
empathi: An ontology for Emergency Managing and
Planning about Hazard Crisis

Manas Gaur†, Saeedeh Shekarpour∗, Amelie Gyrard†, Amit Sheth†
∗ University of Dayton, USA, sshekarpour1@udayton.edu
† Kno.e.sis Center, {manas,amelie,amit}@knoesis.org

Abstract—In the domain of emergency management during
hazard crises, having sufficient situational awareness information
is critical. It requires capturing and integrating information
from sources such as satellite images, local sensors and social
media content generated by local people. A bold obstacle to
capturing, representing and integrating such heterogeneous and
diverse information is lack of a proper ontology which properly
conceptualizes this domain, aggregates and unifies datasets. Thus,
in this paper, we introduce empathi ontology which conceptualizes
the core concepts concerning with the domain of emergency
managing and planning of hazard crises. Although empathi has
a coarse-grained view, it considers the necessary concepts and
relations being essential in this domain. This ontology is available
at https://w3id.org/empathi/.

Index Terms—Ontology, Vocabularies, Crisis Management,
Hazard Domain, Emergency, Ontology Quality, Knowledge
Reuse, Disaster Management.

I. INTRODUCTION

We can not change the nature. However, we can promote
our planning, preparation, and response strategies about crises
happening in the three phases of hazards, i.e. (i) pre-hazard,
(ii) in-hazard and (iii) post-hazard. Currently, a substantial
body of situational information collected from sources such
as satellite images, sensors, social media content generated
by people who are involved in crisis reporting and response,
etc. Indeed, harnessing and exploiting this hazard-related
Big Data is an essential means towards situational awareness
which helps to manage crises, threads and risks of hazards
in each phase. Despite the availability of such data, still
there is a significant deficiency in representing, annotating
and more importantly integrating this heterogeneous hazard-
related big data. This deficiency can be relieved by providing
an ontology which conceptualizes and organizes situational
and environmental awareness data (events, activities) subjected
to hazards of any kind. Our investigation in the state-of-the-art
hazard-related conceptualization (i.e., taxonomy, vocabulary
and ontology) revealed existing of a few works which mainly
conceptualized either hazard domain or crisis management
domain from a limited perspective or for a particular type. For
example, Humanitarian eXchange Language (HXL) [1] and
EDXL-RESCUER Ontology [2] are mainly concerned with
help and rescue aspect of crisis management domain. However,
the broader and more diverse nature of this domain requires
a comprehensive and abstract modeling and representation.
Another deficiency is related to lack of incorporating relations
into the conceptualization. Thus, they indeed should be called

vocabulary or taxonomy rather than ontology (e.g., Manage-
ment of Crisis vocabulary (MOAC)). These shortages moti-
vated us to introduce an ontology that takes into consideration
the prior conceptualizations (taxonomies and vocabularies)
while relying on a promoted representation. Also, it brings new
concepts and relations which were ignored previously although
playing an essential role in capturing situational awareness
(e.g., surveillance information, human sensing report, human-
itarian event: prayer, concepts synonyms and instances). This
paper presents our contribution in providing an ontology for
Emergency Managing and PlAnning abouT Hazard crIses
(empathi).

The rest of the paper is organized as follows: Section II
presents the relevant state-of-the-art hazard or crisis vocab-
ularies and compare their main features. Section III lists the
external vocabularies which are integrated empathi. Thereafter,
Section IV introduces empathi along with its major top con-
cepts. Section VII reviews the related work. We close with the
conclusion and the future work.

II. STATE-OF-THE-ART VOCABULARIES

In this section, we present an overview of the state-of-the-art
vocabularies concerned with hazard domain as well as crisis
management domain. With this respect, Table I represents a
succinct comparative study of these vocabularies. The first
column (i.e., Vocabulary) states the name of the state-of-the-
art vocabulary or ontology and empathi is included in the last
row (based on recency). The second column (i.e., Domain
Coverage) mentions the particular areas of the hazard-related
domain or crisis management domain which it covers. The
third column (i.e., URI) checks whether or not the URI of
the vocabulary is dereferenceable. The fourth column (i.e., F
for File) specifies the available format of the vocabulary (i.e.,
OWL, RDF, TTL). The fifth column (i.e., D for Documenta-
tion) shows whether the vocabulary has online documentation
or not. Then, we list the significant publications utilizing this
vocabulary within the sixth column (i.e., MC for Major Cita-
tions). The seventh and eight columns represent the number of
classes #C) and relations #R) specified within the vocabulary.
The last column represents the external resources (i.e., IV
for Imported Vocabularies) imported by their respective
vocabulary in the first column. In the following, we shortly
describe each vocabulary.
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Vocabulary Domain Coverage U F D MC #C #R IV

HXL Disaster,Geography,Damage, 3 TTL 3 [3], [1], [4], [5] 50 66 [6], [7], [8]
Organization, Humanitarian Response [9], [10], [11], [12], [13]

MOAC

Impact of Crisis, Recovery 7 RDF 3 [3], [14] 70 30 [7], [15]
and Response Activities, [10], [16]
Geo-locations [17], [18]

SMEM
Social Media and Emergency 7 7 3 - - - [19], [20], [21], [22], [7], [8]
Management [23], [24], [1], [25], [26], [27]

DO

Temporal and Spatial 3 Web- 7 - 97 - -
Concepts, Impact, App
Rehabilitation and Facilities
Facilities

ERO Report Specification 7 7 3 [28], [29], [30], [31], [32] - - [33], [34], [35]

DoRES Events and Reports 3 RDF 3 - 96 261 [7], [8]
Specification [23], [36]

EF Fire Disaster Specification, 7 7 3 - 37 90 -
Protocol Design and Planning

empathi Hazard Situational Awareness, 3 OWL 3 - 423 338 [37], [19], [20], [8], [7]
Crisis Management, Hazard Events [36], [21], [23], [38], [39]

Table I: Comparison of the state-of-the-art Hazard-related Vocabularies, Taxonomy, and Ontologies. U, F, D respectively stand
for referenceability of URI, availability of File and Documentation. Furthermore, MC, C, R and IV respectively stand
for Major Citations, number of classes, number of relations, and imported vocabularies. ERO : EDXL-RESCUER
Ontology, DO : Disaster Ontology, EF: Emergency Fire.

a) HXL: HXL stands for Humanitarian eXchange Lan-
guage. HXL1 is a standard aiming at information sharing dur-
ing humanitarian calamity by overcoming the burden of inter-
operability. HXL ontology has a total of 50 classes and 66 rela-
tions. Main concepts contained in HXL are Place, Survey
and assessment, Operation, Cash and Finance,
Crisis. Furthermore, HXL provides links to UN OCHA
vocabularies such as Global Coordination Groups2, Disaster
Types3, Organization Types4, Vulnerable groups and Humani-
tarian themes5. Furthermore, HXL provides a hashtag schema
containing related social media tags such as #channel, #crisis,
#impact, #event, etc. [1].

b) MOAC: MOAC6 which is concerned with manage-
ment of crisis is a vocabulary [40] providing concepts mainly
related to crisis management. It was created by the Inter-
Agency Standing Committee (IASC)7, Emergency Shelter
Cluster in Haiti8, UN-OCHA 3W Who What Where Contact
Database9 and Ushahidi Platform10.

c) DoRES: DoRES stands for DOcument-Report-Event-
Situation Ontology. DoRES11 is an ontology sharing informa-
tion between individuals and organizations using situational
reports for describing the situation [13]. It helps humanitarian
organizations to structure their plans.

d) EDXL-RESCUER Ontology: EDXL-RESCUER12

stands for Emergency Data Exchange Language Reliable and
Smart Crowdsourcing Solution for Emergency and Crisis

1https://github.com/hxl-team/HXL-Vocab/blob/master/Tools/hxl.ttl
2https://goo.gl/CD6vHY
3https://reliefweb.int/taxonomy-descriptions#disastertype
4https://goo.gl/Uzy9UA
5http://vocabulary.unocha.org
6http://observedchange.com/moac/ns
7https://goo.gl/ESn99F
8https://goo.gl/nDoa9F
9https://goo.gl/jQLnYh
10https://goo.gl/XPSnyG
11https://goo.gl/Sw4XGt
12http://www.rescuer-project.org
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Figure 1: Importing existing ontologies in empathi

Management. An ontology-based on EDXL developed for
coordinating and interchanging information with the legacy
system [32], [2].

e) Emergency Fire (EF): It is an ontology explicitly de-
signed for fires in the building. It comprises of 131 terms along
with definitions created after subjective research. It serves as
a protocol for information sharing, analysis, evaluation and
comprehension by an organization in the situation of disaster
caused by fire [41].

f) Social Media Emergency Management (SMEM):
During an unprecedented onset of a natural hazard, social
media overflows with textual content about situational infor-
mation, prayers, weather information, the impact of crisis and
events. Of all the available information on the social media,
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which portion is contextually relevant and action-oriented to
personnel in charge of a relief-giver organization. SMEM
ontology provides concepts in a hierarchical structure which
transforms high-volume of messy content to low-volume of
action-oriented information [42].

g) Disaster Ontology: It is one of the ontologies listed in
Finnish Ontology Library Service ONKI13. Disaster Ontology
(DO)14 is comprised of 97 concepts (classes) concerning
man-made and natural hazard. This ontology is useful for
managing disaster situations but disregards concepts related to
social media (e.g., news reports, modality of data, surveillance,
prayer and monitoring the status of the services provided by
organizations).

III. INTEGRATION OF EXTERNAL VOCABULARIES

In this section, we list the external vocabularies which
partially integrated into empathi. Not all of them are neces-
sarily related to the domain of hazard or crisis management
(we reuse generic concepts from well-known vocabularies,
e.g., FOAF). Figure 1 concisely represents an integration
aims at reusing the existing vocabularies following ontology
design methodologies (Methontology [33] and NeOn [43]) or
interlinking empathi to other vocabularies which enhance its
visibility.

- Federal Emergency Management Agency (FEMA)15

provides a glossary of terms related to disaster prepara-
tion and management [37].

- Emergency Disasters Database (EM-DAT)16 provides
a precise definition of concepts and furthermore a cate-
gorization of disturbance-related events [19].

- MA-Ont17 supports detailed properties describing media
files and appropriate metadata mapping [20].

- iContact18 provides conceptual classes for defining in-
ternational addresses. It is relevant for using GeoNames
[36], [21] ontology for describing places.

- Friend Of A Friend (FOAF)19 was created for describ-
ing people, relations, and associated events. Coupled with
SIOC [23] and disaster domain model [39], [38], it can
describe social media communities formed during the
disaster scenarios [7].

- GeoNames20 is a part of GeoNames Database providing
information about 11 million places (toponyms) covering
all the countries. Integration of GeoNames ontology to
our ontology adds geospatial semantic information which
is critical for actionable hazard response. The ontology
contains 150 classes and two relations forming 758 ax-
ioms on location dereferencing. Mapping syntax provided
by this ontology is compatible with schema.org, DBpedia

13https://onki.fi/en/
14http://onki.fi/en/browser/overview/disaster
15https://goo.gl/QtKzev
16http://www.emdat.be/Glossary.Itisadatabase
17https://www.w3.org/ns/ma-ont
18 http://ontology.eil.utoronto.ca/icontact.html
19http://xmlns.com/foaf/spec/
20http://www.geonames.org/ontology/documentation.html

ontology, LinkedGeoData ontology and INSEE ontology
[36].

- Linked Open Descriptions of Events (LODE)21 defines
event as an action which takes place at a certain time and
has a specific location. It can be a historical action as
well as a scheduled action. Thus, it provides the generic
concept of Event along with locational (i.e., atPlace),
temporal (i.e., atTime) aspects and people who play a
role (i.e., involvedAgent).

- Simple Knowledge Organization System (SKOS)22.
We utilized this data model to describe the concepts of
our domain. It provides a better organization of domain
knowledge (i.e., Hazard Crisis) [8].

- Semantically-Interlinked Online Communities
(SIOC)23 is a W3C ontological standard to describe
information from online communities. It can support a
volunteer or caregiver with actionable information in the
realm of social media [23].

IV. CORE CONCEPTS OF EMPATHI

Figure 2: Partial representation of the concept Affected Pop-
ulation in empathi

As Table I shows, empathi contains 423 classes and 338
relations. In figure 2, concepts linked to ”Affected Population”
via solid lines, forms structural concepts (”is-a”/ ”subclass”),
while the concepts linked via colored dotted line are semanti-
cally related concepts to ”Affected Population”. Furthermore,
in figure 2, the concept ”iContactThing” is taken from the
vocabulary iContact shown in figure 1. In the following,
we present only the super-classes which imply the generic
coverage.

- Age Group: this class groups people based on their
age similarity by providing the following sub-classes (i)
Adolescent, (ii) Adult, (iii) Child and (iv) Infant.

- Event: this concept defines events along with spatial
and temporal constraints happening in any phase of
hazard. This concept embodies the following sub-classes

21http://linkedevents.org/ontology/
22https://www.w3.org/2004/02/skos/
23http://rdfs.org/sioc/spec/
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Hazard Type Tweet Hazard Concept

Flood

1. 188 killed, Airport closed they say that the runway came peeling off. it may take Impact (AP, ID)
time to resume.
2. @? Hope people get adequate relief and no one is left out.Nation stands with Event (HP)
Chennai.
3. @? in who can offer places to stay, pls fill the form for volunteers collating info Event (VS)
#chennairains
4. @? Chennai has been declared disaster zone. Army has been deployed. Army Service (H)
Helpline - +XXX XXX XXXX #ChennaiRains

Hurricane

5. Surveillance video captures several people looting a Houston store #Harvey in Event (CA)
the wake of Hurricane
6. The aftermath. 10,000 people now homeless because of Hurricane Irma. Impact (AP), Event(CC)
#WednesdayWisdom #climatechange
7. #HurricaneIrmaRecovery Drive for #Homestead & #FloridaKeys today! Drop off Service (S)
supplies at @? #DJLMS #dontgivebackjustgive.
8. At least 56 of Florida’s 639 nursing homes still have *no* electricity this morning, Impact (ID)
five days after #HurricaneIrma

Blizzard

9. @? ”2-3 days, it could take before airlines begin to clear the backlog? @? at on Impact (ID)
#blizzard2016.
10. @?: I-75 in Kentucky closed due to large number of accidents, state patrol says Impact (AP,ID)
#blizzard2016
11. @?: The baton is passed. Buoy 50 miles south of Wilmington #Jonas #blizzard2016 Place (L)
12. @?: Blizzard with ”life and death implications” hits Washington, Mid-Atlantic Place (L), Impact (AP)
#blizzard2016

Landslide

13. @?: Be sure to follow @BGSLandslides for lots of up to date information on Report (ER)
landslides across the UK #StormFrank
14. #StormFrank landslide at Glasscarraig Norman Motte & Bailey in Co Wexford — @? Place (L)
#archaeology #floods
15. SRI LANKA: At least 73 dead after week of flooding, landslides; 243,000 in temp Service (SH), Impact (AP)
shelters — TorStar #ExtremeWeather
16. @?: #EcuadorEarthquake - landslides closing down roads & making it challenging for Impact (ID), Hazard Type(*)
help to reach hardest hit towns

Table II: Sample of hazard-related tweets from different hazard types. AP: Affected Population, ID: Infrastructure Damage,
HP: Human Prayer, VS: Volunteer Support, H: Helpline, CA: Criminal Activity, S: Supply, L: Location, ER: Expert
Report, SH: Shelter, Hazard Type (*) : One hazard (Earthquake) causing another hazard (Landslide).

(i) Climate Change (ii) Criminal Activity (iii) Emergency
Exercises (iv) Evacuation Plan (v) Humanitarian Event
(vi) Recovery Plan (vii) Rescue Operation (viii) State
Mitigation Plan (ix) Volunteer Support and (x) Early
Warning.

- Facility: defines an amenity made accessible for a spe-
cific purpose. It attributes to following sub-classes (i)
Communication (ii) Electricity (iii) Gas Facility (iv)
Water Facility and (v) Education Resource.

- Hazard Type: lists different types of hazards that can af-
fect human community. It is an entity type that embodies
sub-classes (i) Airburst (ii) Coastal erosion (iii) Drought
(iv) Earthquake (v) Explosion (vi) Fire (vii) Flood (viii)
Hurricane (ix) Landslide (x) Sandstorm (xi) Storm (xii)
Tornado (xiii) Toxic Radioactivity (xiv) Tsunami (xv)
Volcano and (xvi) Winterstorm.

- Hazard Phase: categorizes different activities carried
out by various organizations before, during and after
a catastrophic event into three sub-classes (i) During
Hazard (ii) Pre-Hazard and (iii) Post-Hazard.

- Impact: a forceful negative affect on someone or some-
thing in an unprecedented manner. This concept embodies
sub-classes (i) Affected Population (ii) Animal Loss (iii)
Health Issues (iv) Food Shortage (v) Financial Crisis (vi)
Contamination (vii) Infrastructure Damage (viii) Severity.

- Involved Actors: People or Organisation associated (neg-
ative or positive) with any catastrophic event. Sub-classes
of this concept are (i) Organisation (ii) People.

- Modality of Data: Information (raw, structured or semi-

structured) conveyed or represented by a particular ar-
rangement or sequence of text, audio, video or photos.
Sub-classes included by this concept are (i) Audio (ii)
Photo (iii) Text and (iv) Video.

- Place: a physical surrounding defined by longitude,
latitude, and area, providing a relative position of the
someone or something during a hazard situation. One
sub-class of the Place is Location, described by longitude,
latitude, and the area of the affected place.

- Report: documents evidence of the destruction caused by
the natural disaster. All the activities carried out by var-
ious governmental and non-governmental organizations
(NGOs) are stated in the report. The report is a way to
keep people vigilant. Sub-classes encompassed under the
concept: Report is (i) Expert Report (ii) Human Sensing
Report and (iii) Media Report.

- Service: is an act of providing support to someone in a
situation of distressing incidents. Core sub-classes of this
concept are (i) Financial Care (ii) Healthcare Service (iii)
Helpline (iv) Human Remains Management (v) Resource
and Information Centre (vi) Supply (vii) Transportation
and (viii) Prayer Location.

- Status: defines the state of services that are planned
during the pre/in/post hazard phases. Associated sub-
classes are (i) Available (ii) Offered (iii) Requested and
(iv) Unavailable.

- Surveillance Information: A systematic, ongoing col-
lection, collation, and analysis of data and the timely
dissemination of information to those who need to know
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Figure 3: Mapping tweet and its words to empathi concepts.

so that action can be taken. The surveillance concept in
the setting of natural disasters can help to identify the
resulting health-related needs which in turn, will lead to
the more rational and effective deployment of resources
to affected populations.

V. CASE STUDY

A substantial impact of empathi ontology is empowering
us to annotate text semantically (e.g., tweets posted during
hazard). Figure 3 shows mapping of segments within a given
tweet to empathi concepts. Thus, from an abstract level, this
tweet is related to the flood occurred in Chennai and reports
two associated impacts. With this respect, in a first experiment,
we compiled 53 million tweets from the 30 significant hazards
happened in the past. Such as Hurricane Sandy in 2012 and
Irma in 2017, Oklahoma Wildfires in 2017, Chennai Flood in
2005, Alaska Earthquake in 2018, Florida Rains in 2000 and
2016, Houston Floods in 2017, New-Zealand Earthquake in
2016, Typhoon Haima in 2016, Winter Storm Kayla in 2016,
and many more. After that, we identified the tweets related
to the six central concepts of empathi i.e., (i) impact, (ii)
modality of data, (iii) hazard type, (iv) place, (v) transportation
and (vi) surveillance. Table III and IV show the statistics
of identified tweets related to each of the chosen concepts
and sub-concepts. Furthermore, Table II represents samples of
these tweets (i.e., column two) along with the mapped empathi
concepts (i.e., column three) from various hazard type (i.e.,
column one).

Sub-Concepts of empathi #Tweets
Water Facility (Fac.) 218,968
Gas Facility (Fac.) 33,047
Involved Organization (Inv.) 4,249
Severity (Imp.) 1,344

Table III: Mapping sub-concepts of empathi to tweets of haz-
ards. Fac.: Facility, Inv.: Involved, and Imp.: Impact
are concepts

Extensive coverage by empathi provides the capability of
extracting structured information from unstructured and sparse
content (e.g., Twitter) [44]. For identifying relevant informa-
tion from unstructured social media text, it is essential to map

Concepts of empathi #Tweets
Hazard Type 3,034,257
Impact 618,446
Modality of Data 509,645
Facility 258,117
Place 16,397
Transportation 6,694
Surveillance 1,588

Table IV: Mapping concepts of empathi to tweets of hazards.

the words to ontology classes enable efficient classification of
tweets as relevant and irrelevant to crisis domain. For instance
in figure 2, the tweet: Chennai Floods: 188 killed, Airport
closed they say that the runway came peeling off. it may take
time to resume is identified as a post-hazard tweet. Chennai
links to concept Place, Floods links to concept Hazard type,
188 killed links to concept Affected population, and Airport
closed links to concept Infrastructure Damage. Moreover, such
a procedure is termed as semantic annotation using expanded
concepts (a.k.a. hypernyms). It can improve understanding of
social media messages which pose challenges like ill-formed
sentences, ambiguous word senses, poor syntactic structure,
and implicit referencing. Semantic features formed using em-
pathi can enhance supervised and unsupervised learning in
crisis domain [45].

VI. EVALUATING QUALITY OF empathi

To build up a quality ontology, we followed the principles
of ontology methodologies such as NeON [43] and Methon-
tology [33] which encourage the reuse of existing ontologies.
However, to quantitatively measure the quality of empathi, we
designed a user evaluation survey. This survey contained 17
questions concerning with hierarchical, relational and lexical
aspects of empathi inspired by [46]. Precisely, the participants
in the survey have to evaluate the following criteria: (1)
the correctness of structure (hierarchy) (2) the correctness
of relations between concepts, and (3) lexical evaluation,
i.e., quality of annotations associated with both concepts and
relations. In the following, we elaborate on these criteria.

a) Structural evaluation: In this evaluation, the hierar-
chical structure is assessed concerning the correctness of ”is-a”
relationship as of whether the given concept A is-a particular
type of the given concept B. For instance, “Animal Loss” is-a
subclass of “Impact” in empathi. Such evaluation is necessary
to confirm the utility of ontology for classification task [47].
We presented parts of hierarchy in the survey, and asked the
participants, how far this hierarchy makes sense to them. They
have to rate in the range 1 (fully disagree) -5 (fully agree).

b) Semantic relational evaluation: Ontology is evalu-
ated for holding semantically correct relations between con-
cepts. For instance, there is a relation between the concept
“Affected Population” and the concept “Service” referring
”need for help”. Thus, Affected Population is the domain and
Service is the range. Concerning w.r.t. the prior survey [47],
having quality relations, higher capability for summarization,
subgraph extraction, and contextualization tasks. We repre-
sented a number of relations of empathi to the participants
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Figure 4: Agreement of 13 evaluators on (a). 7 Questions
that evaluate Structure of empathi, (b). 7 Questions
that evaluate Semantic Relations of empathi, and
(c). 3 Questions that evaluate Lexical characteristic
of empathi for 4 concepts: Animal Loss, Health
Issues, Food Shortage, Human Prayer. Agreement
percentage is calculated as the percentage of eval-
uators responded ”agree” or ”yes” in the ontology
evaluation form.

and asked them whether or not they confirm having such a
relation or not.

c) Lexical evaluation: This part examines expressive-
ness, completeness, and clarity of annotations of a given
ontology. Expressiveness states the efficacy of the ontology
to identify relevant information using natural language pro-
cessing techniques. Completeness [48] evaluates whether an
illustration of a concept using definition and labels adequately
define various scenarios in crisis domain. For instance, w.r.t.
the given concept “Human Prayer” the definition “prayer is a
message to God from victim’s relatives and family for protect-
ing their lives and health” is provided along with the labels
“send prayers”, “heart prayers”, “heart praying”, “join pray-

ing”, “love prayers”, “prayers affected”, “temple”, “church”,
“prayers city”, “prayers families”, “prayers involved”, etc.
Clarity evaluates whether or not the concept name in the
ontology is meaningful and easily understandable to human
and machine.

d) Results: Our survey had 13 participants and the
results have been illustrated in figure 4.

The structural evaluation section comprised of seven ques-
tions expressed as follows; (SQ1) Concerning a hazard situa-
tion, is “Mental Stress” and “Physical Stress” two important
concepts under “Health Issues”? (SQ2) Does “No Effect”,
“Minor”, “Major”, “Hazardous”, “Catastrophic” represents
sub-classes of “severity”? (SQ3) Are “Financial Crisis”, “Food
Shortage”, and “Contamination” probable impacts of a Haz-
ard? (SQ4) Are following triples meaningful: “Animal Loss is-
a Impact”, “Communication Lines Failure is-a Infrastructure
Damage”, “Power Outage is-a Infrastructure Damage”, and
“Survived People is-a Affected Population”? (SQ5) Do you
consider non-government organization’s (NGO) report is an
expert report? (SQ6) Do health report, service feedback, and
weather report define human sensing? (SQ7) Can “News
Agencies Report” and “Social Media Report24” be categorized
under “Media Report”, a sub-class of “Report” ? Questions
SQ1-SQ6 were Yes/No questions, and SQ7 follows Likert
Scale. The detailed results are represented in Figure 4a. We
observe the average agreement rate above 84.5%.

Regarding evaluation of semantic relations, we designed
seven questions as follows: SRQ1: Do you think the following
triples make sense; “Event occures in a Place”, “Service is
offered in a Place”, “Each Hazard is associated to a couple
of Event” and “each Hazard leads to a couple of Services”?
SRQ2: Can concepts, Event, and Service be linked to the
concept “Place” using “isLocationAt” relation? SRQ3: Do you
think two different types of Hazard can be related concerning
Event, Service, and Place? SRQ4: Is the “currentStatus”
relation between Facility and Status semantically correct?
SRQ5: Is available, offered, requested and unavailable suitable
categories for Status? SRQ6: Can the concepts “Service” and
“Organization” be concerning the concept “Hazard Type”?
SRQ7: Is the relation “needHelp” correctly links “Affected
Population” with “Organization” and “Service”? Questions
SRQ2-SRQ7 are Yes/No, and SRQ1 follow Likert Scale. From
figure 4b, an average agreement of 75.4% was concluded in
confirming above facts.

The lexical evaluation of empathi was performed by rep-
resenting definition and synonyms (or labels) describing each
concept and asking participants to respond the following ques-
tions; (LQ1) Do labels appropriately represent the concept?
(LQ2) Are labels complete? (LQ3) Are definitions and labels
enough clear? Figure 4c shows the results with the total
agreement rate 78.8%.

VII. RELATED WORK

The aftermath of the disaster causes agencies/organization
to structure a plan for the thoughtful recovery of the area. An
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opportunity to hasten this process is a need for a knowledge
structure containing concepts, constraints, and links that pro-
vide before-hand information for disaster preparedness and act.
In [49], the author designed a process model of the aftermath
of the disasters using the Petri-Net containing inter-linked
concepts for efficiency after-disaster execution and adaptation.
Furthermore, the cost associated with the recovery of an area
urges the need to have a structured source of events, concepts,
and relations that define a distressing incident. In [50], the
author defines the utility of an ontology providing seismic risk
definition, prediction, and management to reduce damages.
There is a recent study on crowdsourced emergency event
detection in [51]. There, the authors propose the utilization
of emerging knowledge from text using concepts and temporal
information for events. In a recent work on crisis management
[52], there has been a development of a suite of tools which
can leverage our ontology for context-aware response genera-
tion. CrowdGeoKG [53] is a framework using the entities in
the OpenStreetMap and is enriched by Wikidata.

Events mainly characterize a disaster scenario, and it is
essential to understand what is happening in an emergency
situation. In [54], a given user can utilize GPS data to
create a simulation model for predicting human mobility. We
assume that identification of core disaster domain-specific
concepts can help in annotating the GPS data similar to in
OpenStreetMap [55]. In 2012, Hurrican Sandy brought in
towering traffic on social sensing sites urging the need of
an information filtering mechanism for assisting crisis coor-
dination. A psycholinguistic driven domain-dependent lexicon
was created in [56] for assistive crisis response. Moreover,
tweets on Hurricane Sandy 2012 identified “power blackout”
as one of the implications of the disaster. To identify its
associated repercussions, one need a structured domain-model.
For instance, crashing out of power affected the medical
facility. Hence, there is a need for an ontology to bridge
the facilities in emergency situation [39]. In [57], the author
created a twitter stream of deceptive and peripheral messages
using a knowledge source assisting Public Information Officers
(PIOs) to make conscious decisions in an emergency situation.

Table 1 motivates creating empathi. Prior ontologies re-
lated to crisis management and situational awareness fails to
provide structural, lexical and relational benefits needed for
extracting situation-specific information extraction from social
media content [47]. It is either because these ontologies are
diverse in their subject areas or are incomplete concerning
referencing, documentation, and expressibility. On analyzing
these state-of-the-art vocabularies, we identified subject areas,
vocabularies concerning each subject area and used OWL
to provide a formal representation. Since ontologies can be
domain-specific (crisis domain) or generic (e.g., FOAF), we
incorporate concepts relevant in addressing various issues in
crisis management. For instance; concept Location was taken
from Geonames and iContact, crisis-related concepts from
HXL and MOAC. Hence, we addressed all the queries raised in
[3]. Human social communication during an emergency event
provides real-time insight into various domains such as facility,

events, impact, report, surveillance, organization involved and
activities carried out during and after the hazard. Extracting
actionable information from active social channels is chal-
lenges because of 2 reasons: (1) absence of an ontology that
map multiple concepts, (2) completeness and expressiveness
of the ontology. We provide a utility based case-study (section
V) where we used our ontology for mapping 53M tweets to
the concepts and sub-concepts in empathi. Mapping of social
media content to ontology concepts will improve classification
and summarization task using state-of-the-art natural language
processing and learning techniques.

VIII. CONCLUSION AND FUTURE WORK

We propose empathi ontology as a crisis domain archetype
that aids crisis management, hazard situational awareness, and
hazard events during emergency scenarios. In our study, we
demonstrated the prowess of ontology by its integration with
relevant and state-of-the-art crisis vocabularies. Moreover, its
efficacy was assessed through appropriate evaluation of its
quality across three dominant criteria: structure, lexical and
semantic relations using the human judge. Furthermore, we
illustrated its effectiveness concerning social media domain by
linking tweet content to ontology concepts. The ontology has
been created using semantic web language (OWL) and links
to FOAF, SIOC, DC-terms, and LODE. We aim to extend
the ontology in following directions; the first direction is to
introduce Internet of Things (IoT) for disaster management.
A second possible direction is to improve the ontology with
additional ontology quality tools as recommended by the Per-
fectO methodology25. For instance, use of LODE tool provides
automatic documentation. WebVOWL tool provides an auto-
mated graph visualization. A third direction is to disseminate
more the ontologies on ontology catalogs such as Linked Open
Vocabularies (LOV) and LOV4IoT. LOV4IoT could be refined
and extended to support the environment domain with various
use cases such as flooding, fire, earthquake, tsunami.
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