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Abstract 

Though many parallel implementations of sparse 
Cholesky factorization with the experimental results 
accompanied have been proposed, it seems hard to 
evaluate the performance of these factorization methods 
theoretically because of the irregular structure of sparse 
matrices. This paper is an attempt to such research. On 
the basis of the criteria of parallel computation and 
communication time, we successfully evaluate four 
widely adopted Cholesky factorization methods, includ- 
ing column-Cholesky, row-Cholesky, submatrix-Cholesky 
and multifrontal. The results show that the multifrontal 
method is superior to the others. 

and found that multifrontal method is superior to the 
others. 

The remainder of this paper is organized as follows. 
In Section 2, we review some graph-theoretic notions 
used in matrix computation and the four Cholesky fac- 
torizations. In Section 3, we define the parallel compu- 
tation and communication criteria, and formulate them in 
terms of graph notations. On the basis of the criteria, we 
evaluate the performance of these four Cholesky factori- 
zations in Section 4. Experiments on some practical 
sparse matrices are also included. Section 5 gives the 
conclusions. 

2. Background 

2.1. Graph model for Cholesky factorizations 
1. Introduction 

In the directive solution of a sparse symmetric and 
positive definite linear system Ax = b, Cholesky factori- 
zation has acted as a synonym of the decomposition of A 
into L L ~ ,  for L a lower triangular. AS the time- 
consuming characteristic of Cholesky factorization and 
the advance of parallel computer architectures, a demand 
for efficient parallel sparse Cholesky factorization algo- 
rithms have emerged. 

Though a variety of parallel sparse Cholesky factori- 
zations have been proposed [7] and usually accompanied 
with some experimental results, it still lacks of theoreti- 
cal evaluation due to the irregularity of sparse matrices. 
The evaluation not only serves as a prediction of the 
actual performance, but also exploits the potentiality and 
limitation of a Cholesky factorization; thus helps in 
choosing the appropriate method for a particular 
machine. This paper is an attempt to such study. On the 
basis of the criteria of parallel computation and commu- 
nication time, we consider four widely adopted Cholesky 
factorization methods, including column-Cholesky, row- 
Cholesky, submatrix-Chdesky and multifrontal, on 
distributed-memory multiprocessors. With some graph- 
theoretic techniques we have succeed in the evaluation 

In this subsection, we briefly review the combinatorial 
aspect of the elimination process as formulated by Rose 
[12] and then confine it to a more specific graph model 
on which later derivations will be based. 

Let A = (ail) be an n x n sparse symmetric positive 
definite matrix. The associated graph of A, GA = (VA,EA), 
is constructed as below: 

VA = { vi I vi corresponds to columnhow i ofA, l l i l n  }, 

The symmetric Gaussian elimination of A can be 
described as follows. Letting 

= { (vi, vi> I aii z 0, 1 I i < j  I n }. 

r ,."- 

where d is a positive scalar, r is an (n-l )x 1 and R is an 
(n-l)x(n-1) matrix, the first step of symmetric elimina- 
tion is the factorization 

Letting A(') = p - r r T / d ,  the factorization is then com- 
pleted by recursively applying the basic step in (1) to A('), 
A('), and so on. Since A is sparse, some initially zero 
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entries in A may become nonzero in L during factoring A 
into LLT, which are calledfills orfill-ins. 
As observed by Rose, symmetric Gaussian elimination 

can be interpreted by a sequence of elimination graphs 

where graph GAo of A") is obtained from that of A'") by 
(i) deleting vi and its incident edges from GA(w, and (ii) 
adding edges to GA(w so that nodes adjacent to vi are 
painvise adjacent in GAo. 

For our purpose we confine the above graph model to 
a more specific one. Let GF be the filled graph of GA, 
where F =  L + LT denotes the filled matrix ofA, i.e., 

GA = GA(q + GAO + **+ GA+l) + GA(m) = 0. 

It is meaningful since the filled matrix of A has to be 
determined before the numerical factorization proceeds. 
So, we refer the factoring process of A as a sequence of 
elimination graphs of GF such that from Gfiw to Gfio 
only vi and its incident edges are eliminated since all 
nodes adjacent to vi has been painvise connected. 

2.2. Parallel sparse Cholesky factorizations 

It is well-known that the algorithmic form of Cholesky 
factorization of A can be viewed as a triple nested loop 
containing the following statement [ 11 

a.. +a. . - l .J .  
rl rl 1 8  

where L = (lU) is the Cholesky factor. 
Depending on which of the three indices is placed at 

the outmost loop there are three basic forms [4]: column- 
Cholesky, row-Cholesky, and submatrix-Cholesky. In 
some articles the column-Cholesky and submatrix- 
Cholesky are also known as fan-in and fan-out respec- 
tively. Recently, a sophisticated variant of the submatrix- 
Cholesky factorization, called multifrontal method [2], 
has been proposed and soon became a competitor to the 
other Cholesky factorizations. This paper is devoted to 
these four algorithms. 

To exploit the potential parallelism existing in sparse 
matrix factorization, a commonly used structure is elimi- 
nation tree [13]. Duff [3] has shown that the elimination 
tree also can be acted as an assembly tree for multifrontal 
method. An elimination tree TA associated with the 
Cholesky factor L of matrix A is a tree containing the 
same nodes as the filled graph of A and for each vk with k 
< n, its parent node is vp = parent(vk), where p = min (i I 
j > k and lik f O}. A related definition of parent is child, 
where child(v,) = {v, I parent(v,) = vk}. On the basis of 
the elimination tree model, we describe in Algorithms 1 
to 4 respectively the parallel sparse column-, row-, 
submatrix-Cholesky and multifrontal methods, which are 

considered on a distributed-memory multiprocessor with 
the following assumptions: 

(1) There is an unlimited number of processors that 
connected via a network of sufficiently wide bandwidth. 

Algorithm 1. Column-Cholesky factorization 
for i  := 1 to n do in parallel 

while vi is not a leaf node do waiting; 
f o r k : = l t o j - l a n d $ k # O d o  

for i := j to n and 1, f 0 do 
a.. t a.. - liJjk; 

for i  :=j + 1 ton and aU# 0 do 

eliminate node vi from the elimination tree; 

+fi: 'I 

lU+ aUIl. .;  U 

Algorithm 2. Row-Cholesky factorization. 
for i := 1 to n do in parallel 

while vi is not a leaf node do waiting; 
f o r k : = l t o i - l a n d a i k # O d o  

1, t aikl 1,; 
f o r j  := k + 1 to i and lik f 0 do 

a U t a . . - l i J j k ;  
rl 

lii +A; 
eliminate node vi from the elimination tree; 

Algorithm 3. Submatrix-Cholesky factorization. 
fork := 1 to n do in parallel 

while vk is not a leaf node do waiting; 
for j := k to n and ajk f 0 do 

t'" . 
ajk ' j k  + x < k a n d  Z p O  jk ' 

l,+&; 
for i  := k + 1 to n and ajk f 0 do 

for i  := k + 1 ton and $k # 0 do 

g + - ' i J j k ;  

$k ajk lfi; 

for i  := k +  1 ton and lIk f 0 do 
t(k) 

eliminate node vk from the elimination tree; 

Algorithm 4. Multifrontal method. 
fork := 1 to n do in parallel 

while vk is not a leaf node do waiting; 

apply a sequential dense Cholesky to factor the first 

create frontal matrix F<k' t A + ~ c E c h i l d ( v k )  p"'. , 

column ~ $ 1  of F<k'; 
Lmk t &:); 
Fk) 4- F(k' -F;( lk) ;  

eliminate node vk from the elimination tree; 
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(2) The column-oriented distribution is used for 
column-, submatrix-Cholesky and multifrontal; row- 
oriented distribution is used for row-Cholesky. Each 
processor is solely responsible for the task of maintaining 
and updating its column or row. 

(3) For simplicity, we ignore the underlying intercon- 
necting and routing topology, and assume a message (a 
column or a row) can be transferred within a fixed time. 

In order to keep the Cholesky methods consistent in 
generic form, the communication is assumed to be 
invoked by the computation without an explicit indica- 
tion. The multifrontal method, however, is rather com- 
plicated, and so we give only an informal description; 
details can be found in the original paper by Duff and 
Reid [2]. In Algorithm 3, notation t r )  denotes an inter- 
mediate updated factor that is generated in the factoriza- 
tion of column k and will be accumulated to entry a,. 
when factoring column j ,  for j > k. In Algorithm 4, 
f l k )  represents the frontal matrix associated with column 
k and Pk’ the remaining frontal matrix after the removal 
of the first column; A, and L ,  simply denote column k 
of A and L, respectively. 

3. The evaluation criteria 

3.1. Definition 

In [9, 101 the authors have defined two evaluation 
criteria, parallel computation time and parallel com- 
munication time, to discuss the ordering problem, which 
indeed represent the computation and communication 
times needed to complete a Cholesky factorization in 
parallel. We adopt these two criteria and, for self- 
contained, we repeat the definitions in the following. 

For vi, 1 I i I n, let mtp(v,) denote the number of 
multiplicative operations (square root, multiplication, 
and division) and msg(v,) the number of messages 
(columns or rows) acquired by v,. The parallel computa- 
tion time and communication time to complete node v, 
are corresponding to the cost of a critical path from some 
leaf node to v,, i.e., 

comp(y ) = r(vi)7 

Comm(vi) = {mg(vi)$ 

if vi is leaf 
mtp(vi) + Mchild-Comp(v,), otherwise 

ifvi is leaf 
msg(vi) + Mchild-Comm(vi), otherwise 

where 
Mchild-Comp(vi) = max {Comp(x) I x E child(v,)}, 
Mchild-Comm(v,) = max {Comm(x) I x E child(vi)}. 

Then the parallel computation time and communication 
time required to complete the factorization, denoted as 
Comp and Comm, are equal to Comp(vn) and Comm(v,) 
respectively. Moreover, we introduce abbreviations, C, 

R, S and Mas subscripts to distinguish different Cholesky 
factorizations, e.g., mtpdv) represents the number of 
multiplicative operations associated with node v under 
submatrix-Cholesky factorization. 

3.2. Formulation of the criteria 

To study the behavior of and to distinguish the superi- 
ority among various Cholesky factorizations, we have to 
formulate the criteria. 

Consider the filled graph GF of matrix A. For each 
node v in G, we denote its adjacent set as adjG$v) and 
its degree as degG$v), where degG$v) = ladjG$v)l. The 
prior (monotone) adjacent set PadjG$v) (Madj, (v)) is 
the set of all nodes adjacent to and numbered lower 
(higher) than v; PdegGp) (MdegG (v))  denote the size of 
Padj, (v) (Madj,$v)). In what follows all discussions 
are refated to G, we thus omit the subscript, GF in the 
above notations for simplicity. 

A clique is a set of nodes with the property that all its 
members are pairwise adjacent; moreover, if no other 
node can be added while preserving the pairwise adjacent 
property, then the clique is called maximal. Assume GF 
comprises K,, K2, . . . , Kq maximal cliques. A maximal 
clique Kj, 1 I j I q, might change as the elimination 
proceeds and so similar to Gfi1-1) we denote the residual 
clique [SI of 4 after the ith elimination step as q). 
More precisely, 

e-1) - { y > ,  if vi Eq-’), 
q={+ otherwise. 
It should be noticed that a residual clique is not neces- 

sarily maximal. Furthermore, for node vi (remember it is 
corresponding to column or row i of A and is eliminated 
in the ith step) we define Q(vi) as the identity of the 
maximal residual clique that contains vi when vi is elimi- 
nated. In other words, is the only maximal resid- 
ual clique containing vi in G$w, which indeed consists of 
the set of nodes adjacent to and ordered after vi plus vi, 
i.e., Kf$f’,=Mudj(vi)u{vi} and thus I&&f;l=Mdeg(v,)+l. 

The notion for 1 I j I n, then represents the 
residual clique of Kncv,,. 

The following equalities are useful for our derivations. 
(2) Padj(vj) = {v,ll I k 11 - 1 and l jk # 0) 
(3) 

(4) 
Lemma 1. The numbers of multiplicative operations 

associated with node vi in TA for column-, row-, 
submatrix-Cholesky, and multifrontal factorizations can 
be individually formulated as 
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Proof: We prove the case of mtpJvi) first. For each 
iteration of "for j" loop in Algorithm 1, there are 
~ l ~ ~ s j ~ l , l , o ~ j ~ ~ n . l o l  multiplications, one square root, 

and cj+l<i<n,b*O 1 divisions. Totally, the number of mul- 

tipliwtive owrations is: 

l Y t O  

The lemma then follows by simple index substitution. 
As for other cases, we can prove them by observing 

0 
For submatrix-Cholesky and multifrontal factoriza- 

tions, their mtp's are the same so we will denote that as 
mtp&vi). Furthermore, be aware that Mac$@,) U (vi} = 

Algorithms 2,3,4, and similar derivations. 

and thus 

whose structure corresponds to a dense lower triangular 
matrix. Henceforth, we can rewrite the formula as 

I-1) p-1, 
mtPW(vi) = +l~rI(v,)l(l r I ( J + d  

= #Mdeg(y)+ l)(Mdeg(y) +2). 
Lemma 2. The numbers of messages (columns or 

rows) acquired to update node vj in TA for column-, row-, 
submatrix-Cholesky, and multifrontul factorizations can 
be individually formulated as 

msgc(vi) =msg,(~) =msgs(vi) = Pdeg(vi), 
msgM(vi) = Mdeg(vj). 

ProoJ The derivation is similar to Lemma 1 by 
observing the remote accessing data in Algorithms 1 to 4 

0 
For column-, row-, and submatrix-Cholesky factoriza- 

tions, their msg's are the same so we will denote that as 

V, €Child(?) 

and applying the corresponding graph notations. 

"b7s (vJ .  

4. Evaluation 

In this subsection, we derive the evaluation of the four 
Cholesky factorization algorithms. A useful property 
quoted from Schreiber [13] is stated first. 

Lemma 3. (Schreiber [13])  For each node vi, 1 s j  < 
n, Madj(v.) is a subset of nodes on the path from vj to the 

Theorem 4. On solving a given sparse matrix, the 
computation time of submatrix-Cholesky (multifontac) 
factorization is no more than that of column-Cholesky 
factorization. 

Proof. This theorem can be proven if we can prove 
that for any path, say Path, from a leaf to the root on any 
elimination tree, 

root v, O / T ~ .  0 

C mtpc(vj) 2 CmtpJu(vi). 
v, E Path ?€Path 

By Lemmas 1, 3 and the definitions of Madj and Padj, 
we have the following derivations: 

= c  
yepath v,EPath 

Theorem 5. On solving a given sparse matrix, the 
computation time of submatrix-Cholesky (multifontat) 
factorization is no more than that of row-Cholesky fac- 
torization. 

Proof: This theorem can be proven if we can prove 
that for any path, say Path, from a leaf to the root on any 
elimination tree, 

mtpR(vj)k Cm@.Qd(vi)* 
v, E Path yepath 

By Lemmas 1, 3 and the definitions of Madj and Padj, 
we have the following derivations: c m@R(vj) 

vicPath 

4.1. Theoretical results 
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& v , d 4 ( v , ) u { v , )  

In derivations. note that, for each node v; on the Path, 
in 

decreasing Order and ~ , € P a t ~ v J € M a d j ( y ) u { q } I d ~ ~ ~ l  is 
counted in increasing order, however their summations 
are the same. 0 

Theorem 6. On solving a given sparse matrix, the 
computation time of column-Cholesky factorization is no 
more than that of row-Cholesky factorization. 

Proof: By observing derivations on the proofs of 
Theorems 4 and 5, th is  theorem will be true if we can 
prove that: 

By some careful derivations, we can prove the above 
inequality. 0 

It remains to evaluate the communication case. 
Theorem 1. On solving a given sparse matrix, the 

communication time of multifrontal method is no more 
than that of column-, row-, and submatrix-Cholesky fac- 
torization. 

ProoJ This theorem can be proven if we can prove 
that for any path, say Path, from a leaf to the root on any 
elimination tree, 

By Lemmas 2, 3, the definitions of Ma$, Pa$, Mdeg, 
Pdeg, and some properties of elimination tree, we have 
the following derivations: 

msgCRS(vj) = 
vJcPath vJ cPathvt cPadj(vJ) 

c 1 +  c c 1  
vJcPath y EPadj(vi) 

= c  
vJ€Path y cPadjv,) 

&paren<vk)ePath &paren<vt)ePath 

2 c  c 1  

= e  e 1  

= e  e 1  

vJePath ycPadj(vJ) 
& paren<vk )€Path 

paren<vk)EPathv, cMadj(vk) 
&vJ €Path 

paren<q)cPathvJ cMadj(vt) 

= e  c c = CmsgM(vi) 
y €Pathy echi ld(y)vJd4adj (y)  v, €Path 

0 

As a brief summary of this subsection, we conclude: 
(1) Submatrix-Cholesky (multifrontal) consumes the 

least parallel computation time, then the column- 
Cholesky and last the row-Cholesky. 

(2) Multifrontal method suffers less parallel commu- 
nication time than the other three methods, which suffer 
the same amount. 

(3) To conclude, the multifrontal method is superior to 
the other three Cholesky factorization methods. 

4.2. An example problem 

In th is  subsection we illustrate the above evaluation 
with a simple problem whose Cholesky factor is shown in 
Figure 1. Figure 2 shows the (mtp,, mtp,, mtp,) and 
[msg,,, msg,] for each node of the corresponding 
elimination tree. A simple accumulating yields Comp, : 
Comp, : Comp, = 48 : 62 : 30 and CommcRs : Comp, = 
19: 15. 

X 

[x:?xx x x  x x x  

x x x x x x x x  
x x x x x x x  

Figure 1. An example Cholesky factor. 

Figure 2. (mtp,, mtp,, mtpM) and [msg,,, msg,]. 

This example reveals that even for a simple problem a 
great variation exists in the performance of different 
Cholesky factorization methods. Since most real world 
problems have large sizes and sophisticated structures, 
we can expect a tremendous variation and we conjecture 
the variation may become infinite to the extreme. 

Moreover, no matter which form of Cholesky factori- 
zation algorithms is used, the total number of multiplica- 
tive operations as well as the message transfer is the 
same. Thus the above example reveals an interesting but 
important phenomenon: the submatrix-Cholesky (and 
multifrontal) leads to the best load balancing in view of 
coarse-grained task scheduling, then the column- 
Cholesky, and last the row-Cholesky, which tells the 
reason of the theoretical results we obtained. 
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4.3. Experimental results 

We make an experiment on a set of test matrices from 
the well-known Harwell-Boeing sparse matrices collec- 
tion; the choice is following [SI. All matrices have been 
ordered by the minimum degree ordering [5]  to reduce 
the number of fill-ins. The experimental results are 
reported in Table 1. It can be Seen that the results have 
assented the theoretical evaluation in Section 4.1 and it 
seems there is a limitation on the ratio between different 
methods. But what the variation would be remains un- 
known and needs more theoretical study. 

5. Conclusions 

In this paper, we have defined, formalized the criteria 
and evaluated the performance of column-, row- and 
submatrix-Cholesky, and the multifrontal method. In the 
theoretical study, we have observed that the well load- 
balancing feature of multifrontal method makes it the 
supreme of the four methods. 

However, the theoretical evaluation in this paper has 
some limitations. First, we only consider the coarse- 
grained task granularity (as exploited by elimination 
tree). In most practical implementations of parallel 
sparse Cholesky factorizations, they exploit the so called 
medium-grained granularity [ 1 11, and even fine-grained 
granularity [6]. Both cases are more complicated and 
deserved an advanced study. In addition, to reflect some 
subtle but influential overhead such as synchronization, 
indirect addressing and memory traffic, we also need a 
more sophisticated evaluation model. 
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Table 1. Statistics of the test problems. 

BCSPWR09 
BCSPWRlO 
BCSSTK08 
BCSSTK13 
BCSSTM13 
BLCKHOLE 
CAN 1072 
DWT 2680 
LSHP3466 
GR 3030 

Order 

1723 
5300 
1074 
2003 
2003 
2132 
1072 
2680 
3466 
900 

#nonzeros 

2394 
827 1 
5943 

40940 
9970 
6370 
5686 

11 173 
10215 
4322 

COmP, 
6089 

50562 
784697 

2205 1 166 
1850339 
762742 
151533 
448620 

1156859 
123050 

camp, 
8695 

72586 
863997 

26897928 
2069258 
1022696 
205 136 
58420 1 

1546570 
17206 1 

c0mpS.f 
36 16 

32066 
62083 1 

15430855 
1283169 
476237 
103412 
292997 
720903 
73056 

Comm, 

1574 
6606 

25373 
216448 

38433 
27025 

9762 
29538 
41703 
8694 

Comm, 

799 
2879 

16677 
128960 
24208 
12630 
4992 

14719 
19512 
4039 
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