
Adaptive and Fault-Tolerant Routing
with 100% Node Utilization for Mesh Multicomputer

Sheng-De Wang�and Ming-Jer Tsai
Department of Electrical Engineering, National Taiwan University,

Taipei 106, TAIWAN

Abstract

In this paper, we propose an adaptive and deadlock-free
routing algorithm to tolerate irregular faulty patterns using
two virtual channels per physical link. It can improve the
node utilization up to 100%. When a node becomes faulty
or recovered, the central control unit constructs a directed
path graph which is used for generating the intermediate
nodes of the message path. Thus a message can be trans-
mitted from sources or to destinations within faulty blocks
via a set of “intermediate nodes”. Our method requires the
global failure information if the central control unit is not
available.

1. Introduction

Message routing achieves inter-node communication in
large-scale parallel computers. In a concurrent multicom-
puter, wormhole switching [9] is widely used; however, it
suffers the deadlock problem when not well-designed in a
fault environment. Thus, a reliable routing algorithm is sup-
posed to be deadlock-free and fault-tolerant.

Glass and Ni [6] have proposed a partially-adaptive rout-
ing algorithm to toleraten � 1 faults in ann-dimensional
mesh based on the turn model. In anN �N 2-dimensional
mesh, Cunningham and Avresky [4] can improve the per-
formance and provide fault tolerance for up toN �1 faults.
Besides, Hadas and Brandt [7] have proposed an original-
based routing algorithm to tolerate square faulty blocks.
When a fault arises, their method has a hot-spot effect and
will non-minimally route a message even if the message
does not encounter any square faulty block.

Moreover, Linder and Harden [8] have proposed a fully-
adaptive and fault-tolerant routing algorithm based on the
concept of virtual interconnection networks. However, it re-
quires exponential number of virtual channels per physical
link and tolerates small number of faults. Dally and Aoki

�Corresponding author. E-mail: sdwang@hpc.ee.ntu.edu.tw.

[5] have proposed a dynamic algorithm to remove cycles
from packet wait-for graph instead of channel dependency
graphs. Thereby, the virtual channel utilization can be con-
siderably improved. In their algorithm, the number of faults
tolerated and virtual channels used depends on the location
of faults.

Using three virtual channels per physical link, Chien and
Kim [3] have proposed a planar-adaptive routing algorithm
to tolerate disconnected faulty blocks with distance of no
less than two in at least one dimension. Using extra four
virtual channels per physical link, Boppana and Chalasani
[1] can enhance a fully-adaptive algorithm to tolerate dis-
connected faulty blocks with distance of no less than two
in at least one dimension. Using three virtual channels per
physical link, the algorithm [2] presented by Boura and Das
provides full-adaptivity and fault-tolerance. It can tolerate
disconnected faulty blocks with distance of at least three.

In addition, Su and Shin [10] have proposed an adap-
tive routing algorithm to tolerate disconnected faulty blocks
with distance of three or more in at least one dimension
using only two virtual channels per physical link which is
so far the smallest. However, their algorithm can possibly
reach a deadlock and has been improved to tolerate discon-
nected faulty blocks with distance of no less than two in at
least one dimension [11].

As was stated above, many adaptive routing algorithms
[1, 3, 10] are designed to tolerate a large number of faults
by introducing rectangular faulty blocks. Thus, some good
nodes are regarded as faulty ones and are prohibited from
interchanging messages with the other good nodes. It im-
plies that the node utilization may drastically degrade when
the faulty nodes densely distribute in certain particular pat-
terns. In this paper, using two virtual channels per physical
link, we develop an adaptive and deadlock-free routing al-
gorithm, by which two good nodes can communicate with
each other if there is at least one path between them. No-
tation used in this paper are summarized in Table 1, where
two nodes are connected if there is a link between them, and
two setsSi andSj are connected if there is a nodeA 2 Si
and a nodeB 2 Sj such that nodesA andB are connected

Table 1. Summary of Notation
V INi the virtual interconnection networki (i =

1; 2).
V Ci;j the virtual channel in dimensioni of

V INj .
num(V Ci;j) the channel number of virtual channel

V Ci;j .
NS the source node.
ND the destination node.
NC the current node.
NI the intermediate node.
NR the node receives the message from an in-

termediate node.
Bi the faulty blocki.
M0 the interconnection network outside all

faulty blocks.
Mi the sub-meshi (i > 0) contained in a

faulty block.
S�1 a set consists of faulty nodes.
Si a set consists of good nodes inMi (i � 0).
Vi vertexi in the directed path graph.

Gi;j a set consists of the entry(wi; dim; dir),
wherewi 2 Si is an intermediate node to
enterSj (Si andSj are connected) for the
message with header inMi, and the mes-
sage is routed towi viaV INdir if Si 6= S0,
then is routed out fromwi via V Cdim;dir.

Ti;j a set consists of the entry(wi; dim; dir),
wherewi 2 Si is an intermediate node to
reachND 2 Sj (Si may or may not con-
nect toSj) for the message with header in
Mi, and the message is routed towi via
V INdir if Si 6= S0, then is routed out from
wi via V Cdim;dir.

nodes.
The rest of this paper is organized as follows. In the next

section, we first present a method to construct the directed
path graph which is used to generate the intermediate node
of the message path. In section 3, we propose an adap-
tive and deadlock-free routing algorithm to tolerate irregu-
lar faulty patterns using two virtual channels per physical
link. In section 4, we conclude this paper.

2. Construct the directed path graph

In this section, algorithm 2.1 is presented to construct the
directed path graph which is used to generate the message
path in the next section. Before describing it, Definitions 1
and 2 are needed.

Definition 1 (Safe/Unsafe Node)For an n-dimensional
mesh, a good node is called an unsafe node if it connects to
at least two faulty/unsafe nodes, and is called a safe node
otherwise.

Definition 2 (Ancestor, Common Ancestor, Least Com-
mon Ancestor) In the directed path graph, if there is a
directed path from vertexA to vertexB, then vertexA is
called an ancestor of vertexB. If vertexA is an ancestor
of both verticesB andC, then vertexA is called the com-
mon ancestor of verticesB andC. For two verticesB and
C, common ancestorA is called the least common ances-
tor if no other common ancestor is located in each directed
shortest path from vertexA to vertexB and in each directed
shortest path from vertexA to vertexC.

Algorithm 2.1 /* When a node becomes faulty or recov-
ered, algorithm 2.1 is executed by the central control
unit. And, the central control unit will sendTi;� to all
nodes inSi after algorithm 2.1 is completed. */

1 Let the directed path graph be an empty graph.

2 Add vertexV0 to the directed path graph and setx to 1.

3 For all faulty blocksB1 toBp do /* construct the directed
path graph, and computeGk;j andGj;k for each di-
rected edge(Vk ; Vj). */

3.1 Find sub-meshesMx;Mx+1; � � � ;Mx+q�1 in Bi

such that

(1) Each good node inBi belongs to exactly one
Mj (x � j � x+ q � 1).

(2) For eachMj (x � j � x+q�1), the number
of faulty nodes inMj is less than the dimen-
sion ofMj .

(3) For eachMj (x � j � x+ q � 1), there ex-
istsM0 = Ma1 ;Ma2 ; � � � ;Mab = Mj such
that (1)Sac andSac+1 are connected and (2)
ac < ac+1, whereMa2 ;Ma3 ; � � � ;Mab are
all in Bi.

3.2 For j = x to x+ q � 1 do

3.2.1 Add vertexVj to the directed path graph.

3.2.2 For eachSk (0 � k < j) connected toSj
do

3.2.2.1 Add a directed edge(Vk ; Vj) to the
directed path graph.

3.2.2.2 LetGk;j andGj;k be empty sets.

3.2.2.3 For each pair of connected nodes
wk 2 Sk andwj 2 Sj do

3.2.2.3.1Gk;j = Gk;j [(wk ; dim; 1).

3.2.2.3.2Gj;k = Gj;k[(wj ;�dim; 2).

/* dim denotes the directed dimension
where the link from nodewk to nodewj

is located. */

3.3 x = x+ q.

4 For j = 0 to x � 1 do /* computeTj;k for 0 � j �
x � 1; 0 � k � x � 1, andj 6= k, wherex is the
number of vertices in the directed path graph. */

4.1 Fork = 0 to x� 1 (k 6= j) do

4.1.1 If vertexVk is an ancestor of vertexVj in
the directed path graph, then

4.1.1.1Tj;k is set to;.

4.1.1.2 For each directed shortest pathPup
from vertexVk to vertexVj do.

4.1.1.2.1Let (Va; Vj) be a directed
edge in Pup. Then, Tj;k is set to
Tj;k [Gj;a.

4.1.2 Else if vertexVj is an ancestor of vertexVk
in the directed path graph, then

4.1.2.1Tj;k is set to;.

4.1.2.2 For each directed shortest path
Pdown from vertexVj to vertexVk do

4.1.2.2.1Let (Vj ; Va) be a directed
edge inPdown. Then,Tj;k is set to
Tj;k [Gj;a.

4.1.3 Else if verticesVj andVk has no common
ancestor in the directed path graph, thenTj;k
is set to;.

4.1.4 Else

4.1.4.1Tj;k is set to;.

4.1.4.2 For each least common ancestor
Vlca of verticesVj andVk do

4.1.4.2.1For each directed shortest
pathPup from vertexVlca to vertexVj
do

4.1.4.2.1.1Let (Va; Vj) be a directed
edge inPup. Then,Tj;k is set toTj;k[
Gj;a.2

An example is shown in Figure 1(a), where 36 faulty
nodes spread over a21� 21 mesh. Based on Definition 1,
three faulty blocksB1,B2, andB3 are formed by the deac-
tivating method. After algorithm 2.1 is completed, we have

1 B1 finds sub-meshM1, B2 finds sub-meshM2, andB3

finds sub-meshesM3 andM4 due to step 3.1.

2 The directed path graph is constructed as shown in Fig-
ure 1(b) due to step 3.2.1.

Table 2. Tj;k obtained for the injured mesh
shown in Figure 1(a).

j n k 0 1 2 3 4

0 - G0;1 G0;2 G0;3 G0;3

1 G1;0 - G1;0 G1;0 G1;0

2 G2;0 G2;0 - G2;0 G2;0

3 G3;0 G3;0 G3;0 - G3;4

4 G4;3 G4;3 G4;3 G4;3 -

3 For each directed edge(Vk; Vj) in the directed path
graph,Gk;j andGj;k is obtained due to step 3.2.2,
whereG0;1 = f((6,16),-1,1), ((7,16),-1,1), ((8,-16),-
1,1), ((9,15),-0,1), ((9,14),-0,1), ((9,13),-0,1)g,G1;0 =
f((6,15),1,2), ((7,15),1,2), ((8,15),1,2), ((8,15),0,2),
((8,14),0,2), ((8,13),0,2)g, G0;2 = f((11,10),-1,1),
((12,10),-1,1)g, G2;0 = f((11,9),1,2), ((12,9),1,2)g,
G0;3 = f((3,8),-1,1)g, G3;0 = f((3,7),1,2)g, G3;4 =
f((3,7),-1,1)g,G4;3 = f((3,6),1,2)g.

4 Tj;k (0 � j � 4, 0 � k � 4, j 6= k) is obtained as shown
in Table 2 due to step 4, whereTj;0 is set toGj;0 for
1 � j � 3 andT4;3 is set toG4;3 due to step 4.1.1,
T0;k is set toG0;k for 1 � k � 3 andT3;4 is set to
G3;4 due to step 4.1.2,Tj;k (j 6= k), excludingT3;4, is
set toGj;0 for 1 � j � 3; 1 � k � 4 andT4;k is set to
G4;3 for k = 1; 2 due to step 4.1.4.

Another example is shown in Figure 2(a), where 2 faulty
blocksB1 andB2 form in 21 � 21 injured mesh. After
algorithm 2.1 is completed, we have

1 B1 finds sub-meshesM1 � M7, andB2 finds sub-
meshesM8 �M9.

2 The directed path graph is constructed as shown in Fig-
ure 2(b).

3 For each directed edge(Vk; Vj) in the directed path
graph,Gk;j andGj;k is obtained.

4 Tj;k (0 � j � 9, 0 � k � 9) is obtained as shown in
Table 3.

In step 3.1, each faulty blockBi can find sub-meshes by
a deterministic algorithm. Thus, our method requires the
global failure information if the central control unit is not
available.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

8

9

0

5

6

10

11

12

13

14

15

16

17

18

19

20

1

3

4

2

7 M3

M4

M2

M1

M0

: good node

: faulty node

1 2 3

0

4

(b)

-1

(a)

Figure 1. (a) shows a 21� 21 injured mesh, where 3 faulty blocks B1 � B3 are formed by Definition 1,
and M0 � M4 are decided after the completion of algorithm 2.1. (b) shows the directed path graph
constructed by algorithm 2.1.

Table 3. Tj;k obtained for the injured mesh shown in Figure 2(a).

0 1 2 3 4
j n k

5 6 7 8 9

- G0;1 G0;2 G0;1 [G0;2 G0;40
G0;2 [G0;4 G0;6 G0;7 ; G0;9

G1;0 - G1;2 G1;3 G1;41
G1;2 [G1;3 [G1;4 G1;4 G1;2 ; G1;0

G2;0 G2;1 - G2;3 G2;0 [G2;12
G2;5 G2;0 [G2;1 G2;7 ; G2;0

G3;1 [G3;2 G3;1 G3;2 - G3;13
G3;5 G3;1 G3;5 ; G3;1 [G3;2

G4;0 G4;1 G4;0 [G4;1 G4;1 -4
G4;5 G4;6 G4;5 [G4;6 ; G4;0

G5;2 [G5;4 G5;2 [G5;3 [G5;4 G5;2 G5;3 G5;45
- G5;4 G5;7 ; G5;2 [G5;4

G6;0 G6;4 G6;0 [G6;4 G6;4 G6;46
G6;4 - G6;7 ; G6;0

G7;0 G7;2 G7;2 G7;5 G7;5 [G7;67
G7;5 G7;6 - ; G7;0

; ; ; ; ;8
; ; ; - ;

G9;0 G9;0 G9;0 G9;0 G9;09
G9;0 G9;0 G9;0 ; -

3. Adaptive and fault-tolerant routing with
100% node utilization

In this section, algorithm 3.1 is proposed to route a mes-
sage using two virtual channels per physical link. It uses
Glass and Ni’s algorithm [6] to route the message inside a
faulty block, and uses algorithm RRFB2 [11] to route the
message outside a faulty block. It is capable of tolerating
irregular faulty patterns by transmitting the message from
sources or to destinations within faulty blocks via multi-
ple “intermediate nodes”. In algorithm 3.1, the message
header format is (header:ND, header:NI , header:dim,
header:dir). header:ND records the address ofND,
header:NI records the address ofNI , header:dim records
the directed dimension along which the message is routed
out fromNI , andheader:dir records the virtual intercon-
nection networkV INheader:dir used to route the message
from NC to NR if NC =2 S0. To allow clearer exposition,
we assumeNS 2 Sp; NC 2 Sq; ND 2 Sr in algorithm 3.1.

Algorithm 3.1 /* AssumeNS 2 Sp; NC 2 Sq, andND 2
Sr. */

1 If NC = ND, then exit.

2 Else if NC = NI , then the message is routed via
V Cheader:dim;header:dir.

3 Else

3.1 If (NC = NS) or (NC = NR), then
SetMessageHeader.

3.2 If Sq = Sr, then

3.2.1 If NC 2 S0, then route the message to
ND via V IN1 and V IN2 by an adaptive
deadlock-free routing algorithm in [10].

3.2.2 Else route the message toND via
V INheader:dir by an adaptive deadlock-free
routing algorithm in [6].

3.3 Else

3.3.1 If NC 2 S0, then route the message to
NI via V IN1 and V IN2 by an adaptive
deadlock-free routing algorithm in [10].

3.3.2 Else route the message toNI via
V INheader:dir by an adaptive deadlock-free
routing algorithm in [6].

SetMessageHeader 1 If (NC = NS) and (Tp;r = ; or
ND 2 S�1), then exit.

M0

M1

3MM4

8

9

M2

M9 8M8

M

M

M5

7

6

0

5

6

10

11

12

13

14

15

16

17

18

19

20

1

3

4

2

7

10 11 12 13 14 15 16 17 18 19 200 1 2 3 4 5 6 7 8 9

B

C

G

I

J

KL

M

N

D
EFH

A

: message 1

: message 2

V0

V1

V2

V3

V4

V5 V6

V7

V9

V8

(a)

(b)

Figure 2. (a) shows a 21� 21 injured mesh, where two messages 1 and 2 are routed by algorithm 3.1.
(b) shows the directed path graph constructed by algorithm 2.1.

2 Else if (NC = NS) and (Sq = Sr), then set
header:dir to 1 or 2.

3 Else if (Sq 6= Sr), then update the message header
by

(1) selecting one ele-
ment ofTq;r, say(wi; dim; dir), such that
the sum of the distance between nodesNC

andwi and the distance between nodeswi

andND is the smallest.
(2) setting header:NI , header:dim,

andheader:dir towi, dim, anddir, respec-
tively.

As shown in Figure 2(a), message 1 is routed from
nodeA(15; 16) to nodeH(6; 8), and message 2 is routed
from nodeI(10; 9) to nodeN(4; 10). For message 1, the
header is updated to((6; 8); (14; 15);�1; 2) due to step
3.1.3. Thus, it is routed to nodeB(14; 15) via V IN2 by
an adaptive deadlock-free routing algorithm in [6] due to

step 3.3.2. Then it is routed to nodeC(14; 14) via V C�1;2
due to step 2. When message 1 reaches nodeC, the header
is updated to((6; 8); (12; 8);�0; 1) due to step 3.1.3. Then
it is routed to nodeD(12; 8) via V IN1 andV IN2 by an
adaptive deadlock-free routing algorithm in [10] due to step
3.3.1, and is routed to nodeE(11; 8) viaV C�0;1 due to step
2. And so on, message 1 is routed to nodeF (9; 8) viaV IN1

[6] due to step 3.3.2, is routed to nodeG(8; 8) via V C�0;1
due to step 2, and is finally sent to nodeH via V IN1 by
[6] due to step 3.2.2. For message 2, it is first routed toJ
via V IN2 by [6] due to step 3.3.2, is routed to nodeK via
V C1;2 due to step 2, is routed to nodeL via V IN1 by [6]
due to step 3.3.2, is routed to nodeM via V C�1;1 due to
step 2, is finally sent to nodeN viaV IN1 by [6] due to step
3.2.2.

Theorem 1 Algorithm 3.1 is deadlock-free with two virtual
channels per physical link.

A a

B

bCc

D

d

Figure 3. A waiting cycle of four messages
A;B;C, and D.

PROOF. The proof is divided into three parts: (P1) we as-
sign each virtual channelx one channel numbernum(x),
(P2) we prove that a message can always find a virtual chan-
nel to use for each one hop in a non-decreasing order of
channel numbers, (P3) A waiting cycle is not a real dead-
lock.

For P1, let virtual channelx be output from a node in
Si (i � 0). Then,num(x) is set toi if virtual channel
x is in V IN1, andnum(x) is set to�i if virtual channel
x is in V IN2. For P2, suppose a message, whose des-
tination ND 2 Sr, is sent toNC via virtual channely
and will be sent out fromNC via virtual channelx. We
need to shownum(x) � num(y). If NC 6= NR, then
num(x) = num(y). Thus, we considerNC 2 Sq receives
the message from an intermediate nodeNI 2 St (St 6= Sq)
via virtual channely. Three cases are discussed: (C2.1)
vertexVt is an ancestor of vertexVr in the directed path
graph, (C2.2) vertexVr is an ancestor of vertexVt in the di-
rected path graph, and (C2.3) verticesVr andVt has least
common ancestorVlca. For C2.1,(Vt; Vq) is a directed
edge in the directed shortest pathPdown from vertexVt
to vertexVr due to step 4.1.2 of algorithm 2.1. It implies
t < q � r and virtual channelsx andy are all inV IN1.
Thusnum(y) = t < q = num(x). For C2.2,(Vq ; Vt) is
a directed edge in the directed shortest pathPup from ver-
tex Vr to vertexVt due to step 4.1.1 of algorithm 2.1. It
implies r � q < t and virtual channelsx andy are all in
V IN2. And num(y) = �t < �q = num(x). For C2.3,
(Vq ; Vt) is a directed edge in the directed shortest pathPup
from vertexVlca to vertexVt due to step 4.1.3 of algorithm
2.1. If Vq = Vlca, then virtual channely is in V IN2 and
virtual channelx is in V IN1. Thus,num(y) = �t < q =
num(x). If Vq 6= Vlca, then virtual channelsx andy are
all in V IN2. And, num(y) = �t < �q = num(x).
For P3, consider a waiting cycle as shown in Figure 3,
where messageA (resp. B;C;D) holds virtual channeld
(resp.a; b; c) and requestsa (resp.b; c; d). By P2, we have
num(a) � num(d) � num(c) � num(b) � num(a). It
impliesnum(a) = num(d) = num(c) = num(b). Thus,
virtual channelsa; b; c andd are in aMi. If i = 0, then

messages are routed by an adaptive and deadlock-free rout-
ing algorithm presented in [10]. Otherwise, messages are
routed by an adaptive and deadlock-free routing algorithm
presented in [6]. Thus, the waiting cycle is not a real dead-
lock.2

4. Conclusion

In a concurrent multicomputer, a reliable routing algo-
rithm requires deadlock-freedom and fault-tolerance. Many
researchers [1, 3, 10] proposed adaptive and deadlock-free
routing algorithms using a certain number of virtual chan-
nels per physical link. But the shape of the tolerated faults
should be rectangular. Thus, some good nodes need to
be seen as faulty nodes and prohibited from interchanging
messages with the other good nodes. In this paper, using
two virtual channels per physical link, we propose an adap-
tive routing algorithm to tolerate irregular faulty patterns.
Thus the node utilization is increased up to 100%. Our
method requires a central control unit or the global infor-
mation of the node state.

References

[1] R. V. Boppana and S. Chalasani, “Fault-tolerant wormhole
routing algorithms for mesh networks,”IEEE Trans. Com-
put., vol. 44, pp. 848-864, 1995.

[2] Y. M. Boura and C. R. Das, “Fault-tolerant routing in mesh
networks,”International Conference on Parallel Processing,
pp. 106-109, 1995.

[3] A. A. Chien and J. H. Kim, “Planar-adaptive routing: Low-
cost adaptive networks for multiprocessors,”19th Annual
International Symposium on Computer Arch., pp. 268-277,
1992.

[4] C. M. Cunningham and D. R. Avresky, “Fault-tolerant adap-
tive routing for two-dimensional meshes,”1st IEEE Sympo-
sium on High Performance Computer Arch., pp. 122-131,
1995.

[5] W. J. Dally and H. Aoki, “Deadlock-free adaptive routing
in multicomputer networks using virtual channels,”IEEE
Trans. Parallel Distributed Syst., vol. 4., pp. 466-475, 1993.

[6] C. J. Glass and L. M. Ni, “Fault-tolerant wormhole routing
in meshes,”23rd International Symposium on Fault-Tolerant
Computing., pp. 240-249, 1993.

[7] R. L. Hadas and E. Brandt, “Original-based fault-tolerant
routing in the mesh,”1st IEEE Symposium on High Perfor-
mance Computer Arch., pp. 102-111, 1995.

[8] D. H. Linder and J. C. Harden, “An adaptive and fault-
tolerant wormhole routing strategy fork-aryn-cubes,”IEEE
Trans. Comput., vol. 40, pp. 2-12, 1991.

[9] C. Seitz et al.,Wormhole Chip Project Report, Winter 1985.

[10] C. C. Su and K. G. Shin, “Adaptive fault-tolerant deadlock-
free routing in meshes and hypercubes,”IEEE Trans. Com-
put., vol. 45, pp. 666-683, 1996.

[11] M. J. Tsai, “Adaptive Fault-Tolerant Routing for Multicom-
puters,” submitted toIEEE Trans. Comput..

