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Abstract 
The butterfly graphs were originally defined as the 
underlying graphs of FFT networks which can perform the 
fast Fourier transform (FFT) very eficiently. Since 
butterfly graphs are regular of degree four, it can tolerate 
at most two edge faults in the worst case in order to 
establish a Hamiltonian cycle. In this paper, we show that 
butterfly graphs contain a fault-free Hamiltonian cycle 
even if it has two random edge faults. 

1 Introduction 
The butterfly graphs were originally defined as the 

underlying graphs of FFT networks [7] which can perform 
the fast Fourier transform (FFT) very efficiently. An 
excellent description of the butterfly graphs can be found in 
[lo]. The butterfly graphs were known to be an instance of 
the Cayley graphs (see [2]). The Cayley graphs [I], which 
represent a category of symmetric and regular graphs 
derivable from permutation groups, have been shown very 
suitable to serve as network topologies. 

Cycles in networks are usefd to many applications such 
as indexing, embedding linear arrays and rings [SI, 
computing fast Fourier transforms [6], etc. Wong [I21 
showed that r-dimensional k-ary butterfly graphs is 
Hamiltonian-connected if r is odd, and Hamiltonian- 
laceable if r is even. Barth and Raspaud [3] constructed 
two edge-disjoint Hamiltonian cycles in r-dimensional 
binary butterfly graphs. Then, Bermond et al. [5] 
generalized their work by constructing k edge-disjoint 
Hamiltonian cycles in r-dimensional k-ary butterfly graphs, 
where k 2 2. Bermond et al. [4] also constructed edge- 
disjoint Hamltonian cycles in directed r-dimensional k-ary 
butterfly graphs. 

Since faults may happen when a network is put in use, it 
is practically important to consider faulty networks. In this 
paper, we construct a Hamiltonian cycle in a faulty 
r-dimensional binary butterfly graphs. 

The rest of this paper is organized as follows. In the 
next section, some necessary definitions and notations are 
introduced and some fundamental properties of butterfly 

graphs are shown. A Hamiltonian cycle in a faulty butterfly 
graph is established in Section 3. Finally, this paper 
concludes with some remarks in Section 4. 

2 Preliminaries 
For convenience we use BF(r) to denote an 

r-dimensional binary butterfly graph. There are r levels, 
numbered 0, 1, . . ., r - 1, associated with BF(r). Each level 
contains 2‘ vertices that are labeled with 2‘ binary 
sequences of r symbols. Hence there are r2‘ vertices in 
BF(r). A vertex of level l labeled with popl...prl is denoted 
by Cl, poP1...Prl>, where 0 I I I r - 1 and 0 I P, 5 1 for all 
0 2 j I r - 1 .  Each vertex 4, popl...prl> is connected to 
four vertices: <l - 1 mod r, popl...p/-20p,...prl>, <I - 1 
mod r, POPI.-PI-~IPI-. PPI>, <I + 1 mod r, PoP~-.P~-~OP,+~ 
...pr-]>, and <l + 1 mod r, OpOOp,~~~~,- lOOp,+, . . .Op~l>.  In the 
rest of this paper, we assume that all arithmetic 
computations with respect to the symbols and the levels are 
performed modulo 2 and modulo r, respectively. A formal 
definition of BF(r) is as follows. 

Definition 1. The vertex set of BF(r) is {<l, popl...prl> 10 
I / <  r -  1 and 0 6 p, 5 1 for all 0 5 j  I r - I}. The edge set 
of BF(r) is {(a, popl..,prl>, </ + I ,  p o ~ I ’ . . . p r - l ~ )  1 O 5 
I I r - 1 and 0, = p,’ for all 0 I j 5 r - 1 and j # I ) .  
Moreover, (4, p0pI,..prl>, 4 + 1, po’pI‘~-~r-l 3)  is said to 
be an i-edge if pi’ = 

Clearly, BF(r) is regular of degree four and its edges 
exist between adjacent levels. Level 0 and level r - 1 are 
considered adjacent. Since BF( 1) has trivial structure and 
BF(2) is a multigraph, we assume r 1 3 throughout this 
paper. The structure of BF(3) is illustrated in Figure 1, 
where level 0 is replicated. BF(r) thus defined was named 
wrapped butterfly graphs in [IO]. 

A cycle C in BF(r) is said to be an i-cycle if its edges 
are all i-edges. Suppose (U, v) is an i-edge of BF(r), where 
u is assumed of level / and v is assumed of level l + 1. Let 

+ i, where 0 I i 5 1. 

Lo ( U )  = A(u) = v (or u =f;-l(v)), A’ ( U )  = A( A’-) (U)>, 
and A-’ ( U )  = A-’ ( A-’’’ (U)) for j 2 1. Then, (U, &(U), 

f,’(u), ..., f:-’ ( U ) ,  f , ’ (u)  = U) is a 0-cycle, denoted by 
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C0(u). We say that C0(u) is the 0-cycle induced by U .  Each 
0-cycle in BF(r) has length r. 

000 100 010 110 001 101 011 111 

level 0 

level 1 

level 2 

!eve1 0 

Figure I .  The structure of BF(3) with level 0 replicated. 

Suppose U = 4, p0pi.-prl~ and U ’  = <I1, Po’PI ‘--P,-I 3 
are two distinct vertices of BF(r). It is not difficult to see 
that C0(u) = C,(U’,) if p0pl-.prl = po’pI’.-p,.-i’, and C0(u) n 
C0(u’,) is empty else. Hence, there are 2‘ vertex-disjoint 
(disjoint for short) 0-cycles in BF(r). For each 0-cycle we 
assign the vertex of level 0 to be the cycle leader. In 
subsequent discussion, we use C o ( ~ o ~ I ~ ~ ~ ~ p l )  to denote the 
0-cycle induced by <O, po/31...pp-l>. We say that two 
disjoint cycles in BF(r) are adjacent if there exists an edge 
between them. 

Lemma 1. In BF(r), Co(~oPI...pr-l) is adjacent to r disjoint 
0-cycles, i.e., Co(/30pI~~~~l-I(~l + i)p,+I...p,-i) for all 1 I i < 
1 a n d O < j I r -  1. 

Proof. Suppose c O ( P O P I - . P , - O = ( E ,  &(E), f,’ ( E )  , . . ., 
f:-’ (E),  for (e) = E), where E = <O, pOpi...ppi>. There are 
2r  vertices of BF(r) that are adjacent to one vertex of 
C o ( ~ o ~ l ~ ~ ~ ~ r l )  but not contained in Co(/30BI-.pr-l). These 
2r  vertices can induce 2r  0-cycles that are adjacent to 
Co(p&.-p,.-~). In the following, we show that r of them are 
disjoint. 

SinceA(E) = 4, (Po + 1)pl..,p,-,> andfi( f,’ (E) )  = <j + 
1 ,  popl-.P,-i(P, + 1)P,+I-Pr-I>, COY;(E)) has cycle leader 
<O, (Po + I)/31-.p,-i> and COY;( f,’ (E ) ) )  has cycle leader 
<O, p0pi...P,-,(p’ + l)fl,+I-.pr-l>, where 1 I j 2 I’ - 1. 

Similarly, CO( A-’ (E) )  and CO( A-’ ( f,’ ( E ) ) )  have cycle 
leaders CO, popi..@r-I - 1)> and <O, POPI.-PJ-@,-I - 
I)p,...p,,>, respectively. It is not difficult to see that all 
different cycle leaders form the set {CO, /?~p~...fi-~(P, + 
l)p,+I.~.p,-l> 1 0 r j  < r - 1 } whose size is r. These different 
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Suppose C and C’ are two adjacent cycles in BF(r), and 
(U, v’) and (v, U’) are two edges between C and C’. Then (U, 
v’,) and (v, U’,) are said to be a crossing pair of level 1 
between C and C’ if (U, v) and (U‘, v’) are two edges of C 
and C’, respectively, between levels I and 1 + 1 .  In 
subsequent discussion, we define dflpopI...P,-t, Po‘PI ‘... 
PPI’) = j  i f& f P,’and p, = p,‘for all 0 5 i 5 r - 1 and i # j .  

cycle leaders can induce r disjoint 0-cycles. 

A condensation of BF(r), denoted by CBFo(r), is 
defined as follows. Each 0-cycle Co(popi~~~pr l )  in BF(r.) 
corresponds to a vertex p&-..pPI of CBFo(r), and every 
pair of adjacent 0-cycles in BF(r) correspond to an edge of 
CBF,(r). That is, CBFo(r) has vertex set (pop~.-p,.-l I ,p, 
E ( 0 ,  1)  for all 0 S j  I r - I ]  ancl edge set {(popI...pr-.l, 
popl...p,-I(P, + l)p,+l~~~p,.-l) 1 0 I j S r - 1 )  according to 
Lemma 1. We note that CBFo(r:) is isomorphic to the 
r-dimensional hypercube [l I]. Each path (xi, x2, ..., x,) in 
CBFo(r) has d f l ~ , - ~ ,  x,) f &fix,, x,+~) for all 2 5 i 

Lemma 2. Suppose Co(x) and CO@) are two adjacent 
0-cycles in BF(r). There are exactly two edges between 
them which form a crossing pair of level drf(x, y). 

Proof. Suppose df lx ,  y )  = 1, and assume x = popI...prI and 
Y = Po~I.. .~,-I~/~I+I.. .~,-I ,  where f PI’. There are two 
edges (4, PoPI-.P,-I>, <I + 1, POSI...P,-IP~‘~O~+~...P,-I>) and 
(‘1 + 1, popI...prl>, 4, popI...p ~-Ipl‘p,+i...pr-l>) between 
Co(x) and Cob), which form a ‘crossing pair of level 1. 
There is no other edge between C,(x) and Cob). 

Lemma 3. A path (xi, x2, . . ., x,) of length m - 1 in CBFo(r) 
corresponds to a cycle of length mr in BF(r) which 
contains the vertices of Co(xl), CS3(x2), ..., Co(x,,), where 2 

m - 1. 

m I 2‘. 

Proof. According to Lemma 2,  fhere is a unique crossing 
pair of level df lx l ,  x2) between Co(xl) and Co(x2). We 
assume that (U,, v2) and (vI, u2) are the crossing pair, where 
u t  and u2 are of level dzfix,, x2) and vi  and v2 are of level 
d i fx , ,  x2)+l. There is a cycle of length 2r  in BF(r) which 
contains the crossing pair and all the edges of Co(xl) and 
Co(x2) but (U,, vl) and (u2, v2). 

Similarly, there is a unique crossing pair, say (w:, t j )  
and (f2, w3), of level dif(x?, x3) between Co(x2) and C,1(x3), 
where w 2  and w3 are assumed of level dif(x2, x3) and f:! and 
t3 are assumed of level drj(x2, x3) + 1 .  Refer to Figure 2. 
Since dflx,,  x2)  f dif(x2, x3), there is a cycle of length 3r  in 
BF(r) which contains the crossing pair (wz, t3) and (t2,  wj), 
the crossing pair (U], vr) and (vl ,  u2), and all the edges of 

(w3, f3). The merging can proceed with Co(x4), Co(x5), ..., 
Co(x,), sequentially, and finally, a cycle of length ,mr in 

cO(xi), cO(X2), and CO(x3) but (U13 vi), (U22 v2), (w2, f 2 ) ,  and 

BF(r) can result. 0 

Figure 2. Constructing a cycle of length 3r by merging 
CO(XI), CO(X~), and cO(X3)- 
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Suppose u = <I, popl.-pr-,> is a vertex of BF(r). Then 
( U ,  J(u) ,  A' (# ) ,  ..., A"(u ) )  is a 1-cycle, denoted by 
C,(U). We say that C,(U) is the 1-cycle induced by U .  Each 
1 -cycle in BF(r) has length 2r. 

Suppose u = <I, /30/31-.pp,> and U' = <l, po'pI'-.p,.-13 
are two distinct vertices of BF(r). It is not difficulty to see 
that C,(u) = C,(u') if they have vertices in common. Hence, 
there are 2'' disjoint 1-cycles in BF(r). Since A" ( U )  = '1, 

(Po + t ) (P, -t t ) -@pl  + t)> for integer t 2 I ,  Cl(u) = C,(u') 
if and only if p; = p, + 1 for all 0 Ij I r - 1 .  The following 
lemma is clear, and so the proof is omitted. 

Lemma 4. Suppose C,(u) and C,(v) are two adjacent 
I-cycles in BF(r), and uo E C,(u) is adjacent to vo E C,(v). 
Then, f;' (uo) E C,(u) is adjacent to J;' (vo) E Cl(v). 

Lemma 5. Suppose Cl(u) and Cl(v) are two adjacent 
I-cycles in BF(r), and uo E C,(u) is adjacent to vo E Cl(v). 
There are two adjacent vertices uo' E C,(u) and vo' E C,(v) 
so that uo' is adjacent to u0 and vo' is adjacent to vo. 

Proof. Suppose uo = <I, popl.-ppl> and vo =fo(uo) = <f + 1, 
/30pl...pr-l>. We let uo' =fi(uo)  = <f + 1, popI...pl-I (p[ + 
I)PI+~-.P,.-I> E Cdu) and VO' = A-' ( Y O )  = <I, PoPI.-PI-I<PI 
- I)/3/t1...pr-,> E Cl(v). Since uo' =fo(vo'), uo' is adjacent to 
vol. 0 

Lemma 6. There are 4 edges between every two adjacent 
I-cycles in BF(r). 

Proof. Suppose Cl(u)  and C,(v) are two adjacent I-cycles 
in BF(r), and uo E C,(u) is adjacent to vo E C,(v). 
According to Lemma 5, there are two adjacent vertices uo' 
E C,(u) and vo' E Cl(v) so that uor is adjacent to uo and vo' 
is adjacent to vo. According to Lemma 4, J;' (uo) E Cl(u) 

is adjacent to L'(v,)E C,(v) and J;' (uo3 E C,(u)  is 

adjacent to f;'(v0') E C,(v). Hence, there are 4 edges 

For each I-cycle we assign the vertex of level 0 whose 
leftmost symbol is 0 to be the cycle leader. For example, 
the I-cycle (<O, 001>, 4, 101>, <2, I l l > ,  <O, 110>, <I,  
010>, <2, OOO>, <O, 001>) in BF(3) has cycle leader <O, 
001>. In subsequent discussion, we use Cl(Oj3,p2.-p,,) to 
denote the 1-cycle induced by CO, Op&..p,.-~>. 
Lemma 7. In BF(r), Cl(Oplpz~~~p,,) is adjacent to r 
disjoint I-cycles, i.e., C,(O(/?, + l)(pz + l)... (PPI + 1)) and 
CI(Op1p2...p, -,(p, + l)pJ+l...pr-I) for all 1 r j  5 r - 1. 

Proof. Suppose U = <Z, pOpl-.ppI> E Cl(OpI/32.-/3r-I). 
There are two vertices of BF(r) that are adjacent to U but 
not contained in CI(OpIp2...prl) . These two vertices can 
induce two I-cycles which are all adjacent to 

between Cl(u) and C,(v). U 

C,(Oplp2~~.~,.-,). We use S to denote the set of these two 
1 -cycles. Similarly, there are two vertices of BF(r) that are 
adjacent to J;' ( U )  = <I, (Po + ])(PI + I)..@,.-, + I)> but 
not contained in C,(Op,p, ...p,.-,). We use T to denote the 
set of the two 1 -cycles that are induced by the two vertices. 
Recall that C,(u) = C,(u') if and only if pJ' = p, + 1 for all 0 
5 j  5 r - 1 ,  where U' = '1 ,  po'pl '...fir-, 3 is a vertex of BF(r) 
and U' # U .  We have S = T. Hence, it suffices to consider 
only r consecutive vertices of Cl(OpI~~~~.pp~), say E, A(&), 
f,' (E) ,  . . ., Lr-' (E),  where E = <O, Op,p2...p,,>. 

There are 2r vertices of BF(r) that are adjacent to one 
of E, A(&), J;' (E) ,  ..., ( E )  but not contained in 

Cl(OP,Pz.-Ppt>. They are f o ( ~ ) ,  f;' (E),  foV; (~) ) ,  

fi' V;(E))> fo( A' (E)) ,  f;I ( A' ( E ) ) ,  ' . . 7  fo( Ar-I (E ) ) ,  

f;' ( Ar-' (E)) .  Since c ~ o ( E ) )  = <o, 0(pI + I)(/$ + I)... 

@pi + I)> and A-""cfo(fi' ( E ) ) )  = <O, OPtPz-@, - 1) 

D,+I...~,-I>, C,uo(~)) has cycle leader <O, 0(pI + I)(p2 + 1 )  
+ I )> and C,Y-,( f ; '  ( E ) ) )  has cycle leader "0, Op,p2 

..@, - I)fi+,...p,.+>, where 1 2j < r - 1. 
Similarly, C, (f;'(~)) has cycle leader <O, 0pIp2,..pr-, 

+ I)>, C,( fi'V;(E))) has cycle leader <O, O(p, - 1)  

( p 2  - I)..@rl - I)>, and C,( f;' (A' ( E ) ) )  has cycle leader 
<O, 0p,/32...P,-2 (PI-, + I)p,~..ppl>, where 2 S j  S r - 1 .  All 
the cycle leaders constitute the following set. 

w = {<O, O@, + 1)(/?2 + I ) -@-,  + I)>} U 

The lemma follows because I W l =  r. 

{<O, opIp2"'pJ-I(p/+ I)@)tI"'p?,> 1 '- I} .  

0 

A condensation of BF(r), denoted by CBF,(r), is 
defined as follows. Each I-cycle CI(OpIp2-.ppl) in BF(r) 
corresponds to a vertex pIP2...prl of CBF,(r), and every 
pair of adjacent I -cycles in BF(r) correspond to an edge of 
CBFl(r). That is, CBFl(k, r) has vertex set {pIp2...prl 10 I 
@,< 1 for all 1 < i 2 r - 1 } and edge set {(pI/?2..-p,..l, 

1)) I 1 I i 5 r - 1) according to Lemma 7. We note that the 
( r  - 1)-dimensional hypercube is a spanning subgraph of 
CBFl ( r )  . 
Lemma 8. A path of length n - 1 in CBFl(r) corresponds 
to a cycle of length 2nr in BF(r). 

Proof. Suppose (x,, x2, ..., x,) is a path of length n - 1 in 
CBFI(~). According to Lemma 5, there exist two adjacent 
vertices U , - , ,  v,-, of CI(x,-,) and two adjacent vertices U,,  v, 
of C,(x,) so that u,-~ and v,-, are adjacent to U, and v,, 
respectively, where 2 2 i I n - 1 .  Similarly, there exist two 
adjacent vertices U,', v,' of C,(x,) and two adjacent vertices 

pf-dpf + 1 ,pf+I.-pr-I>, ( P I P 2 4 - ' ,  (PI + 1 )@z + 1 1.- (PPI + 
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U , + ] ,  v ,+~  of Cl(x,+l) so that U,’ and v,’ are adjacent to u,+~ and 
v,+~, respectively. It is assured by Lemma 6 that U,’ 

and v,‘ E! { U , ,  v,} can be determined. A cycle of length 2nr 
U 

{ U , ,  v,} 

in BF(r) can be constructed as shown in Figure 3. 

Figure 3.  Constructing a cycle of length nkr in BF(r). 

CBF0(r) that contains e. Since CBF0(3) is isomorphic to the 
three-dimensional hypercube, our claim is true for CBFO(3). 
We then assume that our claim is true for CBFo(r - I), 
where r - 1 2 3. 

Suppose e = (v l ,  v2) is an edge of CBFo(r), where v1 E 
Hc: and v2 E H i .  There exist vl’ E He0 and v2‘ E ff: 
so that vl’  is adjacent to vl, vz’is adjacent to v2, and vI ’  is 
adjacent to v2‘. By our assumption, there are a Hamiltonian 
cycle in H,“ that contains the edge (vl, vl’) and a 

Hamiltonian cycle in H i  that contains the edge (v2, v;!’). 
Since e and (vl’, v2’) are two edges between the two 
Hamiltonian cycles, there is a Hamiltonian cycle in CBFo(r) 
that contains e, (vl’, v2’), and all the edges of the two 
Hamiltonian cycles but (vl, vl’j ancl (v2, v2’). 

Suppose q = d f l e l )  and (xl, x2, ..., x2.-, , xI) is a 

~ ~ ~ i l ~ ~ ~ i ~ ~  cycle in H; . Then, ( x1(4) , x ~ )  , . . ., x$j, , 

x,(~) ) is a Hamiltonian cycle in HJI . If drf(e2) = dgt?]) ,  

A Hamiltonian cycle of CBFl(r) can be obtained using 
Grad code. a cyclically ordered sequence of 2“ distinct 
binary codewords forms a d-dimensional Grad code, 
denoted by G(d), provided every two adjacent codewords 
differ in exactly one dimension [SI, where d 2 1 .  G(d) can 
be constructed recursively as follows. Initially, let G( 1)=(0, 
1). For i 2 2, G(j)=(OG(i - I ) ,  ]GR(i - I)), where GR(j - I )  

then (xI, xl(,,) , xp) , x2, xj, x?) , xy)  , ..., xi?!,-], xi??, , 
xz,., , xl) is a Hamiltonian cycle in CBFo(r) that contains el 

denotes the reverse of G(i - 1). For example, G(2) = 
(OG(l), lGR(l))=(OO, 01, 11, IO)  and G(3) = (OG(2), 
1 GR(2)) = (000, 001, 01 1,010, 110, 11 1, 101, 100). 

Since G(r - 1) contains all the vertices of the ( r  - 
1 )-dimensional hypercube and every two adjacent 
codewords of G(r - 1 )  correspond to an edge of the ( r  - 
1)-dimensional hypercube, G(r - 1 )  corresponds to a 
Hamiltonian cycle in the ( r  - I)-dimensional hypercube. 
Thus, G(r - 1 )  corresponds to a Hamiltonian cycle in 
CBFl(r). 

3 Hamiltonian cycles in faulty BF(r) 
Since BF(r) is regular of degree four, it can tolerate at 

most two edge faults in the worst case in order to establish 
a Hamiltonian cycle. In this section, we show that BF(r) 

and e2. If dfle,) # dfle , ) ,  we assume e2 E He: without loss 
of generality. There is a Hamiltonian cycle, say (y~, y2 ,  . .., 
y *,., , yl), in He: that contains e2.  Suppose el = (yY, yj”) 

for some 1 I s I 2” and e2 = (yr, ;v ,+] )  for some 1 I t 5 
A Hamiltonian cycle in CBFo(r) that contains el  and e2 can 
be established as (yS+l, yS+2, . . ., y2r.l , YI, yz, . . ., y,, yp) , 
y.r-l ( q )  , . . ., yf” , y:? , y$j-, , . . .:, y f  . ys+l) if s f t ,  and 

( Y ,  2 Ys, YS+I, .’., Y2’4 t Yl, YZ, ... ) Ys-1, Y,-1 7 Ys-29 ...? 

~ 4 4 )  , yi2 , yi!j-l , . . ., y::;, ys4’ ) i f s  = t. CI 

( 4 )  ( 4 )  (4) 

contains a Hamiltonian cycle even if it has two edge faults. 
We observe that CBFo(r), which is isomorphic to the 

r-dimensional hypercube, is recursive. Suppose e = (popI... 
PPI, po’p~’.-p~-~’) is an edge of CBFo(r), where dflpop1... 

Lemma 10. Suppose el and e2 are two distinct edges of 
CBFo(r). There exists a Hamiltonian path in CBFo(r) that 
does not contain el and e2. 

PPI, po’pI’...prl’) = q is assumed. The two subsets of Proof. Suppose q = d f l e l )  and (xl, x2, ..., x,,., , xI) is a 
vertices with p,, = 0 and p,, = I ,  respectively, form a 
partition of the vertex set of CBFo(r). The two subgraphs of 
CBFo(r) that are induced by the two subsets are isomorphic 
to CBFo(r - I) .  In subsequent discussion, we let difle) = 

dflpopl...prI,-I, po’pI’...p,-I’) and use Heo and Hl to. 
denote the two subgraphs, respectively. The following 
three lemmas state findamental properties of CBFo(r). 

Lemma 9. Suppose el  and e2 are two distinct edges of 
CBFo(r). There exists a Hamiltonian cycle in CBFo(r) that 
contains el and e2. 

Proof. We first show by induction on r that given an 
arbitrary edge e of CBFo(r), there is a Hamiltonian cycle in 

Hamiltonian cycle in H.3 . If dif(e2) = drf(el), determine an 

edge (xA, x j q ) )  e { e l ,  .ez} for some 1 I s 5 2?’. A 
Hamiltonian path in CBFo(r) that does not contain el and e2 
can be established as ( x:?; , x:\ , ..., x i 4 )  , ~$1 , 

, x,, x,+I, ..., x2.+ ,XI ,  x2, ..., x d .  Ifd,Xed x ( 4 )  

f & ( e l ) ,  we assume e2 E H: without loss of generality. 
There is a Hamiltonian cycle, say (yl, y2, ..., Y ~ , . ~ ,  yl), in 

H6: that contains e2. Suppose e2 = (y,, yr+]) for some 1 S t 
i 2‘-’. A Hamiltonian path in CBFo(r) that does not contain 

x ( 4 )  
2r-L-l > ..., 
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Lemma 11. Suppose el and e2 are two distinct edges of 
CBFo(r). There exists a Hamiltonian path in CBFo(r) that 
contains el but does not contain e2. 

Proof. Suppose q = df le l )  and (xl, x2, ..., xz,., , xl) is a 

Hamiltonian cycle in He: . Then el = (x~, xsy) ) for some 1 
I s I 2r-’. If dfle,) = df le]) ,  a Hamiltonian path in CBFo(r) 
that contains e l  but does not contain e2 can be established 
as (x,.+~, xsi2, ..., x,,., , xI, x2, .. ., x,, x:) , , ..., x ( ~ )  1 ,  

x (Y )  z,., , ,.,-, , . . ., x!!; 1. ~fdfle , )  # dfie, ) ,  we assume e2 E 

He: without loss of generality. There is a Hamiltonian 

cycle, say @,, y2, ..., y2,., , yl), in He: that contains e2. 

Suppose e2 = (yr ,  J I / + ~ )  for some 1 I t I 2p1. A Hamiltonian 
path in CBFo(r) that contains el but does not contain e2 can 
be established as bl, yl-l, ..., y,, yjy’, y::;, ..., y?., (Y )  , 

Y y ) ,  x y ,  ‘.., Y~~~>Y.s-l ,Y. ,-2> . ‘ . , Y I >  Yz,-i 3 Y2‘-‘-I f ‘..3Yl+l) 

Y$j , (Y) ( Y )  ifs  5 t, and Oi/+l, y/+2, .. ’ >  y.5, Y ,  
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The following theorem is the main result of this paper. 

Theorem 1. BF(r) with two edge faults contains a 
Hamiltonian cycle. 

Proof. Suppose ( U ] ,  v l )  and ( U , ,  v2) are two edge faults in 
BF(r), where { U ] ,  v l }  f {u2, v 2 } .  We observe that each 
edge of BF(r) is either a 0-edge or a 1-edge and each 
1 -edge (0-edge) connects two distinct 0-cycles (1  -cycles). 
There are three cases discussed below. 

Case 1. (uI ,  v I )  and (U*,  v2) are 0-edges. If ( U ] ,  v l )  and (u2, 
v2) belong to the same 0-cycle, say Co(x), then there are 
two distinct 0-cycles, say Cob) and CO@), that are adjacent 
to Co(x), and there are two 0-edges, say (uI ’, v1 ’) E Cob) 
and (u2’, v2’) E Co(z), so that (uI, vl’) and (vl ,  ul’) are a 
crossing pair between Co(x) and Cob) and (u2, v2’) and (v2, 

u2’) are a crossing pair between Co(x) and Co(z). Since (x, y )  
and (x, z )  are edges of CBFo(r), Lemma 9 assures a 
Hamiltonian path in CBFo(r) that contains (x, y )  and (x, z). 
According to Lemma 3, the Hamiltonian path corresponds 
to a Hamiltonian cycle in BF(r). The Hamiltonian cycle 
does not contain ( U ] ,  VI), (ul’, vl? ,  (U, ,  v2), and (u2’, v2’) 
(refer to the proof of Lemma 3). 

We then consider that (ut, v l )  and (u2, v2) belong to two 
distinct 0-cycles, say Co(x) and CO@), respectively. If either 
(uI ,  v2) and (vl ,  u2) or (u l ,  u2) and (vl, v2) are a crossing 
pair between Co(x) and Cob), then a Hamiltonian cycle in 
BF(r) that does not contain (uI ,  v l )  and (u2, v2) can be 
obtained, similarly, by the aid of Lemma 9 and Lemma 3. 
If neither (uI ,  v2) and (vl, u2) nor (uI ,  U , )  and (v l ,  v2) are a 
crossing pair between Co(x) and CO@), then there are two 
0-cycles, say Co(x’) and CO@’), that are adjacent to Co(x) 
and Cob), respectively, and there are two 0-edges, say (uI’, 
v I  ’) E Co(x’) and (u2’, v2’) E CO@’), so that (uI ,  vI  ’) and (vI ,  
u I  ’) are a crossing pair between Co(x) and Co(x’) and ( U , ,  v,’) 
and (v2,  u2’) are a crossing pair between Co(x) and CO@’). A 
Hamiltonian cycle in BF(r) that does not contain ( U ] ,  vI), 
(uI’, VI’), ( u ~ ,  v2), and (u2‘, v2’) can be obtained, similarly, 
by the aid of Lemma 9 and Lemma 3. 

Case 2. (ul ,  v I )  and (u2, v2) are I-edges. If (uI ,  v l )  and (u2. 
v2)  connect the same pair of 0-cycles, say Co(x) and CO@), 
then they are a crossing pair between Co(x) and Coo/) 
according to Lemma 2. Since (x, y )  is an edge of CBFo(r), 
Lemma 10 assures a Hamiltonian path in CBFo(r) that does 
not contain (x, y).  Similarly, the Hamiltonian path 
corresponds to a Hamiltonian cycle in BF(r) that does not 
contain (u l ,  v I )  and (u2, v2). Otherwise, suppose (ul,  vl )  
connects Co(x) and Cob) and (U*,  v2) connects Co(z) and 
Co(w). A Hamiltonian cycle in BF(r) that does not contain 
(ul, v l )  and (u2, v2) can be obtained, similarly, by the aid of 
Lemma 10 and Lemma 3. 

Case 3. One of ( U ] ,  v l )  and ( U ? ,  v2) is a 0-edge and the other 
is a I-edge. Without loss of generality, we assume that (uI ,  
v l )  is a 0-edge and (u2, v,) is a I-edge. We hrther assume 
that (U], v l )  belongs to Co(x) and (u2, v2) connects Co(z) and 
Co(w). There is a 0-cycle, say Cob), that is adjacent to 
Co(x), and there is a 0-edge, say (uI ‘, vI  ’) E Cob),  so that 
(uI ,  v1 ’) and (vI ,  u l  ’) are a crossing pair between Co(x) and 
Cob). If { z i l r  vl}  n {u2,  v2} is empty, then (x, y )  and (z, w) 
are two distinct edges of CBFo(r). According to Lemma 1 1 ,  
there is a Hamiltonian path in CBFo(r) that contains (x, y )  
but does not contain (z, w).  Similarly, the Hamiltonian path 
corresponds to a Hamiltonian cycle in BF(r) that does not 
contain ( U ] ,  vI)  and (U, ,  v2). 

If { U ] ,  vI}  n {u2, v2} is not empty, we assume vI = u2 E 

Co(w) without loss of generality. Hence Co(x) = Co(w). 
According to Lemma 2,  there is a I-edge, say (u2’, v2’), so 
that (U*,  v2) and (u2’, v2’) are a crossing pair between Co(x) 
and Co(z), where u2, u2’ E Co(x) and v2, v2’ E C&). If u I  # 

311 



u2‘, then (x ,  y )  and (x, z )  are two distinct edges of CBF0(2r). 
A Hamiltonian cycle in BF(r) that does not contain ( U ’ ,  vI) 
and (u2, v2) can be obtained, similarly, by the aid of Lemma 
1 1  and Lemma 3. 

If u1 = uz’, then CO@) = Co(z) is implied. Recall that G(r 
- 1) corresponds to a Hamiltonian cycle in CBF,(r). We 
use C = (xl, x2, ..., x2,., , xI) to denote the Hamiltonian 

cycle, where xI,  x2, ..., x2,., form a G(r - I ) ,  Suppose 
C,(Ox,) is the 1-cycle in BF(r) that contains (u2, vz), where 
1 I s I 2?’. According to Lemma 8, C - { x ~ } ,  which is a 
path of length 2?’ - 2 in CBF,(r), corresponds to a cycle of 
length r2‘ - 2r in BF(r). We use d to denote the cycle. 
The vertex set of d and the vertex set of Cl(Ox,) 
constitute a partition of the vertex set of BF(r). We show in 
the following that a Hamiltonian cycle in BF(r) that does 
not contain ( u l ,  vl) and (uz, v2) can be obtained by carehlly 
adding the vertices of C,(Ox,) to d . 

Without loss of generality, we assume v2 =f i (uz )  and let 
Cl(OX3) = ( U Z , f i ( U Z )  (= vz), f ; ’ ( U Z ) ,  . . ., f r - ’  (a hZr (U?; )  

(= u2)). For 1 I t I r, let w, =fo( f i Z r - l  (u2)) E C and IV,‘ = 

fil ( A*‘ ( U * ) )  E . It is not dificult to see that 

(f;”’-’ (uz),  w,) and (Az ‘  (uz),  w,’) are a crossing pair 

between Cl(Ox,) and d .  Since {wZ1?1, wzP} n {wzq-l, wzq} 
is empty for all p # q, a Hamiltonian cycle in BF(r) can 
result if ( fi2‘-’ (uz),  w,), ( f;” (4, w,?, and ( h2‘-’ 
x2‘ (uZ)) are added to d and (w,, w,’) is removed from d 
for all 1 5 t I r. Since (uz,  v2) = ( f iZr (uz),  f i ( t i 2 ) )  P 

{(A2‘-’ (uz),  J2‘ (u2)) 1 1 I t I r } ,  the Hamiltonian cycle 
does not contain (uz, v2). Moreover, the Hamiltonian cycle 
does not contain (u l ,  v l )  because (vl, MI) P {( f;”-l(u2), w,), 

( A2‘ (uz),  w,’) I 1 I t I r } ,  as explained below. 
We havefo(vl) = uI because vz =fi(u2)  and (uz, v2) (= 

(vI, U ’ ’ ) )  and (uz’, v2’) (= (uI, vl’)) are a crossing pair 
between CO@) and Co(z) (= CO@)). Since f;‘ (u2) = f;‘ (VI) 

+fo(vl) = uI for all 1 < c < 2r and f;‘ ( U ? )  = vI only when c 

= 2r, we have (vl, uI)  P {(Azr-’  (uz), w0, ( A z r  (uz), w,’) I 1 
I t I r }  if u I  # w,’. The latter is true because w,‘ = 

0 fJ-I ( A2‘ (u2)) = fJ-I (U21 = &I (VI) *fo(Vl> = UI.  

4 Conclusion and discussion 

faults contains a Hamiltonian cycle. Since CBFo(r) is 
In this paper, we showed that BF(r) with two edge 

isomorphic to the r-dimensional hypercube, Lemma 9, 
Lemma IO,  and Lemma 11 are also valid for the latter. We 
suspect that Theorem 1 can be generalized as follows: An 
r-dimensional k-ary butterfly graph with 2k - 2 edge faults 
contains a Hamiltonian cycle. However, the proof seems 
very hard. 
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