer (from a
known database). The benefits of using this data set are three-
fold: first, it is unusually large for this sort of annotated aligned
data set; second, it is relatively straightforward to define a
non-binary distance metric between SQL templates; and third,
succeeding in the SPS task for this data set represents a large
step towards the important real-world application of SQL-
backed question answering. To make this third point more
concrete, we evaluate our SPS approach by attempting to find,
for an unseen single question, a question in the training data
which shares a SQL template with it. In other words, we
use our SPS model for the more challenging task of finding
the semantic pattern (SQL template, in this case) of a new
question. As an example of the usefulness of this task, it can
be used as a sub-task in a SQL-backed QA scenario: first find
the SQL template for a question; then fill in the blanks using
named entities from the question or synonyms thereof, a task
analogous to semantic parsing.

To model the similarity of two questions, we use recurrent
Siamese neural networks, an architecture that was successfully
used for the closely related STS task [9]. Our model achieves
a high accuracy, and we show that the predicted similarity
acts as a confidence score, so that thresholding it can keep
precision arbitrarily high at the cost of not handling all cases.

II. RELATED WORK

While SPS, to the best of our knowledge, has not explicitly
been pursued as a task, it is alluded to in the literature of
related tasks. In addition to work on the STS task, which
is briefly surveyed in the previous section, some relevent
work exists in the context of paraphrasing. [[12] mine para-
phrasal templates - groups of concrete textual templates which
would be paraphrases if filled with the same entities - from
Wikipedia. Their approach relies on first finding and removing
entities, and then clustering the remaining templates in a
lexical vector space. In contrast, we model sentences directly



in semantic pattern space. Earlier examples from the para-
phrasing literature include [[13]], which uses heuristic rules to
find short templated paraphrases, and [[14] who produce slotted
lattices from a comparable corpus which contains paraphrases.

In Natural Language Generation, [[15] used similar grouped
templates, but did not use a similarity metric (instead relying
only on entity types to group templates). [[16]] extract semantic
templates from Wikipedia pages by aligning them with enti-
ties from Semantic Web data. [[17] and [18]] generate novel
sentences by performing edits on another sentence, which
tend to preserve the original semantic pattern. In both cases,
the semantic pattern similarity is not modeled directly, but
emerges from the model’s learned behavior of making certain
types of small lexical edits.

While not as directly related, many standard practices in
NLP apply some form of abstract text matching. For example,
in Machine Translation, alignment templates [19] can be
thought of as a kind of semantic pattern matching across
languages, while in Information Extraction, Hearst Patterns
[20] and similar techniques where a set of lexicalizations of a
single relationship are used to mine pairs of words or entities
for which that relationship holds can be said to apply semantic
pattern matching to these pairs. None of these approaches
provide a semantic similarity score for arbitrary sentences.

III. DATA

We use the WikiSQL data set [11]], which contains aligned
pairs of questions and SQL queries over database tables col-
lected from Wikipedia. As described in the paper, the questions
and queries are created with a hybrid algorithmic/templated
approach and human editors (on Amazon Mechanical Turk)
who perform the final matching and filtering.

WikiSQL is the largest aligned text-SQL dataset publicly
available. The queries are limited to having one select column,
no nested queries, and no joins, which may limit its usefulness
for real-world applications, but is an attractive property for
research purposes as it constrains the problem domain.

The data is fairly noisy: some questions are incoherent,
and some do not match their paired SQL query. The column
types of the database tables are not always correct, and most
are mistakenly labeled as “text” by default. To alleviate these
problems, we did some cleaning of the data. First, we used
regular expressions to find numeric and date columns and
correctly assign their types; and second, we removed questions
that were too short or contained few alphabetic characters.
We will release the resulting adjusted data set with a detailed
description of the adjustments upon acceptance.

IV. OUR APPROACH

Given an unseen question, our goal is to find, in a pool
of questions, another question with the same semantic pattern
(SQL template).

We employ a Siamese LSTM regression model to predict
the similarity of the SQL templates of two questions (Section
[[V-B). Instead of comparing the unseen question to the entire
training set, which would be costly, we cluster the training set
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Fig. 1. Siamese LSTM Architecture

ahead of time using a lexical representation of the questions
(Section [IV-C), and compare a new question only to the
members of its nearest cluster.

A. SQL Structure Distance

We define the SQL structure distance as:

SQLSD(sqli, sql;) = Y I(sqli(c), sql;(c))
ceC

where [ is an indicator function that equals 1 when its two
arguments match. sql;(c) is a function that indicates the value
of the SQL query sql; for the SQL constituent c. Finally, C'is
the set of constituents we take into consideration to compute
the distance between two queries. It consists of the type of
the SELECT column (text, number, date); the aggregator of
the selection (none, COUNT, SUM, etc.); and the number of
elements in the WHERE clause for each condition (=, >, <,
etc.). These are enough because of the limited complexity of
the data set, as described in Section

B. Siamese LSTM Regressor

Siamese networks, designed as a way to compare two
objects, were first introduced by [21]. By focusing on com-
parison, the network is not tied to a particular set of classes.
A Siamese network can be diagrammed as two branches
(although both branches share the same parameters), both
feeding to one layer that performs some distance measure
to get an output. The idea behind this architecture is to
learn a transformation function that transforms the input
representation into a space where similar objects have similar
representations.

[9] use Siamese networks to compare pairs of sentences.
Unlike [21]], they use a recurrent network to learn the trans-
formation function as it is more appropriate for modeling
language. We use a similar architecture, shown in Figure
The major difference is that given the nature of our distance
metric, we train our network to learn a regression function.
The loss function is the mean squared error from the distance
measure SQLSD.



C. Question Lexical Clustering

Comparing an unseen question to every question in the
training set would be prohibitively (and unnecessarily) costly
for a real-world QA scenario. To reduce the size of our search
space, we first cluster the training set instances using a one-hot
lexical representation of the questions, using as a vocabulary
all words appearing in the training set with a frequency > o
(in our experiments, we set a = 50. This number was found
empirically by tuning on the dev set). We then use k-means to
cluster the data in this vector space. With k = 500, we obtain
an average cluster size of 122.6.

The one-hot representation is most adequate for the problem
at hand because the questions are typically short, and the
frequency of each term is almost always 1. In addition, because
we are interested in the semantic pattern rather than the
semantics themselves, functional words are important; word
embeddings or other distributional representations may not
discriminate between them.

Because of the choice of «, the questions are clustered
mostly by these functional words; as a result, questions in
different clusters tend to be questions with different functional
words (e.g., “how” and “many” vs. “who” and “was”). The
clustering therefore maximizes the inter-cluster SQL structure
distance: while two questions in the same cluster are not
guaranteed to have the same SQL template, questions in
different clusters are much less likely to share a template, and
therefore it is relatively safe to ignore them and focus only on
the most similar cluster at prediction time.

V. EXPERIMENTS AND RESULTS

In our experimental set up, for each question in the test (or
dev) set, we try to find a question in the training set which
has the exact same SQL template, and evaluate our success
using the (binary) accuracy of the selection.

One advantage of using a soft regression score for a binary
task is being able to use a minimum threshold. In a real-world
application, it is often useful to keep a very high accuracy for
accepted instances, even at the cost of rejecting some instances
(“unable to handle” is a better response than a wrong answer).
To that end, we define a threshold (3, such that if there is no
training question in the cluster for which the network predicts
a distance < 3 from the test question, we simply reject the
test question. This results in a “safe classification” as defined
by [22].

In our evaluation, we therefore track two quantities for
varying values of S (from 0.1 to 2.5): the ratio of correctly
matched questions to non-rejected questions, and the ratio
of correctly matched questions to all test questions. We also
track the total number of rejected questions and of incorrectly
rejected questions (i.e. questions for which there really is a
match in the cluster).

We train our model with a single hidden layer of size
100, over 25 epochs with a batch size of 1024. The input
is composed of pre-trained word2vec embeddings with 300
dimensions.
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Fig. 2. Our accuracy for different values of 8 in comparison with our two
baselines.
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Fig. 3. % of rejected questions for different values of 8 and % of times

we incorrectly rejected a question.

We compare our approach with two baselines: embeddings
uses the cosine similarity of the average embeddings of the
questions as a similarity metric and chooses the nearest ques-
tion; accept-all is the case when (3 is infinite and no questions
are rejected, in which case we always take the nearest question
in the cluster.

As Figure [2| shows, the results are almost identical for the
dev and test sets. We obtain an accuracy of 75% with 8 =
0.75, at the price of rejecting 35% of the questions, 60% of
them correctly rejected: it would be impossible to find the right
answer in that cluster. A solution without a threshold would
force the model to make a choice even when the test instance
is very different from the what the model has been trained on;
the confidence scores of neural classification models become
highly unpredictable for instances that are sufficiently different
from the training data [22].

The dramatic improvement in accuracy over the embeddings
baseline, which achieves an accuracy of only 27.8%, shows
that our model’s representation is very different from the
sentence’s lexical embeddings, and it does seem to constitute



- Who is the player who played for Miami Sol and went to school
at North Carolina State?

- Which method resulting in a win against Ed Mahone?

- Tell me the host for midwest thomas assembly center.

- At which track was Frank Kimmel the Pole Winner of the
Pennsylvania 200?

Fig. 4. Four questions that share a SQL template.

Fig. 5.
queries

Siamese LSTM representation for the Most frequent types of SQL

a sort of “semantic pattern space”, as we hypothesize. At
the same time, using our model without using a threshold -
as the accept-all baseline does - yields an accuracy of only
51.5%. Overall, the experiments suggest that the best solution
is to combine the ability of recurrent Siamese networks to
accurately transform the questions to a semantic pattern space
with a threshold to classify selectively.

Figure [] shows four example questions that share a SQL
template. Despite the lexical and semantic differences, our
model correctly identifies the structural similarity and matches
them; the embedding baseline does not.

A. Question Representation

As a secondary, informal evaluation of our approach, we
visually inspect the quality of the embeddings produced by
the LSTM. These embeddings are obtained by reading the
state of the last hidden layer after processing a question with
the trained LSTM. Consequently, each question is represented
as a vector of dimension 100 (size of the hidden layer) and is
projected to 2 dimensions using t-SNE.

Figure [5] shows the projected embeddings. The colors of the
dots represent the true class (SQL template) of the question.
We exclude groups with less than 500 members since they are
difficult to evaluate visually.

VI. CONCLUSION

We show how to accurately and efficiently find the semantic
structure of a sentence by comparing it with sentences with
known structures, and evaluate our approach on questions
aligned with SQL queries. Our results indicate that a com-
bination of recurrent Siamese networks and nearest neighbor
threshold validation yields high accuracy results.
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