
Cost-balanced Cooperation Protocol in Multi-agent Robotic Systems

Fang-Chang Lin and Jane Yung-jen H s u
Department of Computer Science and Information Engineering

National Taiwan University
Taipei, Taiwan, R. 0. C.

Abstract

This paper proposes a cooperation protocol based on
the cost-balanced strategy for the Object-Sorting Task in
multi-agent robotic systems. The protocol coordinates
agents for carrying objects to destinations eficiently and
effectively. Each agent autonomously makes subjective
optimal decision, then the coordination algorithm re-
solves their conflicts by balancing the load, which is
measured in terms of cost. Since coordination can be
performed simultaneously with agent movement, it incurs
very little overhead. The protocol is eficient because
every agent runs the same algorithm to obtain the com-
mon results without further communication. Implementa-
tion of the protocol is realized on a distributed modular
agent architecture for design simplicity, flexibility, and
reactivity. Experimental results have shown that I) the
protocol has better performance than a previously pro-
posed help-based cooperation protocol, 2) the protocol is
flexible, and 3) the protocol can effectively utilize the
agent power to achieve linear and superlinear speedup in
most cases.

1. Introduction

For designing multi-agent robotic systems, parallel per-
formance and cooperation requirements of tasks are the
main interests and consideration. Some tasks can be exe-
cuted in parallel for better performance. Tasks such as
painting a wide wall or cleaning rooms can be partitioned
into several subtasks, each of which is then'assigned to an
agent. If all agents work independently, i.e. no resource
contention or goal conflicts, the performance is linearly
speeded up. Otherwise, if there is resource contention
(e.g. short of paintbrushes or brooms) or conflicts (e.g.
agents have different favorite colors), the performance
speedup will be sublinear. Besides, some other tasks
require explicit cooperation among the agents, e.g. con-
ferences, moving a heavy equipment, etc. This paper focus
on a specific multi-agent task, the Object-Sorting Task,
which has the characteristics of both parallelism and coop-
eration.

There has been much research in multi-agent robotic
systems. Some of them proposed mechanism to create the
foundation of multi-agent robotic systems. For example,
Fukuda's CEBOT system [5] showed the self-organizing
behavior of a group of heterogeneous robotic agents;
Asama et al. proposed the ACTRESS architecture [4] for
connecting equipment, robots and computers together to
compose autonomous multi-agent robotic systems by de-
signing underlining communication architecture; Wang
proposed several distributed functional primitives for
distributed robotic systems [113. Other researchers worked
on solving multi-agent tasks, e.g. Mataric addressed the
problem of distributing a task over a collection of
homogeneous mobile robots [9]; Arkin et al. assessed the
impact on performance of a society of robots in a foraging
and retrieval task when simple communication was
introduced [2,3]; Alami et al. coordinated the multiple-
robot navigation with a plan-merging paradigm for the
task of transporting containers in harbors [11; Lin and Hsu
provided a fully distributed cooperation protocol for the
Object-Sorting Task in multi-agent robotic systems [7,8].

Either centralized or distributed approaches can be
employed to solve a multi-agent task. A centralized model
uses a powerful agent to plan and schedule the subtasks
for every agent. However, for tasks with NP complexity,
the centralized approach is impractical. Furthermore, the
control agent must be powerful enough to achieve
satisfactory performance. High complexity of system
design, high cost and low reliability are the other
drawbacks of centralized approaches.

On the other hand, a distributed approach decreases
design complexity and cost, while increasing reliability.
Agents are autonomous and equal. An agent plans for
itself and communicates with the others in order to ac-
complish the global task. Because every agent interacts
directly with the environment, it is reactive. However,
each agent has only local knowledge of the task and the
environment. Hence, it cannot make the best decisions of
the global task alone. Furthermore, negotiation or social
cooperation rules for conflict resolution are required to
coordinate among them. A distributed approach for deal-
ing with multi-agent tasks with a modular and reactive
agent architecture was proposed in [7] . Conflicts are re-

72
0-8186-7267-6/96 $05.00 0 1996 IEEE

solved by designing social rules into the help-based co-
operation protocol (HCP) that coordinates agent actions.

In order to improve the performance of HCP, a cost-
balanced cooperation protocol (CCP) has been devel-
oped. It has the advantages of both centralized and dis-
tributed approaches. The Object-Sorting Task (OST) is
used to demonstrate the approach. Section 2 introduces
and discusses the OST, and summarizes the HCP. The
CCP and its implementation are described in Sections 3
and 4. Simulation and experimental results are shown in
Section 5.

2. The Object-Sorting Task (OST)

The OST was formally defined and discussed in [8],
which showed that the OST is a NP-complete problem for
finding the optimal performance. This section describes its
definition, complexity, and problems. Finally, the
previous proposed HCP is summarized.

2.1 Definition

Let 0={ of, ..., ow} be a set of stationary objects that is ran-
domly distributed in a bounded area. Every object,
o,=(l,,d,,n,), is associated with an initial location l,, a desti-
nation location d,, and the number n, of agents for move-
ment. An object 0, can be moved only if there are at least
n, agents available to move it. Let R={rl, ... rN} be the set
of agents and n,, be the maximal number of agents to
move any single object, an object-sorting task can be
completed only if N is not less than nmW, Agents search
for objects and move them to their destinations. When all
the objects have been moved to their destinations, the task
is finished.

Typical application examples of OST .are foraging and
retrieval tasks, explosives detection and handling,
automatic guided vehicle dispatching for components
transportation in manufacturing systems, surveillance, etc.
In this research, the following assumptions were made.
The agents are homogeneous mobile robots with the basic
capabilities for navigation, obstacle avoidance, object
recognition, and object handling. The agents have no
prior knowledge about the environment, nor the other
agents. Finally, the communication system is reliable, and
the agents communicate with the others by broadcast or
point-to-point channel.

There are many operation models associated with dif-
ferent strategies to do the task, e.g. an object is assigned to
the agents at random, movement of the objects are
controlled by a predefined precedence, actions of the
agents and objects are all central-controlled, etc. The
performance evaluation is based on the cost to accomplish
the task. Generally speaking, an agent searches for
objects, coordinates its object schedule with the other

agents, and (cooperates with the other agents to move
objects. So, am agent spends its cost on search, coordina-
tion and coolperation. The cost of the applied operation
model is the maximum cost among all agents' costs.

Algorithm OptimaLOST.

1. FOR each permutation of objects o,, ..., oM DO
(1) Let the object sequence is sl, ... sM.
(2) FOR each s,=(l,,d,,n,) in sf, ... sM DO

a) Let Comb(r) represent all the r-combinations
from the N agents { rf, ... r N } .

b) For each combination of Comb(n,),
assign the agents to the object s,.

(3) For each assignment of agents for sl, ... sM, calculate

2. The optimal solution is the object sequence with agent
assignment, which has minimal cost.

its cost.

Finding am optimal solution of OST is a high complex-
ity problem. '4lgorithm Optimal-OST describes this search
process. It lists all object sequences, then assign agents to
the objects for each sequence. There are M! object
sequences from M objects, and C(N,nJ agent assignments
for each object oi, where C(k,r) is the number of r-
combinations from k. Hence, the search space is M ! (E
C(N,ni)), 1 S i I M . Let E(C(N,i)) be the mean of C(N,i), 1
2 i I N. The search space becomes M!(E(C(N,i)))'. Table
1 lists the order of search spaces for different number of objects
when N=10 agents.

Table 1: The order of search spaces for N=10 agents

2.2 Problems

The OST conisists of two kinds of work. One is the search
work: searching for objects, another is the object process-
ing work: carrying objects to destinations. The former has
search problem while the latter has coordination and
deadlock problems. Moreover, load balance, cost balance
and task termination are their common probiems. To
solve the OST, these problems need to be addressed.
1. Search. All the objects must be found in order to at-

tack the task. The most intuitive way is to let agents
search the entire area so that they can find all the
objects. How do they search efficiently ?

2. Coordination. How do the agents coordinate for as-
signing themselves to a found object ? That is, for a
given object, which agents should work together to
move it ? and who makes the decision ?

73

3. Deadlocks. When each agent autonomously selects an
object and none of the selected object has enough
agents for movement, a deadlock occurs. A coordi-
nation solution must have solved it.

4. Load balance and cost balance. How can the work-
load be distributed to the agents ? The smaller the
maximum cost of the agents is, the better perform-
ance is. Intuitively, more balanced cost may reduce
the maximum cost among the agents.

5. Termination . How do every agent realize the global
task has been accomplished ?

2.3 Help-based Cooperation Protocol (HCP)

Our previous work proposed a help-based cooperation
protocol for the OST. The protocol was implemented in a
modular, reactive agent architecture as showed in Fig. 1.
The search module, communication module and motion
module are all finite state automata. They share the global
state information and change the state information accord-
ing to their state functions. The search module searches
and identifies objects. The motion module performs the
function of object movement alone or with other agents.
The communication module communicates with the other
agents in order to cooperate with them.

SEARC
module

Data

Control Motor- a&
Fig. 1: Agent architecture of the Object-Sorting Task

The working area is equally partitioned into disjoint N
subareas, and each subarea is assigned to an agent.
Advantages of the equally partition are load balance, cost
balance, and parallel performance of the search work.
Each agent exhaustively searches its subarea, requests
help from the others once it has found a large object, and
selects its partners. After there are enough agents arriving
at the found object, they carry the object to its destination.
The cooperation protocol defines how and when an agent
requests help, how and when the other agents offer help,
and deadlock handling in order to coordinate the agents
for accomplishing the task. With this approach, the
objects are partitioned into several parts. Each part of the

objects is treated by a specified agent that requests help
and determines which agents will be its partners for every
object in this part of objects. Since each agent is autono-
mous, simultaneous selection of partners by several agents
may cause a deadlock. Several deadlock handling schemes
were also provided in the HCP.

The above approach utilized simultaneous subarea
search for parallel performance, and help-based coopera-
tion protocol for solving the coordination, deadlocks, and
termination problems. The protocol was realized into each
agent's state transition function so that agents reacted and
cooperated quickly. Nevertheless, the performance of
OST can be further improved. Object distribution affects
the workload balance of subareas which may further affect
the problem of cost balance. Unbalanced workload may
cause some agents to finish their subareas before the
others. Furthermore, subtask assignments and help-based
strategies impose agents to request help and wait once
finding a large object, which limited the global knowledge
of agents. Hence, agents cannot make cost-optimal
decisions. The CCP has been developed to address this
issue. The results of CCP is better than HCP. In addition,
parallel search performance is reserved and deadlock
handling becomes natural and easy.

3. Cost-balanced Cooperation Protocol (CCP)

Like HCP, the CCP uses equal partition of the working
area for parallel search. However, only the search work is
partitioned instead of partitioning objects into subtasks.
Instead of requesting help once an object is found, every
object information is broadcast and saved when received.
With the overall object information, each agent makes its
subjective optimal schedule and coordinates with the oth-
ers for the global schedule. In order to efficiently resolve
conflicts, social rules are employed into a coordination
algorithm from which decisions are obtained by each
agent independently so as to minimize coordination
overhead.

3.1 Coordination points

A coordination point specifies when the agents should
start coordinating the object schedule for the found ob-
jects. The simplest way is to coordinate the object sched-
ule after having searched the entire area. Since the CCP
requires every agent to save the information of found
objects, the storage demand expands with the increasing
number of objects.

On the other hand, coordination can start during
subarea search under storage constraints or in order to
reduce storage requirements. Coordination can be acti-
vated by a certain number of objects found, a part of area
searched, or a fixed time interval if there is a common
clock. The measurement is called coordination interval

74

(CI), e.g. coordination is activated every 100 time units
(CI=100) or every 20 objects found (CI=20). The criteria
of a certain number of objects found was employed in this
research since it is more natural to the OST.

It is possible that more than one object are found at the
same time. Hence, the actual number of objects found may
be more than the CI when a coordination process begins.
Agents must have the same object set for each
coordination process. Under such circumstance, either the
exactly CI number of higher priority objects or all found
objects attend current coordination. Object ID can help to
determine object priorities.

3.2 Object identification

In order to clearly identify objects during coordination, a
consistent representation of objects is necessary. Gener-
ally, assigning a unique ID for each object is appropriate.
However, various assignment methods should be suitably
applied under different situations. Several methods are
discussed:
1) Predefined attributes: Object IDS are predefined so that

it can be identified by agents. An object can be
identified from its outside look, size, symbol, or
even initial location. For example, a two dimen-
sional coordinate can determine the order of object
IDS by comparing x-coordinate first then y-
coordinate.

2) Coordinator: Where there is no way to specify prede-
fined object IDS, this method can be applied. Every
object found is reported to the coordinator, then the
coordinator assigns its ID and broadcasts to the
others.

3) Other more complicated distributed algorithms [6,10]
concerning the order of discrete events may be em-
ployed when the coordinator method is unsuitable.

3.3 Coordination algorithm

Every found object is broadcast, and every agent stores all
received object data. After reaching a coordination point
or having searched the entire area, agents start co-
ordination for determining the object schedule by a cost-
balanced coordination algorithm. When the found objects
have been scheduled, the current coordination process
ends. The scenario continues until all the objects have
been found and scheduled.

Coordination among agents are achieved by coordina-
tion strategies. There is no polynomial time algorithm for
finding an overall optimal object schedule because the
OST is a NP-complete problem. The utilized strategies are
based on the balanced cost and greed. Algorithm Co-
ordination depicts them. All agents invoke this algorithm
to coordinate their individual object schedules.

At first, every agent selects its cost-optimal object and

broadcasts its selection. Among all the selected objects,
the best cost-optimal object is scheduled, i.e. enough
agents are as,signed to it. Finally, every assigned agent
updates its cost and location. Agents repeat the process
until all objects are scheduled.

Algorithm Coordination.
1 . Every agent selects its current cost-optimal object, and

broadcasts to the others. Let the selected objects be

2. Select the lbest cost-optimal object, Opt, among the se-
SI, ..., S k , J S k S N .

lected objects sl, ..., Sk.

(1) FOR each object in s! ... sk DO
0 Let the current object be oi=(Zi,di,ni).

FOR each agent rj DO
]Let CAj be the accumulated cost of rj , and
CRj be the cost of rj to reach oi.
(Cy = CAj + CRj

0 Mi = the ni-th smallest cost from Cil,Ci2, ...,
CiAJ

(2) Opt = the object with the minimum M;

(1) Let Opt be op=(lp,dp'n).
3. Assign agents to Opt, and update data.

Assigned agents are t i e np agents with smaller
cost Cpi, 15 i 2 N.

(2) IF 1 aim one of the assigned agents THEN
append Opt to my object schedule
accumulate my cost with (Mp + the cost from
lp to dp

0 my location = d P . 4. Repeat from step 1 until all object attended in this
coordination have been scheduled.

Obviously, this approach is cost balance because the
selection strategy is to choose the agents with smaller
cost. Besides, deadlock-free is guaranteed by the two
facts: there is a consistent object order in every agent's
object schedule and there are enough agents assigned to
every object.

Since every agent selects one object for coordination
at a time, the number of selected objects is at most N. For
each selected object, it requires time complexity O(N) to
calculate all costs of agents. So, the cost for scheduling an
object is O(AJ2). Because there are M objects, the com-
plexity of algorithm Coordination is O(MN2) for overall
consideration. However, the complexity is O(MN) when
CI=1 for general speaking.

Every agent runs the same coordination algorithm to
obtain its object schedule. Thus, the algorithm can be
implemented on a dedicated coordinator agent only. In
this manner, every agent sends its decision to the coordi-
nator instead of broadcast. The coordinator runs the algo-
rithm and sends the results to the others for updating their
schedules, costs, and locations.

75

There are several differences between HCP and CCP.
1. Task partition: HCP partitions objects and assign

each part to an agent while CCP partitions the search
task only.
Object assignment: An object is assigned to which
agents is determined by requesvoffer protocol in HCP
while by coordination protocol in CCP.
Handling object found: An agent deals with an object
at a time (request help, select partners, then move
object) in HCP while an agent broadcasts the object
information in CCP when an object is found. For the
CCP, coordination of the object schedule is delayed
till the number of objects found having reached the
CI .
Knowledge: HCP makes decision with local knowl-
edge other than global knowledge in CCP.

2.

3.

4.

4. Cooperation architecture

The cooperation architecture employed to realize coopera-
tion protocols in multi-agent robotic systems is an agent
architecture with embedded cooperation protocol. It is
reactive, modular, and cooperative.

start
1

SEARCHING

subarea ,, finish
w

Fig. 2: State transition diagrams of coordination-based
cooperation protocol

The agent architecture is a finite state automaton
(FSA) composed of several functional modules that coop-
erate and coordinate each other through the state transition
function. The FSA implements the cooperation protocol
which coordinates the multi-agent robotic system. Every
agent working on the architecture cooperates and coordi-
nates with the others to achieve common goals. Every
functional module is also a FSA which is a subset of the
global FSA. Modularized decomposition simplifies the
design complexity of each module.

The agent architecture of the OST is showed in Fig. 1

which have been utilized by the HCP and CCP ap-
proaches. The transition diagram of CCP is showed in
Fig. 2 in which circles represent states and arrows repre-
sent transitions. At first, agents start searching in
SEARCHING state, broadcast found object data. After
finishing search, an agent broadcasts this message and
enters DECISION state. During searching, agents will
start a coordination process if they reach a coordination
point, then exchange local optimal selections and run
Coordination algorithm to obtain the overall object
schedule. Coordination and object handling can perform
simultaneously. In DECISION state, an agent picks its
next object schedule and changes to HELPING state for
going toward the target object. When an agent arrives at
the object, its state becomes WAITING. If there are
enough agents for object movement, they enter MOVING
state and carry the object to its destination. They each
repeat the movement cycle until all assigned object tasks
having been accomplished.

If there is no assigned schedule when an agent in
DECISION and not all objects are scheduled, the agent
will wait for an assigned object task. This is for consider-
ing the cases when agents are in coordination or specially
when the CI = M , i.e. coordination will start only if all the
area has been searched. An agent enter FINISH state
when there is no remaining object schedule.

The global FSA is further decomposed into three
FSAs. The three functional modules execute concurrently
and take care only its own subset transition functions. Fig.
3 shows their transition diagram.

subare
finish I:--::: DECISION

Search module Comm module Motion module

Fig. 3: State transition of functional modules

I

100 100 100 100 100

1 BaseLocation 1

Fig. 4: The simulation map for 5x2 partition

U
cl
U
Ll

Object
Destination

76

5. Simulation

The object-sorting task was simulated in the simulator
developed on Sun workstation with graphic user interface
showing task execution. The simulator is a testbed for
testing different operation models on the object-sorting
task.

5.1 Simulation environment

The working area was equally partitioned into N subareas,
and each subarea was assigned to an agent. The area is
represented in a two-dimensional coordinate system, e.g.
500x200. The partition of the area is represented by a
mXn notation, m in x-axis direction and n in y-axis direc-
tion. In the experiment, the area was 500x200. Fig. 4
shows the map used in the simulation for N=10 agents
with 5x2 partition. The partitions for different number of
agents N used in the experiment are shown in Table 2.

Table 2: Partition and the number of agents

N I 10 1 20 I 30 I 40 I 50
Partition I 5x2 I 5x4 I 6x5 I 10x4 I 10x5

The performance was evaluated with the number of
time steps. The following code fragment sketches the
actions performed by the agent at each time step.

FOR each agent i ,
do the search module of agent i;
do the motion module of agent i;
do the communication module of agent i.

Fig. 5: Move directions Fig. 6: Sensor ranges

The area is a grid area, and the agents can only move
to one of the four locations from a location in a time step
as the Fig. 5. The agents can sense the objects located in
the grids adjacent to the agents as the Fig. 6.

The agents may use any exhaustive search method to
search their subarea. In this experiment, the row-major
order method was used. They start search from the initial
location, the (0,l) location of their subarea, to the right
side boundary, and search the first three rows which are
under sensor range. When they have reached the right side
boundary, they search the second three rows and change

the search direction from right to left. When they has
reached the left side boundary, they change the search
direction frorn left to right and start searching the next
three rows. Agents repeat the search process until the
subarea has been searched. Each agent will return to its
base location after finishing its object schedule.

Each object was randomly generated for its destina-
tion, initial location, and the number of required agents.
This experiment generated 10 sets of objects for each
number of objects M using n m a ~ l O . All object sets were
run at N=10, 20, 30, 40, and 50. The number of objects
used in the experiment are M= 1, 10, 20, 30, 40, 50, 100,
and 200 objects.

160000
140000 [7
120000 -

~ 100000
.E 80000
F 60000 -

40000 -

20000 -

08"
0 50 100 150 200

Number of Objects, M

Fig. 7: Col
CCP when

40000
35000
30000

~ 25000

E-
15000
10000
5000

0

.g 20000

garison of execution time for the HCP and

I

0 50 100 150 200

Number of Objects, M

-- HCP
I

Fig. 8: Comparison of execution time for the HCP and
CCP when N=50

5.2 Simulation results

The experiment was performed by varying the number of
agents N , and the number of objects M . For a given num-
ber M of ob-jects, the execution time was the average of
the execution time from the 10 generated object sets of M .
The experiment included three parts: the performance

77

comparison between the HCP and CCP, the comparison of
different coordination intervals, and the speedup effect of
the CCP.

First, experimental results showed that the CCP is
better than the HCP. Fig. 7 and 8 typically present the
execution time comparison between the HCP and CCP
under N=IO and 50 agents. The CCP results include both
CI=1 and CI=M, i.e. coordination activated once finding
an object or after having searched the entire area. No
matter what value of CI is chosen, the CCP is always
superior to the HCP. Through global coordination and
cost-balanced strategy, the CCP can efficiently perform
the object-sorting task.

15000

g 10000

S O 0 0

0

120000

80000 8 60000

40000

20000

[-

0 SO 100 150 200

Coordination Interval, CI

30 1 1 1 1.04 I 1.02
40 1 1 1 1.05 I 1.03

Fig. 9: Execution time for different coordination interval
when N=10

0.99 I 0.93
1.04 I 1.00

50
100
200

M = 1 0

1 1.04 1.04 1.04 1.00
1 1.08 1.09 1.12 1.09
1 1.09 1.14 1.15 1.15

Fig. IO: Execution time for direrent coordination interval
when N=50

Second, the effect of different CI is showed in Fig. 9
and 10 where CI=1, 10, 20, 30, 40, 50, 100, and 200.
Larger CI can make better decision due to holding more
information for coordination, and smaller CI requires
more coordination processes. Hence, larger CI has better
performance than smaller CI generally. On the other hand,
smaller CI requires less storage and is faster in generating
the object schedule for movement. In addition, the
difference between CI=1 and CI=M becomes smaller
when there are more agents such as N=50 in Fig. 10.
Hence, the CCP is flexible in choosing Cl.

1 2 m

1OOOOO

8oooO

8 6oooO

4 m

e,

-.- N=10

N=20

N=30 - N=40

-*-

-A- ~ ~ 5 0

0 50 100 150 200

Number of Objects, M

Fig. 11: The execution time for different number of
objects when N=10,20,30,40, and 50

When the generated object sets are applied to N 2 10,
the execution time decreases with the increasing number
of agents as showed in Fig. 11. It shows that the protocol
can effectively utilize the increased agent-power.

Table 3 further lists the speedup ratio relative to the
execution time unit of N=10. Let the execution time of N
be CN. The speedup ratio SN is defined as:

S N = (C N / N) (1 0 / clo)

Table 3: The speedup ratio relative to N=10.

Number of I Number of agents, N
object, M I 10 I 20 I 30 I 40 I 50
1 I l l 0.82 I 0.67 I 0.61 I 0.53
10 1 1 1 0.95 I 0.88 I 0.85 I 0.82
20 I l l 1.01 I 0.96 I 0.92 I 0.88

For most cases with M>30, the speedup is linear or
superlinear. There is obvious improvement on objects
movement because more agents make more objects
movement in parallel. For example, assume there are three
objects require 5 , 6, and 7 agents respectively. They will
be moved in sequence when N=10 while moved in parallel
when N=20. The speedup ratio is 3. On the other hand, for
small number of objects, e.g. M=l, more agents decrease
the search time due to smaller subarea. But, there is no
obvious improvement on object processing time since
there is no significant increasing parallelism. Hence, the
results also provide a useful reference when adding more
agents for speedup. Where there is a superlinear speedup,

78

adding more agents can be beneficial. Under sublinear
speedup condition, the benefit of adding more agents is
not as significant.

6. Conclusion

In this paper, we provided a cost-balanced cooperation
protocol (CCP) for coordinating multi-agent robotic sys-
tems to do the Object-Sorting Task. The protocol is 1)
more efficient than the help-bused cooperation protocol,
2) flexible in determining the criteria when a coordination
process should start for the object schedule, and 3)
effective in agent utilization.

By combining the centralized and distributed ap-
proaches, this paper has demonstrated a model for multi-
agent tasks that offers efficient reactivity as we11 as the
performance of global coordination. The cooperation
architecture presented in this paper can be further gener-
alized to handle more multi-agent tasks in distributed
agent systems.

7. References

R. Alami, F. Robert, F. Ingrand, and S. Suzuki, "Multi-
robot Cooperation through Incremental Plan-Merging",
Proc. of IEEE International Conference on Robotics and
Automation, Nagoya, Japan, May 1995, pp. 2573-2579.

R. C. Arkin, T. Balch and E. Nitz, "Communication of Be-
havioral State in Multi-agent Retrieval tasks", Proc. of
1993 IEEE International Conference on Robotics and
Automation, GA, May 1993.

R. C. Arkin and J. D. Hobbs, "Dimensions of Communica-
tion and Social Organization in Multi-Agent Robotic Sys-
tems", Proc. Simulation of Adaptive Behavior 92, Hono-
lulu, HI, Dec. 1992.

H. Asama, A. Matsumoto, and Y. Ishida, "Design of an
Autonomous and Distributed Robot System: ACTRESS",
Proc. of IEEE/RSJ Intemational Workshop on Intelligent
Robots anld Systems '89, Tsukuba, Japan, Sept. 1989, pp.
283-290.

T. Fukuda, S. Nakagawa, Y. Kawauchi, and M. Buss,
"Structure Decision Method for Self Organizing Robots
Based on ICell Structure - CEBOT", Proc. of IEEE Intema-
tional Corlference on Robotics and Automation, Scottsdale
Arizona, 1989, pp. 695-700.

L. Lampalrt, "The Mutual Exclusion Problem: Part I1 --
Statement and Solutions", JACM, Vol. 33, No. 2, Apr.
1986, pp. 327-348.

F. C. Lin and J. Y.-j. Hsu, "Cooperation and Deadlock-
Handling for an Object-Sorting Task in a Multi-agent Ro-
botic System", Proc. of IEEE Inter. Con$ on Robotics and
Automation, Nagoya, Japan, May 1995, pp. 2580-2585.

F. C. Lin and J. Y.-j. Hsu, "A Genetic Algorithm Approach
for the Object-Sorting Task", Proc. of IEEE Intemational
Conference on Systems, Man, and Cybernetics, Vancouver,
Canada, Oct. 1995.

M. Matanic, "Minimizing Complexity in Controlling a Mo-
bile Robot Population", Proc. of I992 IEEE International
Con$ on Robotics and Automation, Nice, 1992, pp. 830-
835,

[lo] J. Wang, "Establish a Globally Consistent Order of Discrete
Events in1 Distributed Robotic Systems", Proc. of 1993
IEEE ICRA, GA, May 1993, pp. 853-858.

[111 J. Wang, "Operating Primitives Supporting Traffic Regula-
tion and Control of Mobile Robots under Distributed Ro-
botic Systems", Proc. of IEEE Intemational Conference on
Robotics and Automation, Nagoya, Japan, May 1995, pp.
1613-1618.

79

