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Abstract 

This paper proposes a cooperation protocol based on 
the cost-balanced strategy for  the Object-Sorting Task in 
multi-agent robotic systems. The protocol coordinates 
agents for  carrying objects to destinations eficiently and 
effectively. Each agent autonomously makes subjective 
optimal decision, then the coordination algorithm re- 
solves their conflicts by balancing the load, which is 
measured in terms of cost. Since coordination can be 
performed simultaneously with agent movement, it incurs 
very little overhead. The protocol is eficient because 
every agent runs the same algorithm to obtain the com- 
mon results without further communication. Implementa- 
tion of the protocol is realized on a distributed modular 
agent architecture for design simplicity, flexibility, and 
reactivity. Experimental results have shown that I )  the 
protocol has better performance than a previously pro- 
posed help-based cooperation protocol, 2 )  the protocol is 
flexible, and 3)  the protocol can effectively utilize the 
agent power to achieve linear and superlinear speedup in 
most cases. 

1. Introduction 

For designing multi-agent robotic systems, parallel per- 
formance and cooperation requirements of tasks are the 
main interests and consideration. Some tasks can be exe- 
cuted in parallel for better performance. Tasks such as 
painting a wide wall or cleaning rooms can be partitioned 
into several subtasks, each of which is then'assigned to an 
agent. If all agents work independently, i.e. no resource 
contention or goal conflicts, the performance is linearly 
speeded up. Otherwise, if there is resource contention 
(e.g. short of paintbrushes or brooms) or conflicts (e.g. 
agents have different favorite colors), the performance 
speedup will be sublinear. Besides, some other tasks 
require explicit cooperation among the agents, e.g. con- 
ferences, moving a heavy equipment, etc. This paper focus 
on a specific multi-agent task, the Object-Sorting Task, 
which has the characteristics of both parallelism and coop- 
eration. 

There has been much research in multi-agent robotic 
systems. Some of them proposed mechanism to create the 
foundation of multi-agent robotic systems. For example, 
Fukuda's CEBOT system [5] showed the self-organizing 
behavior of a group of heterogeneous robotic agents; 
Asama et al. proposed the ACTRESS architecture [4] for 
connecting equipment, robots and computers together to 
compose autonomous multi-agent robotic systems by de- 
signing underlining communication architecture; Wang 
proposed several distributed functional primitives for 
distributed robotic systems [ 113. Other researchers worked 
on solving multi-agent tasks, e.g. Mataric addressed the 
problem of distributing a task over a collection of 
homogeneous mobile robots [9]; Arkin et al. assessed the 
impact on performance of a society of robots in a foraging 
and retrieval task when simple communication was 
introduced [2,3]; Alami et al. coordinated the multiple- 
robot navigation with a plan-merging paradigm for the 
task of transporting containers in harbors [ 11; Lin and Hsu 
provided a fully distributed cooperation protocol for the 
Object-Sorting Task in multi-agent robotic systems [7,8]. 

Either centralized or distributed approaches can be 
employed to solve a multi-agent task. A centralized model 
uses a powerful agent to plan and schedule the subtasks 
for every agent. However, for tasks with NP complexity, 
the centralized approach is impractical. Furthermore, the 
control agent must be powerful enough to achieve 
satisfactory performance. High complexity of system 
design, high cost and low reliability are the other 
drawbacks of centralized approaches. 

On the other hand, a distributed approach decreases 
design complexity and cost, while increasing reliability. 
Agents are autonomous and equal. An agent plans for 
itself and communicates with the others in order to ac- 
complish the global task. Because every agent interacts 
directly with the environment, it is reactive. However, 
each agent has only local knowledge of the task and the 
environment. Hence, it cannot make the best decisions of 
the global task alone. Furthermore, negotiation or social 
cooperation rules for conflict resolution are required to 
coordinate among them. A distributed approach for deal- 
ing with multi-agent tasks with a modular and reactive 
agent architecture was proposed in [7 ] .  Conflicts are re- 
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solved by designing social rules into the help-based co- 
operation protocol (HCP) that coordinates agent actions. 

In order to improve the performance of HCP, a cost- 
balanced cooperation protocol (CCP) has been devel- 
oped. It has the advantages of both centralized and dis- 
tributed approaches. The Object-Sorting Task (OST) is 
used to demonstrate the approach. Section 2 introduces 
and discusses the OST, and summarizes the HCP. The 
CCP and its implementation are described in Sections 3 
and 4. Simulation and experimental results are shown in 
Section 5. 

2. The Object-Sorting Task (OST) 

The OST was formally defined and discussed in [8], 
which showed that the OST is a NP-complete problem for 
finding the optimal performance. This section describes its 
definition, complexity, and problems. Finally, the 
previous proposed HCP is summarized. 

2.1 Definition 

Let 0={ of, ..., ow} be a set of stationary objects that is ran- 
domly distributed in a bounded area. Every object, 
o,=(l,,d,,n,), is associated with an initial location l,, a desti- 
nation location d,, and the number n, of agents for move- 
ment. An object 0, can be moved only if there are at least 
n, agents available to move it. Let R={rl, ... rN} be the set 
of agents and n,, be the maximal number of agents to 
move any single object, an object-sorting task can be 
completed only if N is not less than nmW, Agents search 
for objects and move them to their destinations. When all 
the objects have been moved to their destinations, the task 
is finished. 

Typical application examples of OST .are foraging and 
retrieval tasks, explosives detection and handling, 
automatic guided vehicle dispatching for components 
transportation in manufacturing systems, surveillance, etc. 
In this research, the following assumptions were made. 
The agents are homogeneous mobile robots with the basic 
capabilities for navigation, obstacle avoidance, object 
recognition, and object handling. The agents have no 
prior knowledge about the environment, nor the other 
agents. Finally, the communication system is reliable, and 
the agents communicate with the others by broadcast or 
point-to-point channel. 

There are many operation models associated with dif- 
ferent strategies to do the task, e.g. an object is assigned to 
the agents at random, movement of the objects are 
controlled by a predefined precedence, actions of the 
agents and objects are all central-controlled, etc. The 
performance evaluation is based on the cost to accomplish 
the task. Generally speaking, an agent searches for 
objects, coordinates its object schedule with the other 

agents, and (cooperates with the other agents to move 
objects. So, am agent spends its cost on search, coordina- 
tion and coolperation. The cost of the applied operation 
model is the maximum cost among all agents' costs. 

Algorithm OptimaLOST. 

1. FOR each permutation of objects o,, ..., oM DO 
(1) Let the object sequence is sl, ... sM. 
(2) FOR each s,=(l,,d,,n,) in sf, ... sM DO 

a) Let Comb(r) represent all the r-combinations 
from the N agents { rf, ... r N } .  

b) For each combination of Comb(n,), 
assign the agents to the object s,. 

(3) For each assignment of agents for sl, ... sM, calculate 

2. The optimal solution is the object sequence with agent 
assignment, which has minimal cost. 

its cost. 

Finding am optimal solution of OST is a high complex- 
ity problem. '4lgorithm Optimal-OST describes this search 
process. It lists all object sequences, then assign agents to 
the objects for each sequence. There are M! object 
sequences from M objects, and C(N,nJ agent assignments 
for each object oi, where C(k,r) is the number of r- 
combinations from k. Hence, the search space is M ! ( E  
C(N,ni)), 1 S i I M .  Let E(C(N,i)) be the mean of C(N,i), 1 
2 i I N. The search space becomes M!(E(C(N,i)))'. Table 
1 lists the order of search spaces for different number of objects 
when N=10 agents. 

Table 1: The order of search spaces for  N=10 agents 

2.2 Problems 

The OST conisists of two kinds of work. One is the search 
work: searching for objects, another is the object process- 
ing work: carrying objects to destinations. The former has 
search problem while the latter has coordination and 
deadlock problems. Moreover, load balance, cost balance 
and task termination are their common probiems. To 
solve the OST, these problems need to be addressed. 
1. Search. All the objects must be found in order to at- 

tack the task. The most intuitive way is to let agents 
search the entire area so that they can find all the 
objects. How do they search efficiently ? 

2. Coordination. How do the agents coordinate for as- 
signing themselves to a found object ? That is, for a 
given object, which agents should work together to 
move it ? and who makes the decision ? 
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3. Deadlocks. When each agent autonomously selects an 
object and none of the selected object has enough 
agents for movement, a deadlock occurs. A coordi- 
nation solution must have solved it. 

4. Load balance and cost balance. How can the work- 
load be distributed to the agents ? The smaller the 
maximum cost of the agents is, the better perform- 
ance is. Intuitively, more balanced cost may reduce 
the maximum cost among the agents. 

5. Termination . How do every agent realize the global 
task has been accomplished ? 

2.3 Help-based Cooperation Protocol (HCP) 

Our previous work proposed a help-based cooperation 
protocol for the OST. The protocol was implemented in a 
modular, reactive agent architecture as showed in Fig. 1. 
The search module, communication module and motion 
module are all finite state automata. They share the global 
state information and change the state information accord- 
ing to their state functions. The search module searches 
and identifies objects. The motion module performs the 
function of object movement alone or with other agents. 
The communication module communicates with the other 
agents in order to cooperate with them. 

SEARC 
module 

Data 

Control Motor- a& 
Fig. 1: Agent architecture of the Object-Sorting Task 

The working area is equally partitioned into disjoint N 
subareas, and each subarea is assigned to an agent. 
Advantages of the equally partition are load balance, cost 
balance, and parallel performance of the search work. 
Each agent exhaustively searches its subarea, requests 
help from the others once it has found a large object, and 
selects its partners. After there are enough agents arriving 
at the found object, they carry the object to its destination. 
The cooperation protocol defines how and when an agent 
requests help, how and when the other agents offer help, 
and deadlock handling in order to coordinate the agents 
for accomplishing the task. With this approach, the 
objects are partitioned into several parts. Each part of the 

objects is treated by a specified agent that requests help 
and determines which agents will be its partners for every 
object in this part of objects. Since each agent is autono- 
mous, simultaneous selection of partners by several agents 
may cause a deadlock. Several deadlock handling schemes 
were also provided in the HCP. 

The above approach utilized simultaneous subarea 
search for parallel performance, and help-based coopera- 
tion protocol for solving the coordination, deadlocks, and 
termination problems. The protocol was realized into each 
agent's state transition function so that agents reacted and 
cooperated quickly. Nevertheless, the performance of 
OST can be further improved. Object distribution affects 
the workload balance of subareas which may further affect 
the problem of cost balance. Unbalanced workload may 
cause some agents to finish their subareas before the 
others. Furthermore, subtask assignments and help-based 
strategies impose agents to request help and wait once 
finding a large object, which limited the global knowledge 
of agents. Hence, agents cannot make cost-optimal 
decisions. The CCP has been developed to address this 
issue. The results of CCP is better than HCP. In addition, 
parallel search performance is reserved and deadlock 
handling becomes natural and easy. 

3. Cost-balanced Cooperation Protocol (CCP) 

Like HCP, the CCP uses equal partition of the working 
area for parallel search. However, only the search work is 
partitioned instead of partitioning objects into subtasks. 
Instead of requesting help once an object is found, every 
object information is broadcast and saved when received. 
With the overall object information, each agent makes its 
subjective optimal schedule and coordinates with the oth- 
ers for the global schedule. In order to efficiently resolve 
conflicts, social rules are employed into a coordination 
algorithm from which decisions are obtained by each 
agent independently so as to minimize coordination 
overhead. 

3.1 Coordination points 

A coordination point specifies when the agents should 
start coordinating the object schedule for the found ob- 
jects. The simplest way is to coordinate the object sched- 
ule after having searched the entire area. Since the CCP 
requires every agent to save the information of found 
objects, the storage demand expands with the increasing 
number of objects. 

On the other hand, coordination can start during 
subarea search under storage constraints or in order to 
reduce storage requirements. Coordination can be acti- 
vated by a certain number of objects found, a part of area 
searched, or a fixed time interval if there is a common 
clock. The measurement is called coordination interval 
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(CI), e.g. coordination is activated every 100 time units 
(CI=100) or every 20 objects found (CI=20). The criteria 
of a certain number of objects found was employed in this 
research since it is more natural to the OST. 

It is possible that more than one object are found at the 
same time. Hence, the actual number of objects found may 
be more than the CI when a coordination process begins. 
Agents must have the same object set for each 
coordination process. Under such circumstance, either the 
exactly CI number of higher priority objects or all found 
objects attend current coordination. Object ID can help to 
determine object priorities. 

3.2 Object identification 

In order to clearly identify objects during coordination, a 
consistent representation of objects is necessary. Gener- 
ally, assigning a unique ID for each object is appropriate. 
However, various assignment methods should be suitably 
applied under different situations. Several methods are 
discussed: 
1) Predefined attributes: Object IDS are predefined so that 

it can be identified by agents. An object can be 
identified from its outside look, size, symbol, or 
even initial location. For example, a two dimen- 
sional coordinate can determine the order of object 
IDS by comparing x-coordinate first then y- 
coordinate. 

2) Coordinator: Where there is no way to specify prede- 
fined object IDS, this method can be applied. Every 
object found is reported to the coordinator, then the 
coordinator assigns its ID and broadcasts to the 
others. 

3 )  Other more complicated distributed algorithms [6,10] 
concerning the order of discrete events may be em- 
ployed when the coordinator method is unsuitable. 

3.3 Coordination algorithm 

Every found object is broadcast, and every agent stores all 
received object data. After reaching a coordination point 
or having searched the entire area, agents start co- 
ordination for determining the object schedule by a cost- 
balanced coordination algorithm. When the found objects 
have been scheduled, the current coordination process 
ends. The scenario continues until all the objects have 
been found and scheduled. 

Coordination among agents are achieved by coordina- 
tion strategies. There is no polynomial time algorithm for 
finding an overall optimal object schedule because the 
OST is a NP-complete problem. The utilized strategies are 
based on the balanced cost and greed. Algorithm Co- 
ordination depicts them. All agents invoke this algorithm 
to coordinate their individual object schedules. 

At first, every agent selects its cost-optimal object and 

broadcasts its selection. Among all the selected objects, 
the best cost-optimal object is scheduled, i.e. enough 
agents are as,signed to it. Finally, every assigned agent 
updates its cost and location. Agents repeat the process 
until all objects are scheduled. 

Algorithm Coordination. 
1 .  Every agent selects its current cost-optimal object, and 

broadcasts to the others. Let the selected objects be 

2. Select the lbest cost-optimal object, Opt, among the se- 
SI, ..., S k ,  J S k S N .  

lected objects sl, ..., Sk. 

(1) FOR each object in s! ... sk DO 
0 Let the current object be oi=(Zi,di,ni). 

FOR each agent rj DO 
]Let CAj be the accumulated cost of rj , and 
CRj be the cost of rj to reach oi. 
(Cy = CAj + CRj 

0 Mi = the ni-th smallest cost from Cil,Ci2, ..., 
CiAJ 

(2) Opt = the object with the minimum M; 

(1) Let Opt be op=(lp,dp'n ). 
3. Assign agents to Opt, and update data. 

Assigned agents are t i e  np agents with smaller 
cost Cpi, 15 i 2 N. 

(2)  IF 1 aim one of the assigned agents THEN 
append Opt to my object schedule 
accumulate my cost with ( Mp + the cost from 
lp to dp 

0 my location = d P .  4. Repeat from step 1 until all object attended in this 
coordination have been scheduled. 

Obviously, this approach is cost balance because the 
selection strategy is to choose the agents with smaller 
cost. Besides, deadlock-free is guaranteed by the two 
facts: there is a consistent object order in every agent's 
object schedule and there are enough agents assigned to 
every object. 

Since every agent selects one object for coordination 
at a time, the number of selected objects is at most N. For 
each selected object, it requires time complexity O(N) to 
calculate all costs of agents. So, the cost for scheduling an 
object is O(AJ2). Because there are M objects, the com- 
plexity of algorithm Coordination is O(MN2) for overall 
consideration. However, the complexity is O(MN) when 
CI=1 for general speaking. 

Every agent runs the same coordination algorithm to 
obtain its object schedule. Thus, the algorithm can be 
implemented on a dedicated coordinator agent only. In 
this manner, every agent sends its decision to the coordi- 
nator instead of broadcast. The coordinator runs the algo- 
rithm and sends the results to the others for updating their 
schedules, costs, and locations. 
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There are several differences between HCP and CCP. 
1. Task partition: HCP partitions objects and assign 

each part to an agent while CCP partitions the search 
task only. 
Object assignment: An object is assigned to which 
agents is determined by requesvoffer protocol in HCP 
while by coordination protocol in CCP. 
Handling object found: An agent deals with an object 
at a time (request help, select partners, then move 
object) in HCP while an agent broadcasts the object 
information in CCP when an object is found. For the 
CCP, coordination of the object schedule is delayed 
till the number of objects found having reached the 
CI . 
Knowledge: HCP makes decision with local knowl- 
edge other than global knowledge in CCP. 

2. 

3. 

4. 

4. Cooperation architecture 

The cooperation architecture employed to realize coopera- 
tion protocols in multi-agent robotic systems is an agent 
architecture with embedded cooperation protocol. It is 
reactive, modular, and cooperative. 

start 
1 

SEARCHING 

subarea ,, finish 
w 

Fig. 2: State transition diagrams of coordination-based 
cooperation protocol 

The agent architecture is a finite state automaton 
(FSA) composed of several functional modules that coop- 
erate and coordinate each other through the state transition 
function. The FSA implements the cooperation protocol 
which coordinates the multi-agent robotic system. Every 
agent working on the architecture cooperates and coordi- 
nates with the others to achieve common goals. Every 
functional module is also a FSA which is a subset of the 
global FSA. Modularized decomposition simplifies the 
design complexity of each module. 

The agent architecture of the OST is showed in Fig. 1 

which have been utilized by the HCP and CCP ap- 
proaches. The transition diagram of CCP is showed in 
Fig. 2 in which circles represent states and arrows repre- 
sent transitions. At first, agents start searching in 
SEARCHING state, broadcast found object data. After 
finishing search, an agent broadcasts this message and 
enters DECISION state. During searching, agents will 
start a coordination process if they reach a coordination 
point, then exchange local optimal selections and run 
Coordination algorithm to obtain the overall object 
schedule. Coordination and object handling can perform 
simultaneously. In DECISION state, an agent picks its 
next object schedule and changes to HELPING state for 
going toward the target object. When an agent arrives at 
the object, its state becomes WAITING. If there are 
enough agents for object movement, they enter MOVING 
state and carry the object to its destination. They each 
repeat the movement cycle until all assigned object tasks 
having been accomplished. 

If there is no assigned schedule when an agent in 
DECISION and not all objects are scheduled, the agent 
will wait for an assigned object task. This is for consider- 
ing the cases when agents are in coordination or specially 
when the CI = M ,  i.e. coordination will start only if all the 
area has been searched. An agent enter FINISH state 
when there is no remaining object schedule. 

The global FSA is further decomposed into three 
FSAs. The three functional modules execute concurrently 
and take care only its own subset transition functions. Fig. 
3 shows their transition diagram. 

subare 
finish I:--::: DECISION 

Search module Comm module Motion module 

Fig. 3: State transition of functional modules 

I 

100 100 100 100 100 

1 BaseLocation 1 

Fig. 4: The simulation map for  5x2 partition 

U 
cl 
U 
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5. Simulation 

The object-sorting task was simulated in the simulator 
developed on Sun workstation with graphic user interface 
showing task execution. The simulator is a testbed for 
testing different operation models on the object-sorting 
task. 

5.1 Simulation environment 

The working area was equally partitioned into N subareas, 
and each subarea was assigned to an agent. The area is 
represented in a two-dimensional coordinate system, e.g. 
500x200. The partition of the area is represented by a 
mXn notation, m in x-axis direction and n in y-axis direc- 
tion. In the experiment, the area was 500x200. Fig. 4 
shows the map used in the simulation for N=10 agents 
with 5x2 partition. The partitions for different number of 
agents N used in the experiment are shown in Table 2. 

Table 2: Partition and the number of agents 

N I  10 1 20 I 30 I 40 I 50 
Partition I 5x2 I 5x4 I 6x5 I 10x4 I 10x5 

The performance was evaluated with the number of 
time steps. The following code fragment sketches the 
actions performed by the agent at each time step. 

FOR each agent i , 
do the search module of agent i; 
do the motion module of agent i; 
do the communication module of agent i. 

Fig. 5: Move directions Fig. 6: Sensor ranges 

The area is a grid area, and the agents can only move 
to one of the four locations from a location in a time step 
as the Fig. 5. The agents can sense the objects located in 
the grids adjacent to the agents as the Fig. 6. 

The agents may use any exhaustive search method to 
search their subarea. In this experiment, the row-major 
order method was used. They start search from the initial 
location, the (0,l) location of their subarea, to the right 
side boundary, and search the first three rows which are 
under sensor range. When they have reached the right side 
boundary, they search the second three rows and change 

the search direction from right to left. When they has 
reached the left side boundary, they change the search 
direction frorn left to right and start searching the next 
three rows. Agents repeat the search process until the 
subarea has been searched. Each agent will return to its 
base location after finishing its object schedule. 

Each object was randomly generated for its destina- 
tion, initial location, and the number of required agents. 
This experiment generated 10 sets of objects for each 
number of objects M using n m a ~ l O .  All object sets were 
run at N=10, 20, 30, 40, and 50. The number of objects 
used in the experiment are M= 1, 10, 20, 30, 40, 50, 100, 
and 200 objects. 

160000 
140000 [ 7 
120000 - 

~ 100000 
.E 80000 
F 60000 - 

40000 - 

20000 - 

08" 
0 50 100 150 200 

Number of Objects, M 

Fig. 7: Col 
CCP when 

40000 
35000 
30000 

~ 25000 

E- 
15000 
10000 
5000 

0 

.g 20000 

garison of execution time for  the HCP and 

I 

0 50 100 150 200 

Number of Objects, M 

-- HCP 
I 

Fig. 8: Comparison of execution time for  the HCP and 
CCP when N=50 

5.2 Simulation results 

The experiment was performed by varying the number of 
agents N ,  and the number of objects M .  For a given num- 
ber M of ob-jects, the execution time was the average of 
the execution time from the 10 generated object sets of M .  
The experiment included three parts: the performance 
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comparison between the HCP and CCP, the comparison of 
different coordination intervals, and the speedup effect of 
the CCP. 

First, experimental results showed that the CCP is 
better than the HCP. Fig. 7 and 8 typically present the 
execution time comparison between the HCP and CCP 
under N=IO and 50 agents. The CCP results include both 
CI=1 and CI=M, i.e. coordination activated once finding 
an object or after having searched the entire area. No 
matter what value of CI is chosen, the CCP is always 
superior to the HCP. Through global coordination and 
cost-balanced strategy, the CCP can efficiently perform 
the object-sorting task. 

15000 

g 10000 

S O 0 0  

0 

120000 

80000 8 60000 

40000 

20000 

[- 

0 SO 100 150 200 

Coordination Interval, CI 

30 1 1 1  1.04 I 1.02 
40 1 1 1  1.05 I 1.03 

Fig. 9: Execution time for  different coordination interval 
when N=10 

0.99 I 0.93 
1.04 I 1.00 

50 
100 
200 

M = 1 0  

1 1.04 1.04 1.04 1.00 
1 1.08 1.09 1.12 1.09 
1 1.09 1.14 1.15 1.15 

Fig. IO: Execution time for  direrent coordination interval 
when N=50 

Second, the effect of different CI is showed in Fig. 9 
and 10 where CI=1, 10, 20, 30, 40, 50, 100, and 200. 
Larger CI can make better decision due to holding more 
information for coordination, and smaller CI requires 
more coordination processes. Hence, larger CI has better 
performance than smaller CI generally. On the other hand, 
smaller CI requires less storage and is faster in generating 
the object schedule for movement. In addition, the 
difference between CI=1 and CI=M becomes smaller 
when there are more agents such as N=50 in Fig. 10. 
Hence, the CCP is flexible in choosing Cl. 

1 2 m  

1OOOOO 

8oooO 

8 6oooO 

4 m  

e, 

-.- N=10 

N=20 

N=30 - N=40 

-*- 

-A- ~ ~ 5 0  

0 50 100 150 200 

Number of Objects, M 

Fig. 11: The execution time for  different number of 
objects when N=10,20,30,40, and 50 

When the generated object sets are applied to N 2  10, 
the execution time decreases with the increasing number 
of agents as showed in Fig. 11. It shows that the protocol 
can effectively utilize the increased agent-power. 

Table 3 further lists the speedup ratio relative to the 
execution time unit of N=10. Let the execution time of N 
be CN. The speedup ratio SN is defined as: 

S N =  ( C N / N ) ( 1 0 /  clo) 

Table 3: The speedup ratio relative to N=10. 

Number of I Number of agents, N 
object, M I 10 I 20 I 30 I 40 I 50 
1 I l l  0.82 I 0.67 I 0.61 I 0.53 
10 1 1 1  0.95 I 0.88 I 0.85 I 0.82 
20 I l l  1.01 I 0.96 I 0.92 I 0.88 

For most cases with M>30, the speedup is linear or 
superlinear. There is obvious improvement on objects 
movement because more agents make more objects 
movement in parallel. For example, assume there are three 
objects require 5 ,  6, and 7 agents respectively. They will 
be moved in sequence when N=10 while moved in parallel 
when N=20. The speedup ratio is 3. On the other hand, for 
small number of objects, e.g. M=l, more agents decrease 
the search time due to smaller subarea. But, there is no 
obvious improvement on object processing time since 
there is no significant increasing parallelism. Hence, the 
results also provide a useful reference when adding more 
agents for speedup. Where there is a superlinear speedup, 
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adding more agents can be beneficial. Under sublinear 
speedup condition, the benefit of adding more agents is 
not as significant. 

6. Conclusion 

In this paper, we provided a cost-balanced cooperation 
protocol (CCP) for coordinating multi-agent robotic sys- 
tems to do  the Object-Sorting Task. The protocol is 1) 
more efficient than the help-bused cooperation protocol, 
2 )  flexible in determining the criteria when a coordination 
process should start for the object schedule, and 3) 
effective in agent utilization. 

By combining the centralized and distributed ap- 
proaches, this paper has demonstrated a model for multi- 
agent tasks that offers efficient reactivity as we11 as the 
performance of global coordination. The cooperation 
architecture presented in this paper can be further gener- 
alized to handle more multi-agent tasks in distributed 
agent systems. 
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