
Identifying Protein-Protein Interaction using Tree
LSTM and Structured Attention

Mahtab Ahmed, Jumayel Islam, Muhammad Rifayat Samee, Robert E. Mercer
Department of Computer Science

University of Western Ontario
London, Ontario, Canada

mahme255, jislam3, msamee, rmercer@uwo.ca

Abstract—Identifying interactions between proteins is impor-
tant to understand underlying biological processes. Extracting
a protein-protein interaction (PPI) from the raw text is often
very difficult. Previous supervised learning methods have used
handcrafted features on human-annotated data sets. In this
paper, we propose a novel tree recurrent neural network with
structured attention architecture for doing PPI. Our architecture
achieves state of the art results (precision, recall, and F1-score)
on the AIMed and BioInfer benchmark data sets. Moreover,
our models achieve a significant improvement over previous best
models without any explicit feature extraction. Our experimental
results show that traditional recurrent networks have inferior
performance compared to tree recurrent networks for the super-
vised PPI problem.

Index Terms—Protein-Protein Interaction, Bioinformatics,
Tree LSTM, Structured Attention

I. INTRODUCTION

With extensive ongoing research currently happening in the
bio-medical field, there is an exponentially growing amount
of information available in textual form requiring expert
knowledge to extract the important information contained
therein. As doing this manually with human expertise only
is time consuming and expensive, there has been a lot of
interest in developing computational approaches for automati-
cally inferring some hidden information from this vast source
of knowledge such as protein-protein interactions (PPIs),
drug-drug interactions (DDIs) and chemical-disease relation
information. Researchers have successfully applied natural
language processing (NLP) techniques and machine learning
(ML) methods for doing these tasks [1]–[4].

The task of identifying protein-protein interactions (PPIs)
is to extract relations between protein entities mentioned in a
document [5]. While PPI relations can cross over sentences
and even across corpora, current work is centered mostly on
PPIs in single sentences [6], [7]. For example, in the sentence
“LEC induces chemotaxis and adhesion by interacting with
CCR1 and CCR8.”, LEC–CCR1 and LEC–CCR8 are in PPI
relations, whereas there is no relation between CCR1 and
CCR8.

Whereas previously, pattern-based methods have been very
popular for doing this bio-medical relation extraction, in

this paper, we propose a novel neural net architecture for
identifying protein-protein interactions from bio-medical text
using a Tree LSTM [8] with Structured Attention [9]. We
provide an in depth analysis of traversing the dependency
tree of a sentence through a child sum tree LSTM and at the
same time learn this structural information through a parent
selection mechanism by modeling non-projective dependency
trees. We also provide an extensive evaluation of our model
by doing a detailed comparison with the currently available
state of the art methods applied on the standard PPI corpora
(AIMed, BioInfer, IEPA, HPRD50, and LLL). Our architecture
achieves state of the art results on four of the five corpora. Our
experiments suggest that our model is more generalized and
is better capable of capturing long distance information than
existing feature and kernel based methods.

II. RELATED WORK

In previous work, pattern-based methods have been very
popular for doing PPI relation extraction, where patterns as
well as rules were crafted and defined based on lexical and
syntactic features [10]–[12]. For example, Leeuwenberg et al.
[12] propose the syntactic tree pattern structure (STPS) for
DDI extraction from a sentence in bio-medical text based on
the syntax tree of the sentence. Also much research has been
done on bio-medical relation extraction using Kernel-based
methods which allow learning rich structural data in the form
of syntactic parse trees and dependency structures [13]–[16].
Miwa et al. [13] propose a system which embeds rich feature
vectors in a Support Vector Machine with corpus weighting
where the weights are learned from one corpus and the other
corpora are used for support. Kim et al. [14] propose a walk-
weighted sub-sequence kernel for the extraction of PPIs. It
captures the non-contiguous syntactic structures by matching
the v-walk and e-walk on the shortest dependency path. Chang
et al. [15] propose an interaction pattern tree kernel method
in which they extract PPIs by integrating the PPI patterns
with a convolution tree kernel. Airola et al. [16] propose a
method to extract PPIs by looking at the information from
both dependency as well as linear subgraphs. For this they
adopted an all-path kernel approach where they weighted all

ar
X

iv
:1

80
8.

03
22

7v
1 

 [
q-

bi
o.

Q
M

] 
 2

7 
Ju

l 2
01

8



the edges on the shortest paths by a high value and all other
edges with a low value. Peng et al. [17] propose an Extended
Dependency Graph (EDG) based approach by incorporating
a few simple linguistic features beyond syntax information.
Finally they evaluated this EDG approach with edit distance
and an APG kernel on the five benchmark corpora. Zhang et
al. [18] propose a neighborhood hash kernel based method for
PPI extraction. They started by transforming each node label
of the dependency graph for two target sentences into a bit
label and then replaced this bit label by a new label produced
by order-independent logical operations on the bit labels of
the current node and its neighboring nodes. They continued
this process for the two target sentences and finally ended up
with a high order substructures over the dependency graph.
Finally, they computed the similarity of the two dependency
graphs based on the intersection ratio of the updated label sets.

Recently, deep neural network (DNN) based methods have
successfully applied and achieved promising results in bio-
medical relation extraction from bio-medical literature [19]–
[22]. Mikolov et al. [23] propose an approach which gives a
distributed representation (i.e., embeddings) of words captur-
ing both the syntactic and the semantic similarity. Nowadays
almost all of the DNN-based approaches in linguistics have
this embedding layer at the top either in a pre-trained or
randomly initialized form.

Peng et al. [24] adopt a convolutional neural network
(CNN) based approach in which they utilize two channels of
CNN for high level feature extraction. In one channel, they
use raw words along with some syntactic features such as
parts-of speech, chunk parsing information, named entities,
syntactic dependencies and two distance vectors for each word
representing the distance from the word to the two proteins
being considered as interacting. In another channel they use
parent word information for each word and pass this to an
embedding layer to get a distributed representation of the
sentence in terms of parent words. Following this, they apply
convolution on these two channels separately and map them
via a fully connected layer to the required number of classes.

Zhang et al. [25] also utilize a multi-channel CNN for
this task. In the first channel, they use a sequence of raw
words along with positional embedding features. In the second
channel, they use shortest dependency path information: the
arcs visited in the shortest paths from the first protein to the
root and the second protein to the root. This information is
arranged as a sequence and passed to an embedding layer.
In the third channel, they use dependency relation embedding,
storing the embedding of the words encountered in the shortest
dependency path. Finally they apply convolution on it and
map the extracted features to two classes using multi-layer
perception (MLP) followed by a softmax layer.

Zhao et al. [22] propose a greedy layer-wise unsupervised
learning-based approach to extract PPIs from bio-medical
literature. They first divided their corpus into train, validation
and unlabelled set and applied an auto encoder (AE) on the
unlabelled set of data to initialize the parameters of a deep
multi-layer neural network. Finally they applied a gradient

descent method using back propagation to train their whole
model.

Hsieh et al. [26] utilize recurrent neural network (RNN) for
extracting the PPI form bio-medical literature. Without doing
any additional feature extraction, they used long short term
memory (LSTM) (a variant of RNN) to encode the dependency
information through time from forward and backward direction
over the sentence. Finally, they took the left most and right
most output vector of LSTM, concatenated them and applied
MLP followed by softmax for the classification.

III. THE MODEL

In this section, we describe our work in detail. We first
explain the working mechanism of a tree LSTM cell. Then
we explain the Structured Attention mechanism for learning
the dependency tree through Kirchhoffs Matrix-Tree Theorem.
Finally we explain how we combine the tree LSTM architec-
ture with structured attention to obtain a performance boost
that we describe in the next section.

A. Recurrent unit: Bidirectional LSTM

In this paper, we use recurrent neural network (RNN) which
is the best known and most widely used NN model for
sequence data. Its long-short term memory variant (LSTM)
gives all of the advantages of the basic RNN with an elegant
solution to RNN’s vanishing gradient problem. Fig 1(a) shows
a sample LSTM cell and the construction of its internal gates
are as follows:

it = σ(W(i)xt + U(i)ht−1 + b(i))

ot = σ(W(o)xt + U(o)ht−1 + b(o))

ft = σ(W(f)xt + U(f)ht−1 + b(f))

c̃t = tanh(W(c)xt + U(c)ht−1 + b(c))

ct = it · c̃t + ft · ct−1

ht = ot · tanh(ct)

Although LSTMs are very good with sequence data, most
often it is important to have information from the past as well
as from the future. However, LSTM allows only one hidden
state from the past and changes that hidden state recursively
through time. An elegant resolution to this problem is going
over the sequence in both forward and backward directions
using two hidden states and finally concatenating the output
from both directions. This method, called Bidirectional LSTM
(BLSTM), has proven to be very effective in some prior works
[27]–[29]. BLSTM has the same internal structure as LSTM
except one of the output dimensions is twice that of the LSTM
output.



σ σ σtanh

tanh

ct

ht

ct-1

ht-1

xt

ftw ct̃ lt ot

u

⊕⨂

⨂ ⨂

(a)

tanh

⨂

σ σ
h1,t-1

hk,t-1

.

.

.

⨂

xj,t-1

hj,t

oj,t-1ij,t-1c̃j,t-1

⊕
tanh

cj,t

u

hj,t-1

σ σ

⨂
⨂c1,t-1

ck,t-1
.
.
.

fjk,t-1fj1,t-1

f ̃j,t
⊕

(b)

Fig. 1: Standard LSTM vs Tree LSTM

B. Tree LSTM

The main limitation of the basic LSTM is that it can only be
used for analyzing sequential information. However, a natural
language sentence encodes more than a sequence of words.
This extra information is usually represented in a tree structure.
One such structure is the dependency tree [30]. LSTM and
BLSTM cannot analyze this structured information correctly.
A variant of standard LSTM cell, called tree LSTM (tLSTM)
[8], traverses the sentence by following a tree-structured
network topology rather than going over the sequence as a
linear chain. The underlying idea of an LSTM cell remains the
same except here each tLSTM unit is capable of incorporating
information from multiple child units as well. Fig 1(b) shows
a sample tLSTM cell. In this study, we use child sum version
of tree LSTM, as it is more suitable with dependency trees.

Traditional LSTM takes the previous hidden state ht−1, the
previous cell state ct−1 and the current time step input xt
into account and generates a new hidden state and cell state.
However in the child sum tree LSTM, the main gist remains
the same except component node states are now generated
based on the states of its all possible children in the tree
structure. To do this, first, the hidden states at the previous time
step is summed up for all of the children of the component
node and the internal gates (i.e., input, output and intermediate
cell state) are updated using this new hidden state.

h̃j,t =
∑

k∈C(j)

hjk,t−1 (1)

where C(j) denotes the set of children of node j. Next using
this modified hidden state h̃, input, output and intermediate
cell states are calculated as follows,

ij,t = σ(W(i)xj,t + U(i)h̃j,t + b(i)) (2)

oj,t = σ(W(o)xj,t + U(o)h̃j,t + b(o)) (3)

c̃j,t = tanh(W(c)xj,t + U(c)h̃j,t + b(c)) (4)

where W (i), W (o) and W (c) are the parameters to be learned.
Instead of having just a single forget gate, tLSTMs have k

forget gates where k is equal to the number of children of
the target node. This multiple forget gate allows tLSTM to
incorporate individual information from each of the children
in a selective manner. Each forget gate is calculated as follows:

fjk,t = σ(W(f)xj,t + U(f)hjk,t−1 + b(f)) (5)

Next, the individual forget gate outputs are multiplied with
corresponding cell state values and then combined to get a
single forget vector which is further used to get the final cell
state of the model as follows:

f̃j,t =
∑

k∈C(j)

fjk,t · ck,t−1 (6)

cj,t = ij,t · c̃j,t + f̃j,t (7)

Finally, the update equation for the hidden state of a child sum
tree LSTM cell is similar to the one used in traditional LSTM,

hj,t = oj,t · tanh(cj,t) (8)

Each of the parameter matrices represents a correlation
among the component vector, input xj and the hidden state
hk of the kth child of the component unit. For example, the
sigmoid function at the input gate represents semantically
important words at input by giving values close to 1 (e.g.,
a verb) and relatively unimportant words by giving values
close to 0 (e.g., a determiner). Since the hidden state and cell
state values of the parent node are generated based on the
hidden state and the cell state of its children, child sum Tree
LSTM is well suited for trees with a high branching factor or
whose children are unordered. Because of this phenomenon,
it is a good choice for dependency trees where the number of
dependents of a parent can be highly variable.

C. Structured Attention

The attention mechanism [9] has been a breakthrough in
neural machine translation (NMT) in recent years. This mech-
anism calculates how much attention the network should give
to each source word to generate a specific translated word. The
context vector calculated by the attention mechanism mimics



the syntactic skeleton of the input sentence precisely given
a sufficient number of examples. Recent work suggests that
incorporating explicit syntax alleviates the burden of modeling
grammatical understanding and semantic knowledge from the
model [31]. However, these features are designed by evaluating
the model on some downstream tasks without having any
representation [32].

Sentences in bio-medical texts can be comparatively quite
complex. For instance, information about a protein relation
sometimes extends over more than one syntactic constituent,
or a modifier following a protein name sometimes names
a new protein. As a consequence, most of the research
uses dependency graph information as an external feature or
carefully engineers more compact features extracted from the
dependency tree arcs [24], [25]. On the other hand, some
research adopts input latent graph parsing [33] as the syntax
representation. Inducing the dependency tree in a principled
manner while training allows the model to learn the internal
representation of the sentence very well [31], [34].

In our structured attention model, the input sentence is first
fed to a BLSTM which gives output at each time step for each
word in the sentence.

S = BLSTM(x) (9)

where the term S is the content annotation. Next, this S is
transformed into a structured annotation as a matrix through
structured attention. To do this, first, we initialize three matri-
ces Wq , Wk, Wv ∈ Rd×d and add them as trainable model
parameters. Here d is the hidden dimension of the BLSTM.
Then using these matrices we map S into query, key and
value matrices Sq = WqS, Sk = WkS, Sv = WvS ∈ Rn×d

respectively. Here n is the length of the source sentence.
Next we use Kirchhoffs matrix-tree theorem for computing
marginals of non-projective dependency parsing and calculate
a structured attention matrix on BLSTM output S [35]. At first,
we multiply the query and key matrices to get an intermediate
score matrix .

scorei = SqSk
T (10)

Next, we initialize a query matrix Rq ∈ R1×d for the root node
and add it as a model parameter. Following this, we multiply
this Rq with the key matrix Sk to get a vector of length n

root = SkRq
T (11)

Next we pick the diagonal elements of scorei and add it with
the root vector to get a final score and then we normalize it
using a partition function. Finally, we arrange this vector in
the form of a block-diagonal matrix of size n × n. We call
this matrix φ. The cell φij means how likely the word xi is
to be the parent of word xj as it captures all pairwise word
dependencies.

We are interested in selecting a soft parent word for each
word and to do this we can transform the matrix φ into
an attention matrix A where each cell Aij is the posterior
probability p(xi = parent(xj)|x). We define an adjacency

matrix z ∈ {0 × 1}n×n in order to encode the source’s de-
pendency tree. We can transform our posterior into a marginal
by defining it as p(zij = 1|x;φ) which is interpreted as the
probability of word xi to be the parent of word xj given the
input x and matrix φ. So the term A becomes

Aij = p(zij = 1|x;φ) =
∑

z:zij=1

p(z|x;φ) (12)

Next, we calculate the marginal of non-projective dependency
structures using a framework proposed by [34] which utilizes
Kirchhoffs Matrix-Tree Theorem [35]. In order to fill all the
cells of the attention matrix A, we need to calculate the
spanning tree from each source word in the sentence along
with the probability of reaching every target node. To do this
we first define a Laplacian matrix L ∈ Rn×n as follows:

Lij(φ) =


n∑

k=1
k 6=j

exp(φkj), if i = j

− exp(φij), otherwise

(13)

Next we define another matrix L̃ for root word selection as
follows:

L̃ij(φ) =

{
exp(φjj), if i = 1

Lij(φ), if i > 1
(14)

The marginals are then calculated as,

p1 = (1− δ1j)
{
exp(φij)

[
L̃
−1

(φ)
]
jj

}
p2 = (1− δi1)

{
exp(φij)

[
L̃
−1

(φ)
]
ji

} (15)

Aij = p1 − p2 (16)

where δij is the Kronecker delta. Finally the marginals for the
root node is calculated as,

Ak,k = exp(φk,k)

[
L̃
−1

(φ)

]
k,1

(17)

This marginal computation is fully differentiable, thus we can
train the model with the standard back-propagation algorithm
[36].

D. Combining the modules

In this subsection, we combine tLSTM and structured atten-
tion as discussed above to build our final model. To the best
of our knowledge no work has combined the independently
produced gold standard dependency structure information with
learning the structure through the model without accessing
the actual dependency tree. The method described below
accomplishes this fusion.

For the tree LSTM module, we first take the raw sentence
and apply the Stanford dependency parser to represent it as a
vector of parents where the value j at index i means word
xj is the parent of word xi in the dependency tree. We
call this vector P. Next, using this P we compute a tree for
each sentence and as an attribute we store all of its child



PROTX1 induces chemotaxis and adhesion by interacting with PROTX2 and PROTX0.

PROTX2

PROTX0and

𝑪𝟏𝒊𝒏	(1 x E)

𝑯𝟏𝒊𝒏 (1 x E)

W	(1 x E)

Concatenation

𝑪𝒊𝒏 (2 x E)

𝑯𝒊𝒏 (2 x E)

1

2

3

4

5

6

7

8

Induces

PROTX1

and adhesion

chemotaxis by

interacting

. (dot)

with

PROTX2

and PROTX0

𝑾(1 x E) 

𝑪𝟐𝒊𝒏 (1 x E)

𝑯𝟐𝒊𝒏 (1 x E)

𝑾(1 x E)

𝑪𝒐𝒖𝒕 (1 x E) 𝑯𝒐𝒖𝒕(1 x E)

(b)(a)

tanh

⨂

σ σ
h1,t-1

hk,t-1

.

.

.

⨂

xj,t-1

hj,t

oj,t-1ij,t-1c̃j,t-1

⊕
tanh

cj,t

u

hj,t-1

σ σ

⨂
⨂c1,t-1

ck,t-1
.
.
.

fjk,t-1fj1,t-1

f ̃j,t
⊕

tanh

⨂

σ σ
h1,t-1

hk,t-1

.

.

.

⨂

xj,t-1

hj,t

oj,t-1ij,t-1c̃j,t-1

⊕
tanh

cj,t

u

hj,t-1

σ σ

⨂
⨂c1,t-1

ck,t-1
.
.
.

fjk,t-1fj1,t-1

f ̃j,t
⊕

tanh

⨂

σ σ
h1,t-1

hk,t-1

.

.

.

⨂

xj,t-1

hj,t

oj,t-1ij,t-1c̃j,t-1

⊕
tanh

cj,t

u

hj,t-1

σ σ

⨂
⨂c1,t-1

ck,t-1
.
.
.

fjk,t-1fj1,t-1

f ̃j,t
⊕

𝑪𝟐𝒐𝒖𝒕 (1 x E)

𝑯𝟐𝒐𝒖𝒕(1 x E)

𝑪𝟏𝒐𝒖𝒕 (1 x E)

𝑯𝟏𝒐𝒖𝒕(1 x E)

Fig. 2: Work flow of a child sum tree LSTM on part of a dependency tree

information. This allows us to recursively traverse the entire
tree if we start from the root. Apart from this, we have another
matrix W which is the embedded representation of each of
the words in the sentence. Next, we pass the root of this tree
and W to a recursive module which returns a hidden state
and a cell state value for the entire sentence by traversing
in a tree-structured manner. Fig. 2 shows the work flow of
tLSTM model on the dependency tree of a sentence. Fig. 2(a)
shows a sample dependency tree of one of the sentences from
the corpus and Fig. 2(b) shows how the hidden state and cell
state of the root node of a sub-tree gets calculated. As shown
in Fig. 2(b), for a sub-tree with two children, the work flow
is as follows:

While doing a traversal from the root, the tLSTM calculates
the hidden state and the cell state of a node using its child hid-
den state, child cell state which have already been calculated
recursively,

H,C = tLSTM(W, (Hi)
c, (Ci)

c) (18)

here, i represents the ith child, H is the hidden state and C
is the cell state. H and C marked with c refers to the child
hidden and cell state. For our example, Eqn. 18 gets called for
the word ‘and’ and for the word ‘PROTX0’ as leaf nodes and
returns two sets of hidden state and cell state vectors. Next we
concatenate the two hidden state vectors and the two cell state
vectors and again apply Eqn. 18 on the resulting vector. But as
a parameter, this time we pass the word vector for ‘PROTX1’,
the concatenated hidden state vector and the concatenated cell

state vector. This gives us a new hidden state and cell state
vectors for the word ‘PROTX1’. We continue to traverse the
whole dependency tree in this manner, finally finishing with
an encoded hidden state value He ∈ R1×n and a cell state
value Ce ∈ R1×n for the entire tree.

For the structured attention module, we use W as input
and apply a BLSTM on it to get an output vector, O, which
contains the LSTM output for each time step. Next, we pass
this to the structured attention (sAttn) module which gives an
attention matrix γ ∈ Rn×n as output.

γ = sAttn(O) (19)

Next we use this γ with value matrix Sv to calculate the
syntactic context Cs ∈ Rn×d as follows.

Cs = γSv (20)

Following this, we take the vectors only at the first and last
index of γ which has the entire left context as well as right
context information respectively and concatenate them. We
term this as C̃s. Then we concatenate this C̃s with He to
get the final context M. Next, we use an MLP followed by
sigmoid over this M to generate a non-linear version M̃.
Finally, our model predicts a corresponding label y from this
M̃ as follows,

p(y|x,θ) = sigmoid(MLP(M))

yi = argmax
y

p(y|x,θ) (21)



TABLE I: Basic statistics of the corpora

Corpus #Positive #Negative #Sentences
AIMed 1, 000 4, 834 1, 955

BioInfer 2, 534 7, 132 1, 100

IEPA 335 482 486

HPRD50 163 270 145

LLL 164 166 77

IV. EXPERIMENTAL ANALYSIS AND RESULTS

In this section, we describe the results obtained with our
proposed architecture. We use precision, recall and F-score as
our evaluation metrics. This section also contains the detailed
statistics of all of the five PPI corpora, the preprocessing steps
applied to convert the problem into classification domain as
well as the hyper-parameter settings of our models. In addition
to that, it contains the results of the top performing models
for all the corpora and extensive comparative analysis with
our models. Finally, we conclude this section by giving cross
corpus evaluation statistics of our architecture where we train
our model on one corpus and test on another.

We evaluate our tLSTM model on five publicly available
PPI corpora: AIMed [37], BioInfer [38], IEPA [39], HPRD50
[40] and LLL [41]. In our experiments, we use the converted
version of these corpora1 and details about these along with the
conversion characteristics can be found in [6]. The statistics
of the five PPI corpora are given in Table I.

In order to generalize the learned model, we have modified
the corpora slightly. Protein names are replaced with spe-
cial symbols in each sentence, i.e., PROTX0, PROTX1 and
PROTX2. Here, PROTX1 and PROTX2 are the proteins of
interest and all other non-participating proteins are marked
as PROTX0. For example, the following sentence “PROTX1
induces chemotaxis and adhesion by interacting with PROTX2
and PROTX0” indicates that PROTX1 and PROTX2 have
a positive interaction. Similarly, the sentence “PROTX0 in-
duces chemotaxis and adhesion by interacting with PROTX1
and PROTX2” indicates that PROTX1 and PROTX2 have a
negative interaction. In this example there are three possible
pairs of proteins and hence three variants of the sentence is
possible. Two of them have positive interaction and one has
negative interaction. In general, if a sentence has n protein
references, there are

(
n
2

)
protein pairs and hence

(
n
2

)
variants

of the sentence.
We evaluated our model with 10-fold cross validation on

each corpus allowing us to compare our results with relevant
earlier works. In k-fold cross validation, the corpus is divided
into k parts, (k− 1) parts are training data and the other part
is testing data, and is repeated k times. We used StratifiedK-
Fold from Python’s Scikit-learn package which preserves the
percentage of samples for each class in each fold [42].

Table II shows the detailed hyper-parameter settings used
for our model. We trained our model on a GeForce GTX

1http://mars.cs.utu.fi/PPICorpora/

TABLE II: The hyper-parameters used in our experiment

Hyper-parameter Values
Number of layers 1/2

Embedding dimensions 200

Hidden dimensions 300/400/500

Batch size 10/16/20

Number of epochs 30/40/50

Dropout rate 0.5/0.1

Learning rate 0.001/0.015

Learning rate decay 0.05

1080 GPU with the ‘Adam’ and ‘SGD’ optimizers. All the
results in the next section are reported using ‘SGD’ as it was
giving the best results. The ‘Learning rate decay’ parameter
was only used with the ‘SGD’ optimizer. We used PyTorch
0.4 to implement our model under the Linux environment.

Table III shows the overall evaluation of our model in
terms of precision, recall and F-score for the five PPI corpora
and compares these results with the currently available state
of the art models. Among these five corpora, AIMed is the
most difficult as it has more noise, the sentences have nested
named entities and there are many inaccurate annotations.
With the AIMed corpus, we achieved a highest F-score of
81.6% with a significant 4.7 percentage points improvement
over the previous best model. The tLSTM + tAttn model
also achieved the best precision and recall scores of 81.4%
and 81.9%, respectively. Our tLSTM model without attention
also surpassed all of the existing models with a significant
improvement in precision, recall and F-score achieving 80.5%,
80.8% and 80.6%, respectively. The previous best model [26]
uses just the raw words and a BLSTM to capture the word
context from the forward and backward directions. The second
corpus that we evaluated our model on is BioInfer, the corpus
with the most (9666) annotated interactions among the five.
It has fewer sentences but more annotated examples than
AIMed indicating that the sentences are significantly longer
and contain a large number of proteins in a single sentence.
With BioInfer, our tLSTM + tAttn model achieves a highest
precision, recall and F-score of 88.1%, 89.3% and 89.1%,
respectively. Our tLSTM model without attention is the second
best with precision – 88.3%, recall – 87.9% and F-score –
88.1%. It is to be noted that we achieved state of the art results
with all evaluation metrics on these two large and complex
corpora without any manual feature engineering. With the
IEPA corpus, our tLSTM + tAttn model achieves a highest
precision and F-score of 78.6% and 78.5%, respectively. Our
model’s recall score is 78.7% which is behind only the 83.3%
of [15] which combines PPI with a convolution tree kernel.
However, their precision and F-score is low compared to
both of our tLSTM and tLSTM + tAttn models. Regarding
the HPRD50 corpus, our tLSTM model without attention
achieves the best precision and F-score of 82.4% and 82.0%
respectively. Our tLSTM + tAttn model is the second best
in terms of precision and F-score. However, none of our



TABLE III: Results (in %) of our model (tLSTM) from 10-fold cross-validation against other methods. Bold text indicates
the best performance in a column. GK: Graph Kernel (Airola et al., 2008). CK: Composite Kernel (Miwa et al., 2009).
WWSK: Walk-weighted Subsequence Kernel (Kim et al., 2010). NHGK: Neighborhood Hash Graph Kernel (Zhang et al.,
2011). EDG: Extended Dependency Graph (Peng et al., 2015). PIPE: Protein-protein Interaction Passage Extraction (Chang et
al., 2016). Bi-LSTM: Bidirectional Long-Short Term Memory (Hsieh et al., 2017). RNN + CNN: Combination of Recurrent
and Convolutional Neural Network (Zhang et al., 2018).

Methods AIMed BioInfer IEPA HPRD50 LLL

P R F1 P R F1 P R F1 P R F1 P R F1
GK [16] 52.9 61.8 56.4 56.7 67.2 61.3 69.6 82.7 75.1 64.3 65.8 63.4 72.5 87.2 76.5

CK [43] 55.0 68.8 60.8 65.7 71.1 68.1 67.5 78.6 71.7 68.5 76.1 70.9 77.6 86.0 80.1

WWSK [14] 61.4 53.3 56.6 61.8 54.2 57.6 66.7 69.2 67.8 73.7 71.8 72.9 76.9 91.2 82.4

NHGK [18] 54.9 68.5 60.2 59.3 68.1 63.4 72.4 79.8 75.3 67.8 85.3 74.6 86.2 92.1 89.1

EDG [17] 57.3 65.3 61.1 57.6 59.9 58.7 69.9 76.2 72.9 76.7 83.3 79.9 92.1 78.2 84.6

PIPE [15] 57.2 64.5 60.6 68.6 70.3 69.4 62.5 83.3 71.4 63.8 81.2 71.5 73.2 89.6 80.6

Bi-LSTM [26] 78.8 75.2 76.9 87.0 87.4 87.2 − − − − − − − − −
RNN + CNN [25] 52.9 61.8 56.4 56.7 67.2 61.3 69.6 82.7 75.1 64.3 65.8 63.4 72.5 87.2 76.5

tLSTM 80.5 80.8 80.6 88.3 87.9 88.1 77.0 76.7 76.4 82.4 82.8 82.0 85.3 84.9 84.8

tLSTM + tAttn 81.4 81.9 81.6 88.9 89.3 89.1 78.6 78.7 78.5 81.7 82.3 81.3 84.8 84.3 84.2

models reached the best recall score of 85.3% by [18] which
is based on extracting the higher order substructure of the
dependency graph by bit label operations on dependency graph
nodes. Again, their precision and F-score is low compared
to both of our models. With the LLL corpus, none of our
models achieve best scores. Instead the tLSTM model without
attention achieves the second best F-score of 84.8% and the
third best precision score of 85.3%. The best recall and F-
score of 92.1% and 89.1% is achieved by [18] which uses a
neighbourhood hash graph kernel whereas [17] achieves the
best precision score of 92.1% using an extended dependency
graph. An interesting aspect of our evaluation is that whenever
the number of training data samples is large, no matter
how complex the samples are, deep learning based methods
perform very well compared to the feature based methods.
With a small number of training data samples, the performance
can fall short of other methods. This is what happens with
LLL, the smallest corpus. Also a large number of training
data samples allows the structured attention mechanism to
extract the dependency information very well. That is why for
comparatively large corpora, AIMed, BionInfer and IEPA, our
model with attention performs best and achieves state of the
art results, whereas for the two small corpora, tLSTM without
attention performs better.

The cross corpus evaluation is inspired by the work [44] to
answer the fundamental question of practical PPI extraction –
“which corpus to be trained on in real life?”. Table IV shows
this cross corpus evaluation. Rows correspond to the training
corpora and columns correspond to the test corpora. We only
used AIMed and BioInfer as the training corpora and ignored
the small ones because there is no point in training on small
simple corpora and test on large complex corpora as suggested
in [24]. It is clearly visible that the performance degrades
on all of the corpora as the training and testing sets are not
from the same distribution which goes against the fundamental

machine learning theory about training and test sets being
identically distributed. Being larger in size, the models that are
trained on BioInfer perform better than the models trained on
AIMed. One more interesting aspect of our evaluation is that
the models without attention perform better than the models
with attention. The main reason is that our structured attention
captures the syntactic dependencies in the sentences and
because of the two different distributions between the training
and testing sets, the attention mechanism fails to capture these
dependencies. Overall our cross corpus evaluation is close to
the one from [24] with a slight improvement when training on
BioInfer and testing on AIMed.

V. CONCLUSIONS

In this paper, we propose a tree recurrent neural network
architecture with structured attention mechanism for the su-
pervised PPI extraction problem. Our model gets significant
improvement on two largest public PPI corpora, AIMed and
BioInfer. Addition to that, our model gets state of the art
result for several other small corpora too. Our experimen-
tal result shows that our tree LSTM model with structured
attention is more suitable compared to traditional recurrent
neural network based approaches for extracting useful features

TABLE IV: Cross-corpus results (F-score in %). Rows cor-
respond to training corpora and columns to testing. Models
marked with † represents tLSTM and ‡ represents tLSTM+
tAttn

AIMed BioInfer IEPA HPRD50 LLL

AIMed † − 47.0 38.6 41.5 34.6

AIMed ‡ − 45.0 37.9 39.1 33.5

BioInfer † 50.8 − 40.8 43.7 35.0

BioInfer ‡ 50.0 − 40.0 45.5 33.5



from dependency tree information of a given bio-medical text.
Moreover, we believe that other linguistics features that are
already proven to be useful for PPI can be included to improve
the model. In future, we would like to explore the idea of
leveraging other features to make our model more accurate.

REFERENCES

[1] Y. Peng, C.-H. Wei, and Z. Lu, “Improving chemical disease relation
extraction with rich features and weakly labeled data,” Journal of
cheminformatics, vol. 8, no. 1, p. 53, 2016.

[2] A. Singhal, M. Simmons, and Z. Lu, “Text mining genotype-phenotype
relationships from biomedical literature for database curation and pre-
cision medicine,” PLoS computational biology, vol. 12, no. 11, p.
e1005017, 2016.

[3] C.-C. Huang and Z. Lu, “Community challenges in biomedical text
mining over 10 years: success, failure and the future,” Briefings in
bioinformatics, vol. 17, no. 1, pp. 132–144, 2015.

[4] R. Leaman and Z. Lu, “Taggerone: joint named entity recognition
and normalization with semi-markov models,” Bioinformatics, vol. 32,
no. 18, pp. 2839–2846, 2016.

[5] M. Krallinger, F. Leitner, C. Rodriguez-Penagos, and A. Valencia,
“Overview of the protein-protein interaction annotation extraction task
of biocreative ii,” Genome biology, vol. 9, no. 2, p. S4, 2008.

[6] S. Pyysalo, A. Airola, J. Heimonen, J. Björne, F. Ginter, and
T. Salakoski, “Comparative analysis of five protein-protein interaction
corpora,” in BMC bioinformatics, vol. 9, no. 3. BioMed Central, 2008,
p. S6.

[7] D. Tikk, P. Thomas, P. Palaga, J. Hakenberg, and U. Leser, “A
comprehensive benchmark of kernel methods to extract protein–protein
interactions from literature,” PLoS computational biology, vol. 6, no. 7,
p. e1000837, 2010.

[8] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic represen-
tations from tree-structured long short-term memory networks,” arXiv
preprint arXiv:1503.00075, 2015.

[9] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[10] D. P. Corney, B. F. Buxton, W. B. Langdon, and D. T. Jones, “Biorat: ex-
tracting biological information from full-length papers,” Bioinformatics,
vol. 20, no. 17, pp. 3206–3213, 2004.

[11] I. Segura-Bedmar, P. Martı́nez, and C. de Pablo-Sánchez, “A linguistic
rule-based approach to extract drug-drug interactions from pharmaco-
logical documents,” in BMC bioinformatics, vol. 12, no. 2. BioMed
Central, 2011, p. S1.

[12] A. Leeuwenberg, A. Buzmakov, Y. Toussaint, and A. Napoli, “Exploring
pattern structures of syntactic trees for relation extraction,” in Interna-
tional Conference on Formal Concept Analysis. Springer, 2015, pp.
153–168.

[13] M. Miwa, R. Sætre, Y. Miyao, and J. Tsujii, “A rich feature vector
for protein-protein interaction extraction from multiple corpora,” in
Proceedings of the 2009 Conference on Empirical Methods in Natural
Language Processing: Volume 1-Volume 1. Association for Computa-
tional Linguistics, 2009, pp. 121–130.

[14] S. Kim, J. Yoon, J. Yang, and S. Park, “Walk-weighted subsequence
kernels for protein-protein interaction extraction,” BMC bioinformatics,
vol. 11, no. 1, p. 107, 2010.

[15] Y.-C. Chang, C.-H. Chu, Y.-C. Su, C. C. Chen, and W.-L. Hsu, “Pipe:
a protein–protein interaction passage extraction module for biocreative
challenge,” Database, vol. 2016, 2016.

[16] A. Airola, S. Pyysalo, J. Björne, T. Pahikkala, F. Ginter, and T. Salakoski,
“All-paths graph kernel for protein-protein interaction extraction with
evaluation of cross-corpus learning,” BMC bioinformatics, vol. 9, no. 11,
p. S2, 2008.

[17] Y. Peng, S. Gupta, C. Wu, and V. Shanker, “An extended depen-
dency graph for relation extraction in biomedical texts,” Proceedings
of BioNLP 15, pp. 21–30, 2015.

[18] Y. Zhang, H. Lin, Z. Yang, and Y. Li, “Neighborhood hash graph
kernel for protein–protein interaction extraction,” Journal of biomedical
informatics, vol. 44, no. 6, pp. 1086–1092, 2011.

[19] C. Quan, L. Hua, X. Sun, and W. Bai, “Multichannel convolutional
neural network for biological relation extraction,” BioMed research
international, vol. 2016, 2016.

[20] S. Liu, B. Tang, Q. Chen, and X. Wang, “Drug-drug interaction
extraction via convolutional neural networks,” Computational and math-
ematical methods in medicine, vol. 2016, 2016.

[21] D. Zeng, K. Liu, S. Lai, G. Zhou, and J. Zhao, “Relation classification
via convolutional deep neural network,” in Proceedings of COLING
2014, the 25th International Conference on Computational Linguistics:
Technical Papers, 2014, pp. 2335–2344.

[22] Z. Zhao, Z. Yang, H. Lin, J. Wang, and S. Gao, “A protein-protein inter-
action extraction approach based on deep neural network,” International
Journal of Data Mining and Bioinformatics, vol. 15, no. 2, pp. 145–164,
2016.

[23] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[24] Y. Peng and Z. Lu, “Deep learning for extracting protein-protein inter-
actions from biomedical literature,” arXiv preprint arXiv:1706.01556,
2017.

[25] Y. Zhang, H. Lin, Z. Yang, J. Wang, S. Zhang, Y. Sun, and L. Yang,
“A hybrid model based on neural networks for biomedical relation
extraction,” Journal of biomedical informatics, vol. 81, pp. 83–92, 2018.

[26] Y.-L. Hsieh, Y.-C. Chang, N.-W. Chang, and W.-L. Hsu, “Identifying
protein-protein interactions in biomedical literature using recurrent neu-
ral networks with long short-term memory,” in Proceedings of the Eighth
International Joint Conference on Natural Language Processing (Volume
2: Short Papers), vol. 2, 2017, pp. 240–245.

[27] A. Graves and J. Schmidhuber, “Framewise phoneme classification
with bidirectional lstm and other neural network architectures,” Neural
Networks, vol. 18, no. 5-6, pp. 602–610, 2005.

[28] T. Thireou and M. Reczko, “Bidirectional long short-term memory net-
works for predicting the subcellular localization of eukaryotic proteins,”
IEEE/ACM transactions on computational biology and bioinformatics,
vol. 4, no. 3, 2007.

[29] C. Dyer, M. Ballesteros, W. Ling, A. Matthews, and N. A. Smith,
“Transition-based dependency parsing with stack long short-term mem-
ory,” arXiv preprint arXiv:1505.08075, 2015.

[30] D. Chen and C. Manning, “A fast and accurate dependency parser using
neural networks,” in Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), 2014, pp. 740–750.

[31] K. Tran and Y. Bisk, “Inducing Grammars with and for Neural Machine
Translation,” ArXiv e-prints, May 2018.

[32] T. Linzen, E. Dupoux, and Y. Goldberg, “Assessing the ability of lstms to
learn syntax-sensitive dependencies,” arXiv preprint arXiv:1611.01368,
2016.

[33] K. Hashimoto and Y. Tsuruoka, “Neural machine translation with
source-side latent graph parsing,” arXiv preprint arXiv:1702.02265,
2017.

[34] T. Koo, A. Globerson, X. Carreras, and M. Collins, “Structured pre-
diction models via the matrix-tree theorem,” in Proceedings of the
2007 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning (EMNLP-
CoNLL), 2007.

[35] W. T. Tutte, “Graph theory, volume 21 of encyclopedia of mathematics
and its applications,” 1984.

[36] A. T. Goh, “Back-propagation neural networks for modeling complex
systems,” Artificial Intelligence in Engineering, vol. 9, no. 3, pp. 143–
151, 1995.

[37] R. Bunescu, R. Ge, R. J. Kate, E. M. Marcotte, R. J. Mooney,
A. K. Ramani, and Y. W. Wong, “Comparative experiments on learning
information extractors for proteins and their interactions,” Artif. Intell.
Med. 33 (2), pp. 139–155, 2005.

[38] S. Pyysalo, F. Ginter, J. Heimonen, J. Björnee, J. Boberg, J. Jrvinen,
and T. Salakoski, “Bioinfer: a corpus for information extraction in the
biomedical domain,” BMC Bioinformatics 8(50), pp. 1–24, 2007.

[39] J. Ding, D. Berleant, D. Nettleton, and E. Syrkin Wurtele, “Mining
medline: abstracts, sentences, or phrases?” in Proceedings of the pacific
symposium on biocomputing, pp. 326–337, 2002.

[40] K. Fundel, R. Küffner, and R. Zimmer, “Relex-relation extraction using
dependency parse trees,” Bioinformatics 23 (3), pp. 365–371, 2007.

[41] C. Nédellec, “Learning language in logic genic interaction extraction
challenge,” in Proceedings of the 4th Learning Language in Logic
Workshop, pp. 31–37, 2005.

[42] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-



plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[43] M. Miwa, R. Sætre, Y. Miyao, and J. Tsujii, “Protein–protein interaction
extraction by leveraging multiple kernels and parsers,” International
journal of medical informatics, vol. 78, no. 12, pp. e39–e46, 2009.

[44] S. Van Landeghem, Y. Saeys, B. De Baets, and Y. Van de Peer, “Extract-
ing protein-protein interactions from text using rich feature vectors and
feature selection,” in 3rd International symposium on Semantic Mining
in Biomedicine (SMBM 2008). Turku Centre for Computer Sciences
(TUCS), 2008, pp. 77–84.


	I Introduction
	II Related Work
	III The Model
	III-A  Recurrent unit: Bidirectional LSTM
	III-B Tree LSTM
	III-C Structured Attention
	III-D Combining the modules

	IV Experimental Analysis and Results
	V Conclusions
	References

