
Performance Modelling and Evaluation for the XMP Shared-Bus
Multiprocessor Architecture

Chiung-San Lee and Tai-Ming Parng
Dept. of Electrical Engineering

National Taiwan University, R.O.C.

Abstract
This paper presents the performance modelling and

evaluation of a shared bus multiprocessor, XMP. A key
characteristic of XMP is that it employs a special shared
bus scheme featuring separate address bus and data bus
with split transaction, pipelined cycle (called SSTP
scheme). To assist evaluating the architectural alterna-
tives of XMP, the features of the SSTP bus scheme as
well as two important performance impacting factors: (1)
cache, bus, and memory interferences and (2) DMA
transfer, are modelled. We employ a Subsystem Access
Time (SAT) modelling methodology. It is based on a
Subsystem Access Time Per Instruction (SATPI) con-
cept, in which we treat major components other than pro-
cessors (e.g. off-chip cache, bus, memory, VO) as
subsystems and model for each of them the mean access
time per instruction from each processor. Validated by
statistical simulations, the performance model is fed with
a given set of representative workload parameters, and
then used to conduct performance evaluation for some
initial system design issues. Furthermore, the SATPIs of
the subsystems are directly utilized to identify the bottle-
neck subsystems and to help analyze the cause of the
bottleneck.

1: Introduction

A shared-bus multiprocessor system is one of impor-
tant class of computer architecture. Such a system con-
sists of multiple bus musters, such as processors and
DMA controllers, and subsystems, such as shared bus,
main memory, and I/O. The design of an multiprocessor
system is complex, and prototyping the system is expen-
sive. Therefore, multiprocessor systems present an im-
portant opportunity for performance models to contribute
to the actual design process.

XMP is a new shared-bus multiprocessor system [SI. It
supports a special shared bus scheme which features
separated address-bus (Abus) and data-bus (Dbus) with
split transaction, pipelined (called SSTP bus scheme)
cycle [S, 91. Here, "separate" means the Abus and Dbus
cm be controlled independently and used by two

Jew-Chin Lee, Cheng-Nan Tsai, Kwo-Jean Farn
Lung-Chung Chang, Te-Yu Chung, and Lu-Ping Chen

Industrial Technology Research Institude
Hsinchu, Taiwan, R.O.C.

different transactions at the same time. In other words,
the Abus is used by the master to send the address and
the Dbus is used by the subsystem to transmit the re-
turned data. The XMP system has been developed in
ITRI.

This paper presents a performance model that we have
used to study the feasibility and several issues for the
XMP architecture design. The issues that must be consid-
ered in the preliminary design of the XMP system in-
clude the optimal number of processors connected to a
shared bus, number of memory modules, memory laten-
cy, and so on. To obtain accurate prediction results, the
performance model takes two important performance im-
pacting factors into accounts: (1) the cache, bus, memory
interference, (2) DMA transfer.

The performance model we develop for XMP is based
on the siibsystem access time (SAT) modelling metliod-
ology [ll]. The SAT modelling approach takes a subsys-
tem oriented point of view and models the mean access
time of each subsystem for the execution of each proces-
sor instruction (called Subsystem Access Time Per In-
struction, SATPI). The SATPIs of all subsystems in
XMP, in addition to being used for predicting perform-
ance, can also be used for identifying which subsystem is
the bottleneck and then exploring different configura-
tions of the subsystem for potential perfonnance
improvements.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce the XMP architecture of interest and
its bus requests. Section 3 presents the performance mod-
el based on SAT modelling. In Section 4, given a set of
workload parameters, we utilize the SAT models to pre-
dict the system performance for the XMP architecture
design and identify the bottleneck for potential perform-
ance improvement. Finally, the conclusion is given in
Section 5.

2: The XMP Architecture

The XMP system consists of several processors, main
memory subsystems, and 110 subsystems connected to-
gether by a shared bus based on a separated address bus

0-8186-6555-6/94 $04.00 0 1994 IEEE
446

and a data bus (Fig. 1). Each processor has a local
memory (private cache) from which it normally reads
and to which it normally writes. However, if the private
cache does not contain the necessary data item, a request
to the shared bus occurs. The request, which may be a
memory read or write, is queued until the shared bus is
ready. In such a system with multiple caches, the same
information can be shared and may reside in a number of
copies in the main memory and in some of the caches.
To keep different copies of the shared data consistent, we
assume that the cache coherence is maintained through
the MESI protocol [SI, and the private cache is of write-
back type [5, 81. In addition, the processor executes I/O
instructions to obtain I/O status or to program a DMA
(Directed Memory Access) controller for dam transfer
between main memory and an I/O device.

The XMP architecture adopts a two-level cache struc-
ture, a very popular architecture for reducing bus traffic
[8, 13, 151. We assume that each processor is equipped
with an on-chip cache to reduce the off-chip requests. In
this paper the on-chip cache is referred to as the L1
cache, while the off-chip one as the L2 cache.

Address BUS

Data Bus

Fig. 1. The XMP architecture with a separate address bus and data bus

The DMA controller is usually started by using I/O
instructions and the following data transfers (referred to
as DMA-transfer request) can proceed without, being in-
tervented by the processors. It is reasonable to assume
that the processor execution of an application process is
completely overlapped with the DMA transfers of anoth-
er application process. Therefore, the DMA transfers
cause bus and memory interferences to processor's re-
quests. For modelling the DMA transfers, we use a pa-
rameter, the number of bits of DMA t r a n ~ e r per
instruction, to characterize the effect of DMA transfers.

In this study, we consider a special shared bus scheme
which features separate address-bus (Abus) and data-bus
(Dbus) (i.e., the address-bus and data-bus can be con-
trolled or used independently) with split transaction sup-
port [4, 8, 91. A split transaction, pipelined (STP) bus
should support two types of bus operations: sending the
address and receiving or sending Uie data. The split
transactions are usually defined by what they do to
memory: a memory read transaction transfers data from
memory, and a memory write transaction writes the data

to memory. The read transaction is broken into a read-
request transaction that. contains the address and com-
mand indicating a read, and a memory-reply transaction
that contains the returned data. During the memory read
split transactions, after the address is sent, the address
bus is made available for other processors before the ac-
cessed memory data is ready to be returned. A memory
write, which requires the processor to send both the ad-
dress and data and doesn't require the returned data, is
not a split transaction. With separated Abus and Dbus,
the shared bus has three operating modes: Abus-only,
Dbus-only, and Abus-and-Dbus. The Abus-only mode is
used in some bus transactions, such as read-request trans-
actions, that transfer only the memory address. The
Dbus-only mode is used in memory-reply transactions
that respond the returned data to the requester. The
Abus-and-Dbus mode is used during main memory write
transactions, such as a dirty cache line writeback. In or-
der to support the bus with split transaction cycles, in the
memory module an input queue (IQ) and output queue
(OQ) are used to save the incoming requests and returned
data. In this bus scheme, the separated Abus and Dbus
may serve two different requests at the same time, and
can support higher throughput than non-separated bus.
An STP bus with the separated Abus and Dbus (called
SSTP bus) is yet a newer high-performance bus adopted
in the XMP system.

For analysis purposes, the following types of requests
are included in the analytical model:

red-miss, representing that the processor requests
a data which is currently not in its L2 cache and
must access memory via the Abus.

memory-reply, representing the process that puts
the requested data onto the Dbus when the
memory read operation is complete.

invalidation, representing that the processor writes
and hits a 'shared state line, and then its L2 cache
issues a signal via the Abus to invalidate other
cache line copies.

d

Fig. 2. XMP bus a id bus requests

447

writeback, representing that the L2 cache must
write back a dirty cache line into the memory via
the Abus and Dbus. The memory write operation
completes asynchronously and write
acknowledgment does not interfere with other bus
requests.

DMA-transfer, representing that the DMA
controller transfers data to/from memory via the
Abus and Dbus.

In Fig. 2, each ‘arc’ connecting two nodes represents a
path along which a request may flow from one node to
the other. For a request departing a node from which two
or more arcs emanate, the request must choose based on
certain probability one of the arcs to pass. The probabili-
ty can be obtained according to the frequency distribu-
tions of processor instructions from existing literatures
[l, 3,7, 13, 15-17] for a wide variety of workloads.

3: SAT Modelling of the XMP Architecture

In this subsection, we apply the SAT modelling meth-
odology presented in [l 11 for the XMP architecture with
SSTP bus scheme. There are three major subsystems,
namely the L2 cache, shared bus, and memory, in the
target model. Performance metrics, such as response
time, SATPI, average execution time per instruction,
partial utilization, partial queue length, and waiting time,
will be derived.

3.1: Modelling the target architecture

In the following, let Hi denote the set of all request
types that will visit the ith subsystem and B, , a subset of
H, , denote the set of blocking request types that will ac-
cess the ith subsystem. We use the notation presented in
Table I for the SAT modelling of the target architecture.
From Table I and Fig. 2, we can see that the request
types of the three subsystems include L1-Miss, Miss, icl,
wb, dma, and rep requests. Two request types, Ll-Miss
and icl, will visit the L2 cache; the LI-Miss is a blocking
request, because the processor waits until it receives a re-
sponse for the instruction that cause the LI-Miss request.
There are five request types that visit the shared bus; two
of them, Miss and id, will block the requesting master.
Three request types, including Miss, wb, and dma, visit
the memory subsystem; only the Miss request will cause
the requester to be blocked. Note that the i d is a block-
ing request to the bus, but a nonblocking one to the L2
cache. This is because no data response is required for
the icl request and the internal operation for the L2 cache
to update its tag will not cause any delay to the requester.

TABLE I
Notation for SAT Modelling of the Target Architecture

Request Types:
+ HLz={Ll-Miss,icl), Hb,={Miss, icl,dma,wb, rep},

H,,={Miss,dma,wb} denote the sets of request types that
visit the L2 cache, shared bus and memory. Ll-Miss, MiAs,
icl, dma, wb, rep are the L1-miss, read-miss, invalidation,
DMA-transfer, writeback, and memory-reply requests. The
request of type dmu includes dinuR (DMA read from
memory) and dmaW (DMA write into memory).

+ B,={LI-Miss}, B,,={Miss,icZ} and B,nem={Miss} denote the
sets of blocking request types that visit the L2 cache,
shared bus, and memory.

Input Parameters:
rz is total number of processors connected to the shared bus.
t,, and tLz are the internal processing time of the processor

and the latency of the L2 cache.
t,, and t,,, are the service time of main memory for read

and write requests, respectively. forb, is the shared bus, i.e.,
Abus or Dbus, arbitration time, when a request arrives at
the bus and the bus is ready.

4 todd, is the time for transmitting an address on the Abus,
excluding the time for Abus arbitration.

tdah is the time for transmitting data of a cache line size on
the Dbus, excluding the time for Dbus arbitration.

pLl and pLz Mm are the probability of L1-cache miss and
L2-cache miss, respectively.

pMms is the probability of read-miss requests from an L2
cache including requests of read-to-M line; note that
PM~~=PLI-M~’LZ_M~~~*

4 prep is the probability of memory-reply per instruction; note
that it is equal to pLI M ~ u Mm.

pwb i s the probability that-an L2-cache miss results in a
writeback of a dirty cache line.

4 pUL is the probability that a request is an
invalidate-cache-line operation.

4 pdm is the probability of DMA transfer per instruction. We
usepdm, and pdmW to denote the probabilities that the DMA
reads from and writes into the main memory, respectively.

The output parameters are def-ined in the development of
the equations.

Note that Pdmo =Pd,mR + PdrrsW.

(1) Service Time: As mentioned previously, in general,
some subsystems take a fixed length of time to serve an
arriving request, while others take a time that depends on
the request type as well as on state of the subsystem
(whether it is busy or not). As a result, the service time,
denoted as St,, of the ith subsystem for a request of type j
is either a given constant value or a function of other
model parameters. Most service times of subsystems are
deterministic, but some are request- or utilization-
dependent. The service times of the processors and L2
cache, which are assumed to be constant, are denoted as

448

t,, and tu, respectively. The service time of the
memory subsystem depends on the type of requests being
served. The service time for a read request, denoted as
tmd, includes the latency of input queue, memory, and
output queue, while a write request, denoted as tmemw in-
cludes the latency of input queue and memory.

The service time of the Abus and the Dbus are depen-
dent on their own utilization. The service time of the
Abus can be derived as follows: let U,, denote the par-
tial utilization of the Abus raised by the requests from a
particular processor. A new request from the other 12-1
processors can be issued during the remaining part of
time (when the Abus is not busy), i.e., (l-U&,). Thus,
(nUAb,-UAb,) is the partial utilization of the Abus taken
to serve the requests from other processors. The proba-
bility that the Abus is busy when a request from a par-
ticular processor arrives is (nUAb,-UAb,)l(l-UAbzu).

A bus tenure is a duration that a master is controlling
(using) the bus. At any point during a master's bus ten-
ure, the bus arbitration process can proceed concurrently
with the data transferring process. We approximate the
arbitration time of a request's bus service tenure by con-
sidering it to be proportional to the probability that bus is
ready when a request arrives. Therefore, the mean time
for transferring an address on Abus, SAbur, is

Similarly, the mean time for transferring a cache line on
Dbus, SDb,, is

n UDbu.r-UDbu.r

l-uDbus
SDbW = (1 - tarbi -k tdakz.

NOR that the equations of partial utilizations UAbw and
UDb, will be derived and presented later.
(2) Response Time: The mean response time of a type j
blocking request to the ith subsystem, R,, is dependent
on the waiting time caused by those requests that are cur-
rently queued or being served in the subsystem and on
the service time of the blocking request itself and can be
estimated as

R , = WGj,, + Si,j; i E {L2, bus, mem}, j E Bi (1)

where c Wlj,, is the mean waiting time of a blocking

request of type j at the ith subsystem caused by all re-
quest types in Hi.
(3) Subsystem Access Time Per Instruction: The subsys-
tem SATPI of the ith subsystem is the sum of the re-
sponse time of those blocking requests from a particular
processor and can be represented as

k E Hi

kE Hi

T = pj Ripj i E {L2, bus, mem} (2)
j E Bi

where pi denotes the probability of type j requests.

(4) Averuge Execution Time Per Instruction: The average
execution time per instruction seen by each processor
equals to the sum of processor internal processing time,
i.e., tCpu, and all SATPIs and can be expressed as

T,, = t,, + T , . (3)
iE {L2,bus,mem}

(5) Partial Utilization: The partial utilization of the ith
subsystem by any request of type k from a particular pro-
cessor, U,,, is the ratio of the service time by the requests
over total elapsed time, T,,, and can be estimated as

k~ HI where pk is the probability that the request is of
type k; S,,, is the ith subsystem service time for the re-
quest of type k.

The partial utilization of the ith subsystem by a par-
ticular processor is U, and can be estimated as

U,, = pk& 1 Texe; i E (U, bus, meml,

m 7

ui= Ui,e i E {L2, bus, mem)
k E Hi

(6) Partial queue length: The average partial queue
length of the ilh subsystem includes the average number
of requests that is currently being served by the subsys-
tem. Therefore, the mean partial queue lengths of re-
quests of type k at the ilh subsystem, Qik, by a particular
processor can be approximated by
Qik =p,(Wi,kr+Si,k)/ Texe; i E {L2, bus, mem), kE Hi.
(7) Wuiting Time: An arriving request at the ith subsys-
tem will wait for the mean residual service time, i.e.,
mean remaining service time, of the request in service,
plus one mean subsystem service time for every other re-
quests in the queue when it arrives. We assume that the
service time at each subsystem is deterministic; so the re-
sidual service time is approximately one-half its service
time. Thus, the waiting time of a request of type j at the
ith subsystem caused by a request of type k, for i
E {bus, mem], and j,ke Hi, is

W i j , k = {
<n-l>((Qi,k- sj,k+ui,k sj,kn>; i f j=k

n ((e,,- Ui,,) Si,k+Ui,k Si,,D); otherwise
The L2 cache must serve the requests from its local

processor and from the shared bus. The requests from the
shared bus, such as invalidation, takes priority in the L2
cache. So if an invalidation request from the shared bus
arrives concurrently with a read request from the proces-
sor, the bus request is served h t . In other words, the
W,,-Mbs,,, is the average: waiting time in the L2 cache of
a request from its local processor and their computation
formula can be derived a s follows:
WL2LI_Mb~,icl=tL2picl E Prob. [CPU succeeds on kth trial]

m

kl

449

where the probability, P,,, tliat a processor successful-
ly accesses its L2 cache is given by

Note that the derivation of Wu,U-Mirs.icr does not follow the
Equation (7), because the L2 cache favors the shared bus
requests.

Pjuccess= (1 - picl>"-'*

(8) Subsystem Utilization: The utilization of one L2
cache (U,) is the sum of the time fraction that the L2
cache takes to serve the requests from the processor and
from the shared bus. It is represented as

The total utilization of Abus and Dbus are equal to
n* UAbw and n* UDbur, respectively.
The t o d utilization of main memory is estimated as

The processor utilization can be obtained by tcpJTexe.

U,= uL2p,-Miss+ uL2,ic1*

',em= n(um~Mirs'Umemwb -k mem,dr~R + u m m , d m d *

(9) Throughput: The processor throughput and system
throughput are measured as million instruction per se-
cond (MIPS) and can computed by UTexe and n/T,,,,
respectively.

(IO) Bottleneck Analysis: In addition to providing per-
formance evaluation results, the other important applica-
tion of the SAT modelling melhodology is to identify the
potential causes of bottlenecks existing in a complex
multiprocessor system. Based on the SAPTI concept, the
SAT modelling methodology has an important advantage
over other modelling approaches in that it tells the archi-
tecture designer which of the various subsystems is sig-
nificant in determining the system performance.
Specifically, from Equation (3), we observe that the rela-
tive contribution of the various SATPIs to the overall
system throughput is immediately obvious.

In other words, a subsystem with the longest SATPI is
the one that limits processor performance and creates a
bottleneck to the system. Particularly, a large difference
between subsystem SATPIs is a symptom indicating ex-
istence of a bottleneck. Since every multiprocessor sys-
tem has at least one bottleneck, we can find that the
subsystem b is a bottleneck, if

We can continue to identify the cause the bottleneck of
the bth subsystem based on the Equation (1) and (2). The
Tb is composed of many time components including the
waiting time of each type of requests arriving at the bth
subsystem and the service time. We can find the maxi-
mum term of these components and identify the type of
request that causes the bottleneck.

We have developed statistical simulations using
SES/workbench [141 to obtain average execution time

T b = 1nm {Tu, Tbw, Tm,-}.

per instruction and validate tlie results from our analyti-
cal model. By comparing the results obtained from both
analytical and simulation models, we find that in about
86% of all cases the magnitude of the percentage differ-
ence in average execution time per instruction from the
two techniques is less than 3%. We can also see that in
less than 1% of all cases the magnitude of the percentage
difference is greater than 5%.

4: Performance Analysis of the XMP System

In this section, we conduct performance evaluation for
the target architecture using the SAT modelling results.
We will describe tlie workloads for feeding the SAT
models and discuss in detail Ihe performance prediction
and bottleneck identification for the target architecture.
Also, we will explore the impact of the following per-
formance influencing factors: memory latency, cache
size, data bus width, as well as DMA transfer.

4.1: Workloads for the analytical Model

We take most of the workloads for the SAT model of
the target architecture from existing literatures. Many pa-
pers [I, 3-4,743, 13, 15-18] published some architecture-
dependent parameters. For examples, Przybylski [131
collected a variety of miss rates for various two-level
cache size/structures; Akella and Siewiorek [3] measured
the number of bits of DMA transfer per instruction ex-
ecuted by a CPU from VAXl1/780 system. To provide
input parameters to the SAT modelling, we obtain the
values of pMkS, pzcl, pwb, and ph, from these papers that
are representative of the workload for which we want to
predict system throughput.

The cache miss rate and DMA transfer rate per instruc-
tion are also important workloads. In general, the cache
miss rate is inversely proportional to the cache size in the
target architecture. Based on the results of Przybylski's
collected, the L2 cache size of 256K bytes size has an
average cache miss rate of 1%. We assume that the num-
ber of bits of DMA transfer per instruction is in tlie range
of 1 to 8 bits and the block data size per DMA transfer is
based on the cache line size. In the case of cache line of
32, bytes, the probability of DMA transfer, i.e., p-,
ranges from U512 to 1/32.

4.2: Performance Prediction and Bottleneck
Identification

Our SAT modelling can serve to predict the processor
throughput and identify potential bottlenecks. We obtain
the processor throughput by computing the average

450

execution time per instruction, as the number of proces-
sors and L2 cache size are varied. Fig. 3 shows these re-
sults. For a system with 8 processors and 256-Kbyte L2
cache, the processor throughput and system throughput
are about 40 MIPS and 320 MIPS, respectively. Howev-
er, as we can see, the processor throughput decreases
with the increase of number of processors. In other
words, there exists a bottleneck causing performance
degradation in the target architecture.

7 r so
P 8 L40

$ Tu 30
4
1 20

8 lo

c;

1 4 8 12 16 20 24
Nunlher of Rocessors

Fig. 3. Processor throughput versus number of processors

For bottleneck identification, we compute the SATPI for
each subsystem. Fig. 4 shows the results with different
number of processors, assuming that 256-Kbyte L2 cache
and 120-nsec memory are used. In each case, the SATPI
of memory is the largest among these subsystems includ-
ing the L2 cache, shared bus, and memory. In addition,
since the increase of the SAPTI in the memory subsys-
tem with varying number of processors keeps being the
largest, the bottleneck must be present in the memory
subsystem.

1
4
8
12
16
20
24

10 2'0 30 4 0 S O N .
Avemgc Execution Time Per Instruct" T,x,

Fig. 4. The SATPh versus nunher of processors
-

(with L2 cache size of 256 Kbytes and memory latency of 120 nsec)

In addition, we can estimate an adequate number of
processors in the target system based on processor uti-
lization. The value of per processor utilization (tqJ T J
can be obtained according to the results shown in Fig. 4.
For a 4-processor system, the per processor utilization is
equal to 65%. When the processor's number is more than
12, the per processor utilization is less than 50%. Based
on the suggestions of Jain [lo], the optimum value of uti-
lization lies in the range from 50% to 75%. Therefore,
the adequate number of processors for the given set of
workload parameters is 12 or sinaller.

4.3: Impact of Memory Latency and Number of
Memory Modules

In this subsection, we apply the SAT models of the
memory subsystem in analyzing the bottleneck in the
memory subsystem and exploring the impacts of memory
latency and number of memory modules on system
throughput.

M m Memory Latency

Wahng b e caused by other processor requests

/ Watng becaused by DMA requests

4 8 I2 1 6 2 0 T m m 2 4 n s]

Fig. Sa. The SATPI coniponents of the nieniory subsystem
(with memory latency of 120 ns and one memory modules)

The SATPI of the memory subsystem (T,,,) can be
used to find the cause of the bottleneck which has been
identified to exist in the memory subsystem in the pre-
vious subsection. Based on the types of memory re-
quests, T,,, can be decomposed into three parts: main
memory latency, the waiting time caused by DMA re-
quests, and the waiting time caused by other processor
requests. Fig. 5a shows the values of Tmem and its compo-
nents versus various number of processors. It shows that
the SATPI is primarily due to tlie memory waiting time
if the number of processors is larger than 8. In other
words, too many requests waiting in the memory subsys-
tem is the cause of the bottleneck. This means that there
is a mismatch between {he memory service rate and the
memory request rate.

The bottleneck in the memory subsystem can be re-
moved either by using faster memory chips to increase
memory service rate or by using multiple memory mod-
ules to distribute the memory requests into the modules.
Thereby, the memory waiting time is reduced and the
performance of the memory subsystem can be improved.
Fig. 5b and 5c show the system throughput impact of
memory latency and number of memory modules, re-
spectively. From Fig. 5b, we can see a knee point at
memory latency of 90 nsec. Before the knee, the
throughput does not increase significantly. This is the
point beyond which the hhroughput decreases rapidly as a
function of memory latency. As the knee of the through-
put curve is considered the optimal operating point [131,
therefore, the main memory latency of 90 nsec under our
workload is a good choic~e.

451

I

12
16

20
2 A .

550
Number of Processors: z 500

450

400

350

300

1 93 I O 77 I.,d0.22

250A R R R U
60 90 120 150 180 nsec

Memory Latency

FIg. 5b. System thoughput versus memory latency

550 Nuniber of Processors:

350

300

250
1 2 3 4

Number of Memory Modules

Fig. 5c. System throughput versus nuniber of memory modules
(with memory latency of 120 nsec)

From Fig. 5c, using two memory modules can improve
the system throughput. However, the curves indicate that
no further performance improvement can be achieved for
number of memory modules greater than two. Fig. 5b
and 5c also imply that even if we minimize the memory
access time, the system throughput may still be limited
because of other types of subsystem access delays, such
as bus delay. (According to Fig. 4, the shared-bus access
delay is the second factor that reduces performance, and
will be further investigated in detail later.) Fig. 5d shows
the SATPI of the memory by using the 90-nsec memory
and two memory modules. By comparing Fig. 5a with
5d, we find that using high speed memory and multiple
memory modules are effective methods for improving
the performance in the memory subsystem. , MenisyLate;; ,

Waiting time caiised by other processor requests

1-a /Waryg (mnie causedby UlcDMArequests

1 2 T 3-=

Fig. 5d. The SATPI coniponents of the nieniory subsystem
(with nieniory latency of 90 nsec and two memory niodules)

4.4: Exploring the cause of bottleneck in shared
bus

To find the factor in the shared-bus subsystem that de-
grades the system performance, we decompose the SAT-
PI of the shared bus, Tbm, into two components: the
waiting time and the holding time. The bus holding time
is the sum of arbitration time and addresddata transfer-
ring time. Fig. 6a shows the results. Since the arbitration
time is overlapped with bus service tenure, increasing the
number of processors results in decrease in the bus hold-
ing time. Furthermore, Fig. 6a also shows that the wait-
ing time on the Dbus is longer than on the Abus, because
the time of transferring a cache line on the Dbus usually
takes a longer time than the time of transferring an ad-
dress on the Abus. In other words, the SATPI of the
shared bus is more sensitive to the Dbus holding time
than to the Abus. Therefore, in the shared-bus subsystem,
the Dbus with a long waiting time is one of the major
factors that drops the processor throughput.

4: 16

8 24
E 20

1 2 '4 4, 5 6 7 l n s e e

Fig. 6a. Shared bus access tinie (Dbus width of 8 bytes)

4.5: Impact of DMA transfer

Another special consideration in our performance
model is the impact of DMA transfer. Fig. 7 shows the
evaluation results. It is clear that if the number of bits of
DMA transfer per instruction is less than 1 bit (i.e., less
than 1 Mbit/sec per MIPS following Amdahl's Law [l]),
the system throughput remains almost constant for up to
12 processors. As the number of bits of DMA transfer
per instruction is increased up to 8 bits (i.e., 1 Mbyte/sec
for 1 MIPS following the results measured from VAX
machine by Akella and Siewiorek [3]), the system
throughput drops about 45%. In addition, Fig. 5a also
shows the impact of DMA transfer on memory access
time; one bit of DMA transfer per instruction is assumed.
If the number of processors is less than 8, the memory
access time impact of DMA transfer is negligible. For 16
processors system, the effect of DMA transfer on the
SATPI of the memory subsystem is significant (increase
to about 16.5%). For applications which require higher
DMA transfer rate than 1 bit per instruction, the impact
of DMA transfer on the SATPI of memory will increase.

452

Thus we believe that the impact of DMA transfer for
most applications will be significant and should be in-
cluded in the performance model of a shared bus multi-
processor system.

I I

1 4 8 12 16 20 24
Numkr of Rocrssors

Fig. 7. Iinpact of DMA transfer one processor throughput

5: Conclusion

We have developed an analytical model based on sub-
system access time (SAT) modelling approach for the
XMP shared-bus multiprocessor system. The system is
composed of bus masters, such as processor and DMA
controller, and subsystems, including cache, bus, and
memory. A key characteristic of the target system, name-
ly the support of separate address-bus (Abus) and data-
bus (Dbus) with split transaction, pipelined cycle, is
modelled. Furthermore, several performance factors:
cache interference, bus interference, memory interfer-
ence, and the impact of DMA transfer are also consid-
ered in the model. The SAT modelling can facilitate
computing the average subsystem access time per in-
struction (SATPI) of all subsystems and evaluating some
initial system design issues. By comparing these SATPIs,
we can easily identify the subsystem having the longest
SATPI to be the bottleneck and then explore potential
improvements of system performance.

Using the analytical model, we have explored the im-
pact of DMA transfer on system performance. We find
that the effect of DMA transfer drops the system
throughput about up to 45% according to the workloads
measured by Akella and Siewiorek from VAX machines
[3]. Consequently, it is essential to include the impact of
DMA transfer in a performance model.

We have also explored the application of the SATPI of
the shared bus subsystem. Result shows that the shared
bus performance is quite sensitive to the Dbiis delay
(more than the Abus delay).

References

[l] T. Adams and R. Zimmerman, "An analysis of 8086 in-
struction set usage in MS DOS programs," Proc. Third
Symposiunt on Architectural Support for Programming
Language and Oper. Syst., pp. 152-161,1989.

[2] G. M. Amdahl, "Validity of the single processor ap-
proach to archiving large scale computing capability,"
American Fedemtion! of Infoimance Processing Soci-
eties, pp. 483-485, 19167.
J. Akella and D. P. Siewiorek, "Modeling and measure-
ment of the impact of input/output on system performan-
ce," Proc. of the 18th .Annu. Symp. Comput. Architecture,

M. C. Chiang and G. S. Sohi, "Evaluating design choices
for shared bus multiprocessors in a throughput-oriented
environment," IEEE trms. Comput., vol. 14, no. 3, pp.
297-317, Mar. 1992.
A. L. Decegama, "The Technology of parallel processing
- parallel processing architectures and VLSI hardware,
volume I," Prentice-Hull In.ternation.ul Editions, 1989.
P. J. Denning and J. P. Buzen, "The Operational analysis
of queueing network model," ACM Comput. Surveys,

S . J. Eggers and R. H. Katz, "A Characterization of shar-
ing in parallel programs and its applicability to coheren-
cy protocol evaluation," Proc. of the 15th Annu. Symp.
Comput. Architecture, pp. 373-382, 1988.

[8] J. L. Hennessy and D. A. Patterson, "Computer architec-
ture a qualitative approach," Morgan Kuufmann., 1990.

[9] Intel XA-MP Architccture Specification ver 3.0, July
1991.

[lo] R. Jain, "The Art of computer systems performance
analysis," John Wiley ,& Sons, 1991.

[l l] C. S. Lee and T. M. Parng, "A Subsystem-oriented per-
formance analysis methodology for shared-bus multipro-
cessors," NTUEE Tech. Report, Sep. 1993.

[12] S . Leutenegger and M. K. Vernon, "A mean-value per-
formance analysis of ar new multiprocessor architecture,"
in Proc. ACM SIGMETRICS Col$ Measurement and
Modelling of Comput. Syst., May 1988.

[13] S. A. Przybylski, "Cache and memory hierarchy design:
a performance-directed approach," Morgan Kuuj?",
1990.

[141 SES/workbench User's manual and Reference's Manual,
Jan. 1991.

[15] R. T. Short and H. M. Levy, "A Simulation of two-level
caches," Proc. of the 15th Annu. Syrnp. Comput. Archi-
tecture, pp. 81-88, 1988.

[16] J. P. Singh, H. S . Stone, and D. F. Thiebaut, "A Model of
worMoads and its use in miss-rate prediction for fully as-
sociative caches," IEEE Trans. Comput., pp. 81 1-825,
July 1992.

[17] T. F. Tsuei and M. K. Vernon, "A Multiprocessor bus
design model validated by system measurement," IEEE
Truns. Parallel und Lk~tributed Systems, vol. 3, no. 6,
pp. 712-727, Nov. 1992.

[18] M. K. Vernon, E. D. Lazowska, and J. Zahorjan, "An
Accurate and efficient performance analysis technique
for multiprocessor snooping cache-consistency proto-
cols," Proc. of the 1Sih Annu. Symp. Cotnput. Arclzitec-
ture, pp. 308-315, June 1988.

[3]

pp 390-399, 1991.
[4]

[5]

[6]

vol. 10, pp. 25-261, St:p. 1978.
[7]

453

