
On Evaluating Parallel Sparse Cholesky Factorizations

Wen-Yang Lin and Chuen-Liang Chen
Department of Computer Science and Information Engineering

National Taiwan University
Taipei, TAIWAN

e-mail: clchen@csie.ntu. edu. tw

Abstract

Though many parallel implementations of sparse
Cholesky factorization with the experimental results
accompanied have been proposed, it seems hard to
evaluate the performance of these factorization methods
theoretically because of the irregular structure of sparse
matrices. This paper is an attempt to such research. On
the basis of the criteria of parallel computation and
communication time, we successfully evaluate four
widely adopted Cholesky factorization methods, includ-
ing column-Cholesky, row-Cholesky, submatrix-Cholesky
and multifrontal. The results show that the multifrontal
method is superior to the others.

and found that multifrontal method is superior to the
others.

The remainder of this paper is organized as follows.
In Section 2, we review some graph-theoretic notions
used in matrix computation and the four Cholesky fac-
torizations. In Section 3, we define the parallel compu-
tation and communication criteria, and formulate them in
terms of graph notations. On the basis of the criteria, we
evaluate the performance of these four Cholesky factori-
zations in Section 4. Experiments on some practical
sparse matrices are also included. Section 5 gives the
conclusions.

2. Background

2.1. Graph model for Cholesky factorizations
1. Introduction

In the directive solution of a sparse symmetric and
positive definite linear system Ax = b, Cholesky factori-
zation has acted as a synonym of the decomposition of A
into L L ~ , for L a lower triangular. AS the time-
consuming characteristic of Cholesky factorization and
the advance of parallel computer architectures, a demand
for efficient parallel sparse Cholesky factorization algo-
rithms have emerged.

Though a variety of parallel sparse Cholesky factori-
zations have been proposed [7] and usually accompanied
with some experimental results, it still lacks of theoreti-
cal evaluation due to the irregularity of sparse matrices.
The evaluation not only serves as a prediction of the
actual performance, but also exploits the potentiality and
limitation of a Cholesky factorization; thus helps in
choosing the appropriate method for a particular
machine. This paper is an attempt to such study. On the
basis of the criteria of parallel computation and commu-
nication time, we consider four widely adopted Cholesky
factorization methods, including column-Cholesky, row-
Cholesky, submatrix-Chdesky and multifrontal, on
distributed-memory multiprocessors. With some graph-
theoretic techniques we have succeed in the evaluation

In this subsection, we briefly review the combinatorial
aspect of the elimination process as formulated by Rose
[12] and then confine it to a more specific graph model
on which later derivations will be based.

Let A = (ail) be an n x n sparse symmetric positive
definite matrix. The associated graph of A, GA = (VA,EA),
is constructed as below:

VA = { vi I vi corresponds to columnhow i ofA, l l i l n },

The symmetric Gaussian elimination of A can be
described as follows. Letting

= { (vi, vi> I aii z 0, 1 I i < j I n }.

r ,."-

where d is a positive scalar, r is an (n-l)x 1 and R is an
(n-l)x(n-1) matrix, the first step of symmetric elimina-
tion is the factorization

Letting A(') = p - r r T / d , the factorization is then com-
pleted by recursively applying the basic step in (1) to A('),
A('), and so on. Since A is sparse, some initially zero

162
0-8186-6555-6/94 $04.00 0 1994 IEEE

entries in A may become nonzero in L during factoring A
into LLT, which are calledfills orfill-ins.
As observed by Rose, symmetric Gaussian elimination

can be interpreted by a sequence of elimination graphs

where graph GAo of A") is obtained from that of A'") by
(i) deleting vi and its incident edges from GA(w, and (ii)
adding edges to GA(w so that nodes adjacent to vi are
painvise adjacent in GAo.

For our purpose we confine the above graph model to
a more specific one. Let GF be the filled graph of GA,
where F = L + LT denotes the filled matrix ofA, i.e.,

GA = GA(q + GAO + **+ GA+l) + GA(m) = 0.

It is meaningful since the filled matrix of A has to be
determined before the numerical factorization proceeds.
So, we refer the factoring process of A as a sequence of
elimination graphs of GF such that from Gfiw to Gfio
only vi and its incident edges are eliminated since all
nodes adjacent to vi has been painvise connected.

2.2. Parallel sparse Cholesky factorizations

It is well-known that the algorithmic form of Cholesky
factorization of A can be viewed as a triple nested loop
containing the following statement [11

a.. +a. . - l .J .
rl rl 1 8

where L = (lU) is the Cholesky factor.
Depending on which of the three indices is placed at

the outmost loop there are three basic forms [4]: column-
Cholesky, row-Cholesky, and submatrix-Cholesky. In
some articles the column-Cholesky and submatrix-
Cholesky are also known as fan-in and fan-out respec-
tively. Recently, a sophisticated variant of the submatrix-
Cholesky factorization, called multifrontal method [2],
has been proposed and soon became a competitor to the
other Cholesky factorizations. This paper is devoted to
these four algorithms.

To exploit the potential parallelism existing in sparse
matrix factorization, a commonly used structure is elimi-
nation tree [13]. Duff [3] has shown that the elimination
tree also can be acted as an assembly tree for multifrontal
method. An elimination tree TA associated with the
Cholesky factor L of matrix A is a tree containing the
same nodes as the filled graph of A and for each vk with k
< n, its parent node is vp = parent(vk), where p = min (i I
j > k and lik f O}. A related definition of parent is child,
where child(v,) = {v, I parent(v,) = vk}. On the basis of
the elimination tree model, we describe in Algorithms 1
to 4 respectively the parallel sparse column-, row-,
submatrix-Cholesky and multifrontal methods, which are

considered on a distributed-memory multiprocessor with
the following assumptions:

(1) There is an unlimited number of processors that
connected via a network of sufficiently wide bandwidth.

Algorithm 1. Column-Cholesky factorization
for i := 1 to n do in parallel

while vi is not a leaf node do waiting;
f o r k : = l t o j - l a n d $ k # O d o

for i := j to n and 1, f 0 do
a.. t a.. - liJjk;

for i :=j + 1 ton and aU# 0 do

eliminate node vi from the elimination tree;

+fi: 'I

lU+ aUIl. .; U

Algorithm 2. Row-Cholesky factorization.
for i := 1 to n do in parallel

while vi is not a leaf node do waiting;
f o r k : = l t o i - l a n d a i k # O d o

1, t aikl 1,;
f o r j := k + 1 to i and lik f 0 do

a U t a . . - l i J j k ;
rl

lii +A;
eliminate node vi from the elimination tree;

Algorithm 3. Submatrix-Cholesky factorization.
fork := 1 to n do in parallel

while vk is not a leaf node do waiting;
for j := k to n and ajk f 0 do

t'" .
ajk ' j k + x < k a n d Z p O jk '

l,+&;
for i := k + 1 to n and ajk f 0 do

for i := k + 1 ton and $k # 0 do

g + - ' i J j k ;

$k ajk lfi;

for i := k + 1 ton and lIk f 0 do
t(k)

eliminate node vk from the elimination tree;

Algorithm 4. Multifrontal method.
fork := 1 to n do in parallel

while vk is not a leaf node do waiting;

apply a sequential dense Cholesky to factor the first

create frontal matrix F<k' t A + ~ c E c h i l d (v k) p"'. ,

column ~ $ 1 of F<k';
Lmk t &:);
Fk) 4- F(k' -F;(lk) ;

eliminate node vk from the elimination tree;

163

(2) The column-oriented distribution is used for
column-, submatrix-Cholesky and multifrontal; row-
oriented distribution is used for row-Cholesky. Each
processor is solely responsible for the task of maintaining
and updating its column or row.

(3) For simplicity, we ignore the underlying intercon-
necting and routing topology, and assume a message (a
column or a row) can be transferred within a fixed time.

In order to keep the Cholesky methods consistent in
generic form, the communication is assumed to be
invoked by the computation without an explicit indica-
tion. The multifrontal method, however, is rather com-
plicated, and so we give only an informal description;
details can be found in the original paper by Duff and
Reid [2]. In Algorithm 3, notation t r) denotes an inter-
mediate updated factor that is generated in the factoriza-
tion of column k and will be accumulated to entry a,.
when factoring column j , for j > k. In Algorithm 4,
f l k) represents the frontal matrix associated with column
k and Pk’ the remaining frontal matrix after the removal
of the first column; A, and L , simply denote column k
of A and L, respectively.

3. The evaluation criteria

3.1. Definition

In [9, 101 the authors have defined two evaluation
criteria, parallel computation time and parallel com-
munication time, to discuss the ordering problem, which
indeed represent the computation and communication
times needed to complete a Cholesky factorization in
parallel. We adopt these two criteria and, for self-
contained, we repeat the definitions in the following.

For vi, 1 I i I n, let mtp(v,) denote the number of
multiplicative operations (square root, multiplication,
and division) and msg(v,) the number of messages
(columns or rows) acquired by v,. The parallel computa-
tion time and communication time to complete node v,
are corresponding to the cost of a critical path from some
leaf node to v,, i.e.,

comp(y) = r(vi)7

Comm(vi) = {mg(vi)$

if vi is leaf
mtp(vi) + Mchild-Comp(v,), otherwise

ifvi is leaf
msg(vi) + Mchild-Comm(vi), otherwise

where
Mchild-Comp(vi) = max {Comp(x) I x E child(v,)},
Mchild-Comm(v,) = max {Comm(x) I x E child(vi)}.

Then the parallel computation time and communication
time required to complete the factorization, denoted as
Comp and Comm, are equal to Comp(vn) and Comm(v,)
respectively. Moreover, we introduce abbreviations, C,

R, S and Mas subscripts to distinguish different Cholesky
factorizations, e.g., mtpdv) represents the number of
multiplicative operations associated with node v under
submatrix-Cholesky factorization.

3.2. Formulation of the criteria

To study the behavior of and to distinguish the superi-
ority among various Cholesky factorizations, we have to
formulate the criteria.

Consider the filled graph GF of matrix A. For each
node v in G, we denote its adjacent set as adjG$v) and
its degree as degG$v), where degG$v) = ladjG$v)l. The
prior (monotone) adjacent set PadjG$v) (Madj, (v)) is
the set of all nodes adjacent to and numbered lower
(higher) than v; PdegGp) (MdegG (v)) denote the size of
Padj, (v) (Madj,$v)). In what follows all discussions
are refated to G, we thus omit the subscript, GF in the
above notations for simplicity.

A clique is a set of nodes with the property that all its
members are pairwise adjacent; moreover, if no other
node can be added while preserving the pairwise adjacent
property, then the clique is called maximal. Assume GF
comprises K,, K2, . . . , Kq maximal cliques. A maximal
clique Kj, 1 I j I q, might change as the elimination
proceeds and so similar to Gfi1-1) we denote the residual
clique [SI of 4 after the ith elimination step as q).
More precisely,

e-1) - { y > , if vi Eq-’),
q={+ otherwise.
It should be noticed that a residual clique is not neces-

sarily maximal. Furthermore, for node vi (remember it is
corresponding to column or row i of A and is eliminated
in the ith step) we define Q(vi) as the identity of the
maximal residual clique that contains vi when vi is elimi-
nated. In other words, is the only maximal resid-
ual clique containing vi in G$w, which indeed consists of
the set of nodes adjacent to and ordered after vi plus vi,
i.e., Kf$f’,=Mudj(vi)u{vi} and thus I&&f;l=Mdeg(v,)+l.

The notion for 1 I j I n, then represents the
residual clique of Kncv,,.

The following equalities are useful for our derivations.
(2) Padj(vj) = {v,ll I k 11 - 1 and l jk # 0)
(3)

(4)
Lemma 1. The numbers of multiplicative operations

associated with node vi in TA for column-, row-,
submatrix-Cholesky, and multifrontal factorizations can
be individually formulated as

164

Proof: We prove the case of mtpJvi) first. For each
iteration of "for j" loop in Algorithm 1, there are
~ l ~ ~ s j ~ l , l , o ~ j ~ ~ n . l o l multiplications, one square root,

and cj+l<i<n,b*O 1 divisions. Totally, the number of mul-

tipliwtive owrations is:

l Y t O

The lemma then follows by simple index substitution.
As for other cases, we can prove them by observing

0
For submatrix-Cholesky and multifrontal factoriza-

tions, their mtp's are the same so we will denote that as
mtp&vi). Furthermore, be aware that Mac$@,) U (vi} =

Algorithms 2,3,4, and similar derivations.

and thus

whose structure corresponds to a dense lower triangular
matrix. Henceforth, we can rewrite the formula as

I-1) p-1,
mtPW(vi) = +l~rI(v,)l(l r I (J + d

= #Mdeg(y)+ l)(Mdeg(y) +2).
Lemma 2. The numbers of messages (columns or

rows) acquired to update node vj in TA for column-, row-,
submatrix-Cholesky, and multifrontul factorizations can
be individually formulated as

msgc(vi) =msg,(~) =msgs(vi) = Pdeg(vi),
msgM(vi) = Mdeg(vj).

ProoJ The derivation is similar to Lemma 1 by
observing the remote accessing data in Algorithms 1 to 4

0
For column-, row-, and submatrix-Cholesky factoriza-

tions, their msg's are the same so we will denote that as

V, €Child(?)

and applying the corresponding graph notations.

"b7s (vJ .

4. Evaluation

In this subsection, we derive the evaluation of the four
Cholesky factorization algorithms. A useful property
quoted from Schreiber [13] is stated first.

Lemma 3. (Schreiber [13]) For each node vi, 1 s j <
n, Madj(v.) is a subset of nodes on the path from vj to the

Theorem 4. On solving a given sparse matrix, the
computation time of submatrix-Cholesky (multifontac)
factorization is no more than that of column-Cholesky
factorization.

Proof. This theorem can be proven if we can prove
that for any path, say Path, from a leaf to the root on any
elimination tree,

root v, O / T ~ . 0

C mtpc(vj) 2 CmtpJu(vi).
v, E Path ?€Path

By Lemmas 1, 3 and the definitions of Madj and Padj,
we have the following derivations:

= c
yepath v,EPath

Theorem 5. On solving a given sparse matrix, the
computation time of submatrix-Cholesky (multifontat)
factorization is no more than that of row-Cholesky fac-
torization.

Proof: This theorem can be proven if we can prove
that for any path, say Path, from a leaf to the root on any
elimination tree,

mtpR(vj)k Cm@.Qd(vi)*
v, E Path yepath

By Lemmas 1, 3 and the definitions of Madj and Padj,
we have the following derivations: c m@R(vj)

vicPath

4.1. Theoretical results

165

& v , d 4 (v ,) u { v ,)

In derivations. note that, for each node v; on the Path,
in

decreasing Order and ~ , € P a t ~ v J € M a d j (y) u { q } I d ~ ~ ~ l is
counted in increasing order, however their summations
are the same. 0

Theorem 6. On solving a given sparse matrix, the
computation time of column-Cholesky factorization is no
more than that of row-Cholesky factorization.

Proof: By observing derivations on the proofs of
Theorems 4 and 5, th is theorem will be true if we can
prove that:

By some careful derivations, we can prove the above
inequality. 0

It remains to evaluate the communication case.
Theorem 1. On solving a given sparse matrix, the

communication time of multifrontal method is no more
than that of column-, row-, and submatrix-Cholesky fac-
torization.

ProoJ This theorem can be proven if we can prove
that for any path, say Path, from a leaf to the root on any
elimination tree,

By Lemmas 2, 3, the definitions of Ma$, Pa$, Mdeg,
Pdeg, and some properties of elimination tree, we have
the following derivations:

msgCRS(vj) =
vJcPath vJ cPathvt cPadj(vJ)

c 1 + c c 1
vJcPath y EPadj(vi)

= c
vJ€Path y cPadjv,)

&paren<vk)ePath &paren<vt)ePath

2 c c 1

= e e 1

= e e 1

vJePath ycPadj(vJ)
& paren<vk)€Path

paren<vk)EPathv, cMadj(vk)
&vJ €Path

paren<q)cPathvJ cMadj(vt)

= e c c = CmsgM(vi)
y €Pathy echi ld(y)vJd4adj (y) v, €Path

0

As a brief summary of this subsection, we conclude:
(1) Submatrix-Cholesky (multifrontal) consumes the

least parallel computation time, then the column-
Cholesky and last the row-Cholesky.

(2) Multifrontal method suffers less parallel commu-
nication time than the other three methods, which suffer
the same amount.

(3) To conclude, the multifrontal method is superior to
the other three Cholesky factorization methods.

4.2. An example problem

In th is subsection we illustrate the above evaluation
with a simple problem whose Cholesky factor is shown in
Figure 1. Figure 2 shows the (mtp,, mtp,, mtp,) and
[msg,,, msg,] for each node of the corresponding
elimination tree. A simple accumulating yields Comp, :
Comp, : Comp, = 48 : 62 : 30 and CommcRs : Comp, =
19: 15.

X

[x:?xx x x x x x

x x x x x x x x
x x x x x x x

Figure 1. An example Cholesky factor.

Figure 2. (mtp,, mtp,, mtpM) and [msg,,, msg,].

This example reveals that even for a simple problem a
great variation exists in the performance of different
Cholesky factorization methods. Since most real world
problems have large sizes and sophisticated structures,
we can expect a tremendous variation and we conjecture
the variation may become infinite to the extreme.

Moreover, no matter which form of Cholesky factori-
zation algorithms is used, the total number of multiplica-
tive operations as well as the message transfer is the
same. Thus the above example reveals an interesting but
important phenomenon: the submatrix-Cholesky (and
multifrontal) leads to the best load balancing in view of
coarse-grained task scheduling, then the column-
Cholesky, and last the row-Cholesky, which tells the
reason of the theoretical results we obtained.

166

4.3. Experimental results

We make an experiment on a set of test matrices from
the well-known Harwell-Boeing sparse matrices collec-
tion; the choice is following [SI. All matrices have been
ordered by the minimum degree ordering [5] to reduce
the number of fill-ins. The experimental results are
reported in Table 1. It can be Seen that the results have
assented the theoretical evaluation in Section 4.1 and it
seems there is a limitation on the ratio between different
methods. But what the variation would be remains un-
known and needs more theoretical study.

5. Conclusions

In this paper, we have defined, formalized the criteria
and evaluated the performance of column-, row- and
submatrix-Cholesky, and the multifrontal method. In the
theoretical study, we have observed that the well load-
balancing feature of multifrontal method makes it the
supreme of the four methods.

However, the theoretical evaluation in this paper has
some limitations. First, we only consider the coarse-
grained task granularity (as exploited by elimination
tree). In most practical implementations of parallel
sparse Cholesky factorizations, they exploit the so called
medium-grained granularity [1 11, and even fine-grained
granularity [6]. Both cases are more complicated and
deserved an advanced study. In addition, to reflect some
subtle but influential overhead such as synchronization,
indirect addressing and memory traffic, we also need a
more sophisticated evaluation model.

References

[l] J. J. Dongarm, F. G. Gustavson and A. Karp, "Implement-
ing linear algebra algorithms for dense matrices on a

vector pipeline machine," SL4MReview 26, 1984, pp. 91-
112.

[2] I. S. Duff and J. K. Reid, "The multifrontal solution of
indefinite sparse symmetric linear equations,* ACM Trans.
Math. Sofmre 9, 1983, pp. 302-325.

[3] I. S. Duff, "Parallel implementation of multifrontal
schemes," Parallel Comput. 3,1986, pp. 193-204.

[4] A. George, M. T. Heath and J. W. H. Liu, "Parallel Chole-
sky factorization on a shared-memory multiprocessor,"
Lin. Alg. Appl. 77, 1986, pp. 165-187.

[5] A. George and J. W. H. Liu, Computer Solution of Large
Sparse Positive Definite Systems, Prentice Hall, Engle-
wood Cliffs, NJ, 1981.

[6] J. R. Gilbert and R. Schreiber, "Highly parallel sparse
Cholesky factorization," SIAM J. Sci. Stat. Comput. 13,

[7] M. T. Heath, E. Ng and B. W. Peyton, "Parallel algorithms
for sparse linear systems," SIAM Review 33, 1991, pp.
420460.

[8] J. G. Lewis, B. W. Peyton and A. Pothen, "A fast alge
rithm for reordering sparse matrices for parallel factoriza-
tion,' SIAM J. Sci. Stat. Comput. 10, 1989, pp. 1146-
1173.

[9] W. Y. Lin and C. L. Chen, "Minimum completion time
criterion for parallel sparse Cholesky factorization," in
Proc. International Conference on Parallel Processing,
Vol. III, St. Charles, IL, USA, 1993, pp. 107-114.

[lo] W. Y. Lin and C. L. Chen, "Minimum communication
time reordering for parallel sparse mlumn-cholesky fac-
torization," in Proc. International Conference on Parallel
And Distributed Systems, Taipei, Taiwan, 1993, pp. 147-
151.

[l 11 J. W. H. Liu, "Computational models and task scheduling
for parallel sparse Cholesky factorization," Pamllel
Comput. 3,1986, pp. 327-342.

[12] D. J. Rose, "A graph-theoretic study of the numerical
solution of sparse positive definite systems of linear qua-
tions," in R. C. Read, ed., Graph Theory and Computing,
Academic Press, New York, 1972, pp. 183-2 17.

[13] R. Schreiber, "A new implementation of sparse Gaussian
elimination," ACM Trans. Math. S o f h r e 8, 1982, pp.

1992, pp. 1151-1172.

256-276.

Table 1. Statistics of the test problems.

BCSPWR09
BCSPWRlO
BCSSTK08
BCSSTK13
BCSSTM13
BLCKHOLE
CAN 1072
DWT 2680
LSHP3466
GR 3030

Order

1723
5300
1074
2003
2003
2132
1072
2680
3466
900

#nonzeros

2394
827 1
5943

40940
9970
6370
5686

11 173
10215
4322

COmP,
6089

50562
784697

2205 1 166
1850339
762742
151533
448620

1156859
123050

camp,
8695

72586
863997

26897928
2069258
1022696
205 136
58420 1

1546570
17206 1

c0mpS.f
36 16

32066
62083 1

15430855
1283169
476237
103412
292997
720903
73056

Comm,

1574
6606

25373
216448

38433
27025

9762
29538
41703
8694

Comm,

799
2879

16677
128960
24208
12630
4992

14719
19512
4039

167

