
A Mobile Agent-Based Active Network Architecture

Chih-Lin Hu Wen-Shyen E. Chen
Department of Electrical Engineering

National Taiwan University
Taipei, Taiwan, R.O.C.

e-mail : cl hu @ arb0r.ee.n tu.edu. tw

Institute of Computer Science
National Chung-Hsing University

Taichung, Taiwan, R.O.C.
e-mail : echen @cs. nchu.edu. t w

Abstract

Active networks enable customization of network func-
tionality without the lengthy standard-mediated commit-
tee processes. Most of the works in the literature uti-
lize the capsules or active packets as the means to trans-
fer code information across active networks. In this pa-
per; we propose an active network infrastructure based on
mobile agents technologies. In our prototype implemen-
tation, mobile agents are the building blocks of carrying
functional customizations, and the active nodes offer sof-
ware application layers, the Agent Servers, to process mo-
bile agent-specific customizations to facilitate network func-
tionality. Both integrated and discrete operational models
of network customizations are supported. In addition, for
the application-specific protocol development and deploy-
ment, an abstract protocol structure and a protocol loading
mechanismare presented. Furthermore, we provide an agent
management/control mechanism and devise a protocol man-
agementkontrol mechanism. As a result, improved network
functionality can be achieved.

1 Introduction

With the rapid Internet proliferation and prevalence, the
use of networks and the behaviors of network users are
changing and diverse. A dominant TCP/IP network architec-
ture can not keep up with the quick emergence of new net-
work services and technologies which improve network per-
formance and functionality. Without architectural support,
current network environments impede the revolution of net-
work communication technologies and prevalent extension
of the Internet services. Several crucial problems within to-
day’s Internet infrastructure can be identified. For example,
difficulty of integrating new technologies and standards into
the shared network infrastructure, difficulty in accommodat-
ing new services with the existing architectural model, poor
performance due to redundant operations at several proto-

0-7695-0568-6/00 $10.00 0 2000 IEEE

col layers, etc. However, due to being a general architecture
and the existing hung investment, the networks can not be
replaced rather preserved. A “matter-of-fact” premised way
is upgrading and backward-compatible. Despite the strong
demands to facilitate the network evolution, the employment
of new network technologies and services is still confined by
concerns of the lengthy standardization implementation, and
widespread incremental deployment.

Active networks [I91 have been shown to address these
issues through a fundamental change in the nature of the
interoperability layer. Compared with the traditional net-
work protocol, an active network aims to offer a software
programmable paradigm where allows intermediate network
nodes to perform dynamic network customization. Hence,
active networks can fulfill rapid evolution of network tech-
nologies and introduction of service applications without the
lengthy process on standardizing the packet format and pro-
tocols. In an active network, network messages can carry
specific programs to customize services or configure network
elements, and network elements can perform specific com-
putation on the passing messages based on the agreement of
program encoding and execution environment. For the net-
work elements that do not support this agreement, they take
these messages as legacy network packets and process them
in ordinary way. In this way, new services can be brought
in rapidly without the requirement for incremental deploy-
ment or the need to construct an overlay. As a result, active
networks can ameliorate network computation capability and
functionality.

Two main different approaches [19], discrete, and inte-
grated approaches, have been introduced to create active net-
works. With the discrete approach, e.g., ANTS [20], CANES
[4], DAN [lo], the programs are injected into the nodes from
the actual data packets traversing through network nodes.
With integrated approach, e.g., IP Option [22], ANEP [l],
Smart Packet [171, every message can be treated as a “pro-
gram.” A message (so-called capsule) contains a program
fragment that may include embedded data to traverse net-
work nodes. In addition, a mixed approach of these two,

445

http://nchu.edu

e.g., Switchware [2], NetScript [9] , has also been proposed.
However, capsules or active packets are merely suitable to
transferring miniature programs and the discrete pre-loading
approach is not the ultimate goal of active networks to estab-
lish a flexible architecture. To exploit programmable archi-
tecture in “service introduction [21]”, in this paper, we pro-
pose to use mobile agents [151 to establish an active network
which elegantly support both two approaches.

Mobile agents are characterized by their ability of roam-
ing through wide area networks, autonomy of operating
asynchronously with foreign hosts, and performing tasks on
behalf of end-users. The methodology of mobile agent tech-
nology supports encapsulation, program interposition, and
execution, which makes a mobile agent as a suitable building
block for the construction of active networks [1 I]. Compared
to capsules or active packets which are mainly for code trans-
fer between network elements, mobile agents not only sup-
port code transfer mechanism but also inherit the crucial fea-
tures of the mobile agent technology. Summarily, the bene-
fits [141 to use mobile agents includes reducing network traf-
fic, protocol encapsulation, asynchronous and autonomous
execution, dynamical adaptation, integrating heterogeneous
systems, and achieve robustness and fault-tolerance.

Over the past two years, we have developed an open mo-
bile agent infrastructure, Pathfinder [7][6], to demonstrate
agent distributed computation capacity. In this paper, we
further exploit the capability of mobile agents to construct
a mobile agent based active network architecture. Our pro-
totype basically supports weak mobilio, which is the ability
of allowing code transfer across different active network el-
ement, rather that the proactive or reactive migration, and
remote cloning of strong mobility. Initially, we apply mo-
bile agents common with capsule approach that provides a
code transfer across network elements. However, essentially
the scheme of a mobile agent is more adaptable than other
approaches. Our experiment has shown mobile agents being
effective in deploying specific customization. In addition,
for the demand of monitoring mechanisms at mobile agents,
we have devised an agent management mechanism, either
absent or incomplete in the other architectures, which makes
the mobile agent approach more viable in an active network
construction.

Our active network architecture is flexible enough to pro-
vide rapid service introduction. For the application-specific
protocol development and deployment, we integrate the de-
screte (out-of-band) and integrated (in-band) transfer models
by which a mobile agent can utilize to introduce network ap-
plications and services. A mobile agent can be a “all-in-one”
mobile agent which carries the main specific code objects
along with the dependencies across an active network, or be
a compact mobile agent which contacts with some service
agent to indirectly perform customization. Basically, the in-
stallation and configuration of a service agent is similar to

other discrete approaches in an out-of-band way. Note that,
furthermore, we employ a “third party”, which serves a ser-
vice provider with trusty authentication to promote the six-
vice deployment. Although some degree of the effectiveness
and performance will be compromised, this mechanism of
service propagation can be simplified.

The rest of the paper is organized as follows. Section 2
presents some background and related work. Section 3 first
describes a high-level abstraction of our proposed active net-
work architecture and then the design of individual archi-
tecture components, network comrnunication protocols, and
service deployment. Section 4 discusses the implementation
of the architecture prototype. Finally, Section 5 gives some
concluding remarks and future research topics.

2 Background and Related Work

This section first describes the active network computa-
tion model and the relationship between mobile agent tech-
nology and active networks. The current active network. re-
search works are then introduced.

2.1 Active Network Computation Model

An active network is a programmable network that allows
intermediate nodes to perform computations up to the appli-
cation layer; in addition, “end-users” can program the net-
work by injecting their programs into it [161. By that reason,
the nature of the network service is defined by the behavior of
the individual nodes of the network, and how users can con-
trol that behavior through coded information placed in their
packet [5] . Within an active network the network elements
can have the functionality of dynamical control and network
behavior. Furthermore, a message can consist of both pro-
grams and data. The embedded programs can provide the
control functions, and the data can replace the payload of the
traditional packet, but in a form of a customizable structure
used by the programs. Messages; can inject the carried pro-
grams into the network elements to customize the specific
services or even to configure the network elements them-
selves. Therefore, the network elements can perfom cus-
tomized computation upon subsequent messages following
the path according to a prior specification by messages. In
this way, more and more specific functions can be deployed
into the networks in an effort to better service the users.

2.2 Relationship between Mobile Agent Technol-
ogy and Active Network

Many active network architectures currently use code mo-
bility paradigm [l l] that is very close to mobile software
agent technology. However, the idea of active network is
much more general in terms of protocol encapsulation, and
service customization, deployment and maintenance. A fun-

446

damental difference is that active networks use the concept
of network layer processing, whereas mobile agent systems
run as application programs. General mobile agent systems
are designed to support “agent migratory computation” to
construct a ubiquitous Internet computing environment. In
contrast, the primary purpose within active networks is to
enable communication facilitation, and eventually to offer a
flexible, dynamically customization, and programmable net-
work infrastructure. The mobile agent paradigm proposes
to treat the network as multiple agent-friendly environments,
and mobile agents as programmatic entities migrating from
one location to another to perform user-specific tasks. How-
ever, active network conceptualizes the network as a collec-
tion of active nodes that can perform any computations, and
a collection of active packets that carry programs. From this
point of view, a mobile agent may be regarded as a specific
type of an active packet, and a mobile-agent-compatible node
of traditional networks could be regarded as a specific type
of an active node [16].

2.3 Active Network Research

Currently, some researchers are defining a general archi-
tecture [18] for active network elements that contains mul-
tiple execution environments to achieve component interop-
erability. The Active Network Backbone (ABONE) is being
used to test execution environments and implemented appli-
cations. The major challenge in implementing this general
architecture is to determine trade-off among usability, flexi-
bility, security, and performance concerns.

Due to the space limitation, we list just some related work
in the literature as follows. MIT’s ANTS [20] features the
capsule, a packet of Java byte-coded program, to carry spe-
cific customization along with data payload. An ANTS’S
node with Java Virtual Machine (JVM) exports API for a
capsule interpretation and execution. In ANTS, capsule can
install states and invoke preloaded classes. The granularity
of control is at the flow/packet level [5] . Switchware [2]
at the University of Pennsylvania is based on the layered
SANE and uses the scripting language called PLAN [121 to
enable strong resource management and security guarantees.
In Switchware, the packet is not allowed to install states in a
network node. NetScript 191 at the Columbia University es-
tablishes an agent-based middleware for programming func-
tions of intermediate network nodes. It explores alternative
models of active networks in which new services are intro-
duced for control, rather than data transfer purposes, or by
network management agents, rather than all users. BBN’s
Smartpacket [171 applies active networks to assist the prob-
lems of managing networks through the use of language de-
sign techniques, with the Sprocket and Spanner languages.
The Sprocket program is complied into Spanner code to
yield very small (smaller than 1 Kbyte) encoded program.
CANES [4] and Liane [3] at the Georgia Institute of Tech-

.source

application _ _ _ _ - - - - -
_,I-- I, I - - ~ I m o j l I I

agent server agent server

active module legacy module active module

active end no& legacy node active node

desrinution

application

legacy end node

Figure 1. A Mobile Agent Based Active Network

nology attempts to construct dynamic, trustworthy services
by utilizing a reduced programming model that gives a set
of reliable, predefined base services through control infor-
mation in packet header. The advantage is that designers can
limit the required security analysis. DAN [IO] at Washing-
ton University, similar to the approach of CANES, devises
a DAN network packet, which contains a finite sequence of
identifiers for functions and parameters. DAN aims to set up
a topology of code servers in a large scale to simplify code
distribution.

Our work is complementary to several other active net-
work efforts. We utilize the Java-based mobile agents as
the building blocks of our active network architecture, to ex-
plore the potential of mobile agent technologies. Although
the standard of JVM does not allow access to low-level
transmission resources and the implementations are limited
to the basic network capabilities of Java, similar to ANTS
and NetScript, the use of general-purpose Java bytecode and
JVM can speed up the development process of our architec-
ture.

3 A Mobile Agent Based Architecture

This section describes the architecture design and consid-
erations of our active network environment. Both agent mi-
gratory computation models and enhanced network function-
ality can be simultaneously provided in this active network
architecture

3.1 Architecture Overview

As illustrated in Figure 1 , our active network architecture
consists of a group of active nodes which are interconnected
across the local or wide area and by point-to-point or shared
medium channels. An Agent Server sits at the top layer of
each active node. Based on the agreement of program encod-
ing and execution environment, an Agent Server will handle
mobile agents which carry specific customizations and pro-
vide them with restricted, transient execution environments.
In this way, specific services can be deployed into networks

447

~ _ ..~.. ~ ~ __ - .- ~

Agenl Herder, i Agent Data ’ Agent Specilk Customizrtton Agent Pnyh~sd
~ _. .. -. ~.~

Figure 2. The Logical Format of a Mobile Agent

from active nodes to node by terms of the transport of mo-
bile agents. In addition, dynamical code loading mechanism
is utilized to remotely load referred protocol code objects as
need. If a network element does not support the agreement,
it processes these network messages (mobile agents) using
default protocols. Therefore, active network nodes are com-
patible with legacy networks.

3.2 Mobile Agent Logical Format

In our design , a mobile agent contains the specific pro-
grams together with data payload over active network envi-
ronment. The data within mobile agents is in a customizable
structure and the computational states of mobile agents can
be portable. As depicted in Figure 2, a mobile agent must
contain an Agent Header to identify themselves from other
network messages. Agent Data filed includes the mobile
agent attributes and related arguments or information used
for this agent execution at active nodes in active networks.
Agent Specific Customization field involves the specific code
objects to be executed at active nodes. Agent Payload field
contains delivered data or agent computational results for mi-
gratory computing purpose.

3.3 Agent Communication Protocol

An agreement of mobile agent communication protocol
is a prerequisite for mobile agents to traverse an active net-
work. In the beginning, we implemented this protocol based
on the Agent Transfer Protocol (ATP) specification [131. The
original ATP aims to demonstrate mobile agents endued with
ubiquitous computing capacity. At the same time, manage-
ment and control mechanisms are either absent or not com-
plete in most mobile agent architectures as well as active net-
work architectures. With the demand of monitoring mecha-
nisms at mobile agents or active messages; as a result, in this
paper our architecture has enhanced ATP by adding manage-
ment and control actions[8]. Figure 3 shows the life cycle
of a mobile agent in our proposed architecture. As a mo-
bile agent arrives at an active node, it can be in one of the
five states - running, suspended, stopped, aborted, and com-
pleted.

3.4 Agent Server Design

As shown in Figure 4, basically an active node runtime
environment is logically divided into two layers, the lower
layer is the physical network node and the higher layer is
the Agent Server. The Agent Server provides the agent-to-

Repnrr

Resume

Terminate

Figure 3. The Life Cycle of a Mobile Agent

.: ..
Agenl Conla1

AgmIS.curlly manager

Figure 4. Active Node Runtime Environment

node interface is the real entity which mobile agents con-
tact with for network customization. Through the consistent
interfaces, mobile agents can indirectly access the locid re-
sources to facilitate agent computation and communication.

3.4.1

Agent Context is a transient agent execution environment.
A mobile agent is constrained to achieve local resource only
through this interface to use the primitives of Agent Server.
Agent Security Manager is to check any operations outside
the Agent Context, filter out malicious agent behaviors and
unwanted interactions. Currently we practice uniform con-
trol of system resource upon all mobile agents.
ATP Handler distinguishes active messages from incoming
channel and passes it to the evaluation procedure. Similarly,
ATP Handler transfers the wrapped mobile agent in an active
message in ATP format.
Agent Manager records all the mobile agents and instanti-
ated service agents, and manages the deployed protocols at
this node.
Repository Manager stores the protocol-specific “soft-
states” and information for agent coordination and collab-
oration.

3.4.2 Primitives in Agent Server

Components in an Agent Server

The initial set of primitives in the Agent Server decides
what processing routines mobi.le agents can do on active

448

nodes, then affects what applications or services mobile
agents can deploy in active nodes. For the efficiency aspect
in application or protocol development, such a set of primi-
tives is applicable for the compactness and effectiveness of
mobile agents. In our scheme we suggest that this initial set
should include at least the following primitives.
Local storage access: the primitives to access the local node
resources, e.g., the local files.
Local environment access: the primitive to obtain the active
node environment information, e.g., port status.
Agent repository access: to storelaccess shared “soft-
states,” arguments or objects of application-defined to per-
form cooperative applications.
Agent manipulation primitives: the primitives for a mobile
agent to access its header, agent date, specific customization
and payload and manipulate itself during agent execution.
Agent communication channels access: to access the net-
work communication channel to achieve agent migration be-
tween active nodes.
Mobile agent control operations: the agent manage-
mentkontrol operations, e.g. suspend and terminate oper-
ations.

3.5 Applications/Services Deployment Scheme

3.5.1 An Abstract Protocol Structure

For the rapid applications/services protocol developments
and deployments, an abstract data structure of protocol is
necessary. In our design, this abstract protocol structure
would enclose the protocol identifier, protocol-defined infor-
mation of service-agent and mobileagent, protocol-defined
arguments, protocol-defined code objects, etc. Any new pro-
tocol development has to extend this protocol abstraction so
that all protocols have a uniform structure. Therefore, in our
active network environment an active node will be enabled to
operate, administrate and maintain (OA&M) those deployed
protocols.

3.5.2 Protocol Deployment Mechanisms

Since neither integrated nor discrete approach suits every
need for active networks, we have firstly devised a mobile
agent in combining both of two transfer models. Further-
more, we employ a “third party” - a Service Provider, to as-
sist the protocol deployment.

Active nodes should prohibit arbitrary injection of
application-specific code. The customization right is granted
only to a few authenticated users for safety and security rea-
sons. As a result, it is reasonable and amenable that we em-
ploy a “service provider” with trusty authentication to launch
trustworthy mobile agents to promote the protocol deploy-
ment mechanisms. The third parties are the repository of
application-specific codes, by responding to “protocol code
requests.” The mechanisms of protocol propagation can be

simplified although some degree of the effectiveness and per-
formance will be compromised.

4 Prototype Implementation

Section 4.1 firstly lists the characteristics of our mobile
agents based architecture. Section 4.2 introduces the exper-
imental environment. Section 4.3 describes the implemen-
tation of encapsulating a mobile agent. Section 4.4 explains
how an agent server works. Mobile agent operational model
is introduced in Section 4.5 and mobile agent management
mechanism is given in Section 4.6. Finally, Section 4.7 de-
scribes the protocol deployment and management mecha-
nisms.

4.1 Characteristics of Our Architecture

A mobile agent includes an itinerate schedule used for
agent mobility. This schedule provides the information
about how this agent is transferred within active net-
work; hence we can get agent information from it.

0 An Agent Server provides individual incoming mobile
agent a transient execution environment. Different mo-
bile agents perform different tasks bounded in its in-
dividual agent context at an active node. No resource
conflict and overlapping will happen.

0 The ATP communication protocol provides agent mo-
bility operations and our extensions add the needed
management and control operations.

0 A specific service agent in an Agent Server is responsi-
ble for mobile agents of a specific applications/services.
Multiple service agents can be installed in Agent Server.
As a result, multiple services are feasible in active net-
work through the service agent facility.

0 The design of the abstraction of protocol structure en-
ables the dynamical protocol deployment across active
nodes.

4.2 Experimental Prototype Environment

Our prototype is implemented in the Java programming
language. The programs of the Agent Server and mobile
agents are compiled in JDK 1.l.x. The experimental plat-
forms include Windows 98, Linux Slackware 2.0.35 and So-
laris 2.5 workstations, which all support Java Virtual Ma-
chine. Our prototype uses the enhanced Agent Transfer Pro-
tocol (ATP) in application layer and the lower layer is the
conventional TCP/IP protocol.

4.3 The Encapsulation of Mobile Agent

Figure 5 depicts the syntax and structure of agent encap-
sulation. Agent Header Field identifies the ATP communi-

449

~J~~ Headel '... :.:, :). :. .'..":.:ii Fj F]
::::::w:.:>> ..,.,.,. :(., : >>> .,..

AgentlD

Figure 5. The Mobile Agent Encapsulation

cation protocol. The prefix of the header identifies itself as
one kind of ATP message according to our ATP specifica-
tion. The contents of Agent Data Field' are open for the
network designer to define. For instance, User ID identifies
the service provider with trusty authentication; Arguments
contains all the related information referred or modified by
customization process; Agent ID is a unique ID for manage-
ment and control purposes. Agent Specific Customization
Field stores lead class and all necessary other classes. When
Agent Server receives a mobile agent, i t will extract this field,
and execute the customization. Agent Payload Field stores
the intermediate/final computational results of String type.

4.4 Agent Server Implementation

Our prototype provides an Agent Server, which is a
software application layer, to run on an active node to
support the specified customizations on behalf of mobile
agents.

Functions of Agent Server
First, an Agent Server can parse the incoming active

messages, and accordingly generate this agent and then
export it a transient execution environment. Second, it
can encloses this mobile agent code objects, arguments,
dependencies and intermediate results as an active message,
and then dispatch it to the next active node. Third, it can
pass a mobile agent to its corresponding service agents.
Finally, an Agent Server can apply agent control operations
accordingly by ATP control messages from the Management
Server.

Agent Server Instantiation
When an active network is instantiated, the Agent Server

in an active node first initializes the prototype properties

'We utilizes Itinerary for agent migration, because active node currently
has no "Agent Forwarding" mechanism like "Capsule Forwarding [3]."

profiles stored in the local file system and loads in the local
registered protocols to service protocol-specific mobile
agents. Finally, the Agent Server triggers the ATPHandler to
process the incoming ATP messages.

The Evaluation of a Mobile Agent
In our active network architecture, all active nodes im.ple-

ment the same agent evalution procedure model. The model
has four entities with mutual relationship, described in turn.

ATP Handler distinguishes the ATP messages from in-
coming network messages, and likewise, transforms the
wrapped mobile agent to next active node accordingly.

ATP Parser parses the ATP message from the ATP Han-
dler. After parsing, the code information are extracted
to instantiate this mobile agent.

ATP Loader initializes an agent execution context for
the instantiated mobile agent, and then loads in this mo-
bile agent. Agent Server then starts the specific cus-
tomization within this agent context.

ATP Creator re-generates (and encapsulate) a mobile
agent after mobile agent finishes its assignment in this
active node. ATP Creator will encapsulate ATP header,
agent contents, agent arguments, and another related
information into a mobile agent according to the ATP
specification.

Mobile Agent Execution in Agent Server
For the safety and security considerations, we implement

that mobile agents are only permitted to indirectly use the
primitives provided by the Agent Server through the agent
context interface. In this way, the agent-specific customiza-
tion is confined in the transient agent context. Direct opera-
tions beyond this scope are forbidden. The operations on the
"soft-states" in Repository and Agent Manager and the local
resource access are required through the assistance of agent
context interface and agent-to-node interface.

4.5 Mobile Agent Operational Model

From the interaction between mobile agent and agent
server, we have two mobile agent operational models.

All-in-one mobile agent is responsible for the de-
ployment of application-specific protocol and the cus-
tomization of active nodes. The agent should carry
the main application-specific code objects along with
the dependencies. This model is simple, but mobile
agent may be heavy and thiz agent evaluation and execu-
tion will degrade make the: performance of active node.
Moreover, the design of agent server will be more com-
plicated for the reason that agent server needs to interact
with various mobile agents.

450

0

4.6

Service agent is a stationary agent in active node, and
can provide assistance for mobile agents to customize
the active node. Basically, service agents are separate
entities from the agent server; therefore, the functions
of service agent can be flexibly designed and developed
to meet specific application demands. In this case, the
agent server is just an intermediator that passes the mo-
bile agents to respective service agents. Multiple ser-
vice agents can reside in one active node for different
services without complicating the agent server’s design.
Our prototype utilizes the multiple service agent facili-
ties to enable application/protocol deployments and de-
velopments.

Mobile Agent Management and Control

We use four tables - Agent Table, Launch Table, Service
Table and Management Table to record the management and
control information in our prototype. Each Agent Server em-
ploys an Agent Table to record the information of the arrived
mobile agent as well as service agents. When starting a ser-
vice agent, Agent Server assigns a port to this service agent,
and then records it. Once a mobile agent requests a service
agent to help the assigned customization, it can look up the
Service Table by the “service agent name” to get the corre-
sponding port. The Management Table located in the Man-
agement Server is used to record the information of launched
mobile agent in active network. When the Mobile Support-
ing Server launches a mobile agent, it also sends this infor-
mation to the Management Server. Hence, the Management
Server can manage/control a launched mobile agent accord-
ing to its record. Note that because the Management Server
does not actively trace the launched mobile agent in our im-
plementation, the information in the Management Table may
be out-of-date. However, the information is still useful for us
to locate mobile agents.

4.7 Protocol Deployment and Development

The Abstract Data Structure of Protocol
Our prototype implements a data structure to maintain

the abstract information and dependencies of the protocol.
The Figure 6 shows the ProtocolInfo constructor. Vec-
tor Class-Group records all names of the protocol-related
classes for the purpose of the dynamical protocol deploy-
ment. Vector Agent-Group records all of the protocol-
specific mobile agent names. Because in our prototype,
multiple mobile agents can be grouped in a protocol do-
main, they can perform collaboration or coordination in an
Agent Server. String ServiceAgentName records the ser-
vice agent name of this protocol. Vector Arguments serve as
a temporary repository which stores all the protocol-related
arguments or parameters.
Protocol Deployment

Public class Protocollnfo (
public ProtocolInfo(String uid, String pid. Veclor class-group.

Vector agent-group, String sa-name. Vector args) I
Use-id = uid;
Protocol-ID = pid:
Protocol-Status = RUNNING;
Class-Group = class-group;
Service-Agent-%“ = sa-name;
Arguments = wgs;

I
.....

)

Figure 6. The Protocollnfo Constructor

Initially, an Agent Server only permits the agent’s cus-
tomization if and only if the protocol status is “RUNNING.”
In order to meet the ultimate goal of dynamical protocol
deployment, our prototype employs the trustworthy Service
provider to facilitate the protocol deployment. The location
of Service Provider is default specified, and also we can
flexibly assign its location in the Arguments Vector of
the Agent Data Field. Note that, i t is reasonable that we
create a new default channel for the utilization of protocol
deployment to communicate among a Service Provider and
Agent Servers. Compared that ANTS [20] implemented
their protocol propagation mechanisms by referred to the
last active node where this mobile agent comes from.
Intuitively, our prototype also can perform this mechanism.
However, in order to reduce the complexity of implementing
the prototype, we employ the central Service Provider. In
addition, through the facility we can efficiently handle the
protocol propagation.

Protocol Management and Control

Our implementation can support multiple protocols si-
multaneously in an Agent Server. In addition, mobile agents
with different specific customizations can deploy different
protocols in an active node. In order to maintain efficiently
the deployed protocols, the Agent Server employs a Protocol
Table, as shows in Figure 7, which records the information of
the deployed protocols for protocol management and control
in an active node.

When an Agent Server is instantiated, it first stores the
information of deployed protocols into the Protocol Table.
When a new protocol is deployed in this active node, its in-
formation is recorded in this table. Moreover, trustworthy
third parties are granted the authority to delegate a mobile
agent to adapt the configurations of their deployed protocols
on the active nodes.

451

Figure 7. Protocol Table

5 Conclusion

In this paper, we have presented an active network archi-
tecture that is based on the mobile agent technology to speed
up the deployment of new network innovations. It is appeal-
ing that our architecture supports both integrated and discrete
approaches simultaneously with the operational interaction
between mobile agents and specific service agents, and in
addition, a dynamical protocol deployment mechanism is in-
troduced to facilitate the network evolution. Compared with
those conventional active networks' dedicated code transfer
mechanisms, furthermore, we have developed a management
mechanism that provides controls to network operators while
increasing the network functionality. With the design and
implementation of the agent encapsulation format, the ac-
tive node architecture, and the agent-contained customiza-
tion process in the Agent Server, coupled with the prototype
implementation, we have demonstrated that mobile agent is
a suitable alternative for constructing active networks.

Currently, although there are many research efforts in ac-
tive network infrastructures, the proposals do not provide
means for them to interwork. Mobile agent-based active
networks provide a promising basis for future interoper-
ability as some standard communication technologies, e.g.,
KQML, KIF, CORBA, etc., have been proposed. At the same
time, several standardization bodies, such Object Manage-
ment Group (OMG), Mobile Agent System Interoperability
Facility (MASIF), and Foundation for Intelligent Physical
Agents (FIPA), etc., are working on mobile agent standard-
ization. We are investigating the issues related to interoper-
ability and integrating the standards into our active network
architecture.

References

[I] D. S. Alexander, et al. Active Network Encapsulation Protocol
(ANEP). In RFC Draft, July 1997.

[2] D. S. Alexander, et al. The Switchware Active Network Ar-
chitecture. IEEE Network, pages 29-36, May/June 1998.

[3] S. Bhattacharjee, K. Calvert, and E. Zegura. LIANE - Compo-
sition for Active Networks. In Proceeding of IEEE Computer
Communications Workshop, September 1998.

[4] K. Calvert, E. Zegura, and J. Sterbenz. CANES: A Modest
Approach to Active Networking. In Proceeding of IEEE Com-
puter Communications Workshop, September 1997.

[SI K. L. Calvert, et al. Directions in Active Networks. IEEE
Communications Magazine, October 1998.

[6] W.-S. E. Chen and C.-Y. Lin. A Miobile Ray Tracing Agent. In
Proceeding of the 1999 Autonomous Agents Workshop, 1999.

[7] W.-S. E. Chen, et al. An Open Infrastructure for Mobile
Agents in Mobile Computing. In Proceeding ofthe 3rd Wwk-
shop on Mobile Computing, pages 61-67, May 1997.

[8] W.-S. E. Chen, et al. Mobility and Management for Mobile
Agents. In Proceeding of the 2nd International Conference
on Autonomous Agents, May 1998.

[9] S. da Silva, D. Florissi, and Y. Yemini. Composing Active Ser-
vices in Netscript. In Proceeding of DARPA Active Networks
Workshop, March 1998.

[IO] D. Decasper and B . Plattner. DAN: Distributed Code Caching
for Active Networks. In Proceeding of IEEE INFOCOh.1'98,
March 1998.

1 I] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding Code
Mobility. IEEE Transaction on Software Engineering, :!4(5),
May 1998.

121 M. Hicks, et al. PLAN: A Packet Language for Active: Net-
works. In Proceeding of the lid. Con5 On Functional Pro-
gramming (ICFP'98), 1998.

[13) D. B. Lange and Y. Aridor. Agent Transfer Protocol -
ATPIO.1 draft number: 4. In IBM Tobo Research L a b o r a t o ~ ,
http://www. trl. ibm.co.jp/aglets'atp/atp. him, March 1997.

[141 D. B. Lange and M. Oshima. Seven Good Reasons for Mobile
Agents. Cornmunication of thc. ACM, 42(3), March 1999.

[15] H. S. Nwana and D. T. Ndumu. A Breif 1ntroducl.ion to
Software Agent Technology. In N. R. Jennings and M. J.
Wooldridge (Eds.) Agent Technology: Foundations, Applica-
tions, and Markets, pages 29-47, Spring-Verlag 1998.

[161 K. Psounis. Active Networks: Applications, Security, Safety,
and Architecture. IEEE Communications Surveys, First Quar-
ter 1999.

[17] B . Schwartz, et al. Smart Packets for Active Networks. In
Proceeding of IEEE OPENAElCH'99, March 1999.

[IS] J. M. Smith, et al. Activating Networks: A Progress Report.
IEEE Computer, April 1999.

[I91 D. L. Tennenhouse and D. J. Wetherall. Towards an Active
Network Architecture. In Proceeding of Mulrimedia Coinput-
ing and Networking, January 1996.

[20] D. J. Wetherall, J . V. Guttag, and D. L. Tennenhouse. ANTS:
A Toolkit for Building and Dynamically Deploying Network
Protocols. In Proceeding of IEEE OPENARCH'98, April
1998.

[21] D. J. Wetherall, U. Legedza, and J. Guttag. Introducing New
Intemet Services: Why and How. IEEE Network, pages 12-
19, May/June 1998.

[22] D. J. Wetherall and D. L. Tennenhouse. The Active IPOption.
In Proceeding of the 7th ACM SICOPS European U'orkshop,
September 1996.

452

http://www

