
HAL Id: hal-00004457
https://hal.science/hal-00004457

Submitted on 14 Mar 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A distributed implementation of structured Gamma
Gabriel Paillard, Felipe França, Juarez Filho

To cite this version:
Gabriel Paillard, Felipe França, Juarez Filho. A distributed implementation of structured Gamma.
International Conference on Parallel and Distributed Systems, 2001, KyongJu City, South Korea.
pp.445-450. �hal-00004457�

https://hal.science/hal-00004457
https://hal.archives-ouvertes.fr

A Distributed Implementation of Structured Gamma

Gabriel A. L. Paillard
Universidade Tiradentes
paillard@cos.ufrj.br

Felipe M. G. França
Programa de Engenharia de

Sistemas e Computação,
Universidade Federal do Rio

de Janeiro
felipe@ieee.org

Juarez A. Muylaert Filho
Instituto Politécnico

Universidade Estadual do
Rio de Janeiro

jamf@iprj.uerj.br

Abstract

This paper presents a distributed implementation of
the Structured Gamma programming language, a
language based on the Gamma multiset rewriting
paradigm. Structured Gamma offers, in addition to the
advantages introduced by Gamma, implicit concurrent
behavior and a type system where not only types
themselves are defined but also the automatic verification
of user defined types at compilation time. Problems and
mechanisms involved in a MPI-based implementation of
Structured Gamma using a type checking engine based on
MGU – Most General Unifier are investigated.

1. Introduction

Parallel programming may not be an easy task,
especially if the programming language to be used doesn’t
have resources that allow separating the problem to be
solved, from its implementation. The Gamma language
was created as a way to abstract only about the problem to
be solved, leaving aside precepts belonging, for example,
to the imperative paradigm, that make the task of creating
parallel programs harder. Jean-Pierre Banâtre and Daniel
Le Métayer created gamma in 1986, as a formalism to
specify programs, based in the multiset parallel rewriting,
making the proofs of correctness and derivations of
programs easier [1].

The main feature of a Gamma program is the free
interaction between elements of the multiset which makes
the execution model non-deterministic because there is no
restriction on how the data elements are to be manipulated
by the program rules (in Gamma one says that they can
“react” freely), leaving the programs to be naturally and
implicitly executed in parallel.

Aiming at making Gamma a more practical
programming language in which structured data types
such as lists could be dealt with, the authors of Gamma
proposed a extension of it called Structured Gamma [2],

whilst keeping the original multiset rewriting paradigm.
The main goal of this work is to present the problems
tackled and the theory involved in a parallel and
distributed implementation of Structured Gamma.

The reasons that took the making of this
implementation are not focussed only in the search of
performance improvement, but also in the search of a
robust and more expressive programming style in the
development of parallel programs.

The Gamma multiset rewriting programming
paradigm, including clear examples, is explained in the
next section. Section III presents implicit concepts and
potentialities of Structured Gamma as a programming
language. The problems and mechanisms involved in the
implementation of Structured Gamma are exposed in
section IV. Section V presents our conclusions.

2. Gamma

The widespread sequential paradigm can not be, of
course, considered as the only one in program
development; rather, it better be seen as one of possible
ways of cooperation between individual computational
entities. The Gamma formalism was proposed fourteen
years ago to describe computing as a global evolution of
atomic values that interact freely [3]. A nice way to
introduce Gamma is by the chemical reaction metaphor.
The only data model in Gamma is the multiset (which is
“like” a set where members can have an arity greater then
one). It can be seen as a chemical solution, in which data
items are the reacting parts of the solution.

A simple program is a multiset together with an basic
reaction, which can be thought of a programming
procedure or function, to be executed on the multiset
elements

v1, v2, ..., vn →������� ⇐ Reaction Condition
where v1, v2, ..., vn are to be bound to some elements
(that are removed at the time of binding) from the
multiset, the Reaction Condition being a boolean

expression, possibly involving v1, v2, ..., vn, which when
true allows the Action to be executed which is a list of
arithmetic expressions, possibly involving v1, v2, ..., vn,
which specifies those values that are to be inserted into
the multiset.

The program execution consist in substituting the
multiset elements that satisfy the reaction condition by the
list of values specified in the action until a so-called
stable state is reached, i.e., when any reaction can be
performed anymore because either there aren't enough
elements to react or the elements don't react.

Then, it’s desirable to have an abstract algorithm of
the following way:

“While there is at least two elements in the multiset,
select two elements from it, compare them and remove the
minor from it.”

Below, we present an example of a Gamma program,
using the operator Γ, that computes the greatest element
in a non-empty multiset of integers numbers.

Maxconj(S)= Γ((R,A))(S) where
R(x,y)= x ≤ y
A(x,y)= y

The function R specifies the property to be satisfied by
the two selected elements (earlier defined as “reaction
condition”). These elements are substituted in the multiset
by the result of the application of the function A (earlier
defined as “action”).

Now, let’s give a formal presentation for Gamma. The
data model in Gamma (General Abstract Model for
Multiset mAnipulation) is the multiset, similar to a set,
except that it may contain multiple occurrences of the
same element. The advantage of using multiset is the
possibility to describe compounded data with any form of
hierarchy between the components. This is not the case of
recursively defined data structures, like lists, that imposes
order in the examination of their elements. The control
structure associated to multisets is the operator Γ. As we
saw in the example above, Gamma reflects the absence of
hierarchy in the data models and implies in a probabilistic
execution model. Its formal definition can be seen by the
following way:

)),..,x(xA}),..,x)) ((M-{x,A),..,(R,A� ���

)in,..,x(xRsuch that ,m][iletM ,..,xelse let x

then M

),..,x(xR M, ,..,x x,m], [i if

))(M),A),..,(R,A����

ninmm

nin

niin

mm

1111

11

1

11

 1 ,

1

+
∈∈

¬∈∀∈∀
=

The effect of a reaction (Ri, Ai) over a multiset M is
to replace M in a subse of elements, (X1, ..., Xn), so that
Ri(X1, ..., Xn) is true, by the elements from Ai(Xi, ..., Xn).
If no element from M satisfies any reaction ((∀ i ∈

[1,m],∀ x1,..,xn ∈ M,¬Ri(x1,..,xn)), then the result is the
same M. Otherwise, the result is obtained realizing a
reaction ((M-{x1,..,xn})+ Ai(x1,..,xn)) and repeating the
same process until no reaction can occur. This definition
implies that if one or more reaction condition can be
verified for some subsets at the same time, the choice
made between them is not deterministic. The importance
of the locality property can be underestimated. If the
reaction condition is satisfied by some disjoint subsets,
the reactions can be realized simultaneously and
independently. This property is the basic reason for the
potential parallelism of Gamma programs [4].

3. Structured Gamma

Some deficiencies in Gamma were verified. The main
ones are [2]:
• the original Gamma definition doesn’t have any

operation to combine programs;
• Gamma doesn’t make easy the task to structure data

or to specify a control strategy;
• for the combinatorial explosion imposed by its

semantics, it’s hard to reach a good level of
efficiency in any Gamma implementation.

The impossibility to create data structure in Gamma
and the difficult to impose a particular control strategy are
according with Gamma original motivation, which was to
create programs with the least number of restrictions.
However, the problem is that sometimes it was necessary
to use difficult strategies to implement its algorithm. We
may use as an example, the case where we had to
represent pairs in a multiset (index, value). This limitation
also introduces an inefficiency factor in the
implementation, because the data structure (and control)
cannot seen by the compiler. Such information could be
used to improve the implementation.

A structured multiset consists in addresses satisfying
relations, what may be seen as a kind of neighborhood
between the reaction molecules, using the chemical
reaction analogy. Therefore, the locality aspect, one of the
main Gamma characteristics, continues being preserved,
because we have a topological sight of the multiset,
avoiding the manipulation of it as one entire piece, what
comes to favor the parallelism.

The list [5, 2, 7] can be represented by a structured
multiset, which set of addresses is {a1, a2, a3} and their
values are, Val(a1) = 5, Val(a2) = 2, Val(a3) = 7, we may
express the values using the following notation: a3, that
has the same meaning of Val(a3). Consider Succ a binary
relation and End an unary relation; the addresses satisfy:

Succ a1 a2, Succ a2 a3, End a3

Therefore, we have a list representation, in which the
element a1 precedes a2, and a3 is the tail of the list. A
structured Gamma program continues to be, then, a series

of reaction applications realized locally, i.e., Gamma
paradigm keeps being the same.

A Gamma structured program is defined based in pairs
compounded by a condition and an action, which can:
• test or modify the relations over the addresses;
• test or modify the associated values with the

addresses.
A structured multiset M may be seen as M = Rel +

Val, where:
• Rel is the multiset of relations, represented by triples

of the kind (Val, r, a) (r ∈ R, a ∈ A);
• Val is a set of values represented by triples of the

kind (Val, a, v) (a ∈ A, v ∈ V).
For example, the structured multiset showed in the

beginning can be represented by the following way:
{(Succ, a1, a2), (Succ, a2, a3), (End, a3), (Val, a1, 5), (Val,
a2, 2), (Val, a3, 7)}

If a structured multiset has an address x, this won’t
have more than one value, i.e., x will appear only once in
Val. In the other hand, it may exist some occurrences of
the same tupla in Rel. We also didn’t focussed the fact
that:

A(Rel) ⊆ A(Val) nor A(Val) ⊆ A(Rel).
Then, we may conclude that each allocated address

may not have a value, or can have a value, but they don’t
figure in any relation. In that case, a structured Gamma
program can’t access them and they can be garbage
collected.

The structured Gamma program semantics (P = C1 ⇒
A1, ..., Cm ⇒ Am) applied to a multiset M is defined as the
set of normal forms from the following rewriting system:

),..,)((1)(},..,{

))(,..,)(,..,,,..,)((),..,)((

),..,)((1)(},..,{)(

11

1111

1

nin

kkniniP

niinP

xxCTthath,..,m] suc[iandMAxxif

MAyywithyyxxAxxCCMM

xxCT,..,m][iMAxxifMM

∈∃⊆∃
∉+−→

¬∈∀⊆∀→
�

��

If no address tuple satisfies any condition, then the
normal form is found. The result is the structure.
Addresses that do not occur in Rel are remove from Val.
i.e. :
gc(Rel+Val) = Rel + {(val, a, v) | (val, a, v) ∈ Val ∧ a ∈
A(Rel)}

A changer (program) substitutes an instance of its left
side (condition C) by an instance of its right side (action
A) [5]. To synthesize the formalism given above, what
happens is that a tuple of addresses (xi, ..., xn) and a pair
(Ci, Ai) such that T(Ci) (xi, ..., xn) are not deterministically
chosen. The multiset is transformed removing C(Ci) (xi,
..., xn) and allocating new addresses (yi, ..., yk), and adding
in multiset A(Ai)(x1, ..., xn,y1, ..., yn).

An example of a structured multiset goes right below.
It can be schematized by a graph, as showed in Fig. 1.
M = {p a1, pred a1 a1, next a1 a2, pred a2 a1, next a2 a3,
pred a3 a2, next a3 a3}

Fig.1 A double linked list.

Structured multiset are a syntactical facility used to
make the organization of the data explicitly [2]. Now,
we’ll introduce the notion of a shape, what validates the
structure defined in a multiset. We define a shape by the
rewriting rules over the multisets. A multiset will belong,
or will be according to determined shapes, if its relations
set may be produced by the rewriting system, that defines
the shape.

In a structured Gamma program, we’ll have a user
defined shape, what will use a free context grammar,
giving the possibility of the definition of various data
structure in a very simple way. Also will be supplied as an
input data for this program a structured multiset, what was
defined before.

The shape syntax is defined by the following
grammar:
<Type Declaration> = TypeName = [<Prod>], [<Non
Terminal> = <Prod>]*

<Non Terminal> = NTName x1,..,xn

<Prod> = r x1,..,xn | Non Terminal | <Prod>
Where r ∈ R is a relation, and xi is a variable that has

a determined address. A shape definition is similar to a
free context grammar. In the sequence, we’ll show an
example of binary tree shape that can be defined by the
following way:

Bintree = Bx

Bx = Left x y, Right x z, By, Bz

Bx = Leaf x x
The grammar above represented, allows that a rule

produces consequently one element (node), which can
have two children or be a leaf, what characterizes a strict
binary tree.

In imperative languages, like C, when we declare two
types as a tree and a linked list, we’ll only be able to
distinguish these two kinds by their respective functions.
In structured Gamma, the type shape is incorporated in
the declaration of the own type and a routine that inserts
one element in a double linked list, if it’s not correct, will
do some kind of error (in compile-time). Because of that,
structured Gamma is strongly typed.

A grammar consists of four components (NT, T, PR,
O), where NT and T are the non-terminal and terminal
nodes, respectively. PR is the set of production rules and
O is the origin of the derivation. The production rules are
pairs l = r, in which l is a non-terminal node and r is a

collection of elements. Therefore, the shape representing a
double linked list is:
HDL= <{Doubly, L}, {Next, Pred, p}, RDoubly, Doubly>

After this initial phase, it was developed a type
verification algorithm. A type verification algorithm
associates to each defined type in the structured Gamma
program, a rewriting system over the relations of the
multiset. For the previously defined type (double linked
lists), the rewriting system is:

p x, pred xx, Lx → RDoubly Doubly
next x y, pred y x, Ly,X → RDoubly Lx, X y∉X
next x x, X → RDoubly Lx, X
We used the Greek letter σ to represent variable

substitution, which is an injective function that will be
used in the rewriting system. A shape defined by a
grammar is the set:

{M|M →* PR {O} and M terminal}
X + (σ) → PR X + (σl)
l=r ∈ PR e (Var(σl)) ∩ Var(X) = ∅
A multiset belongs to a shape if, using the rewriting

system (by the use of the production rules), it’s possible to
get to the initial symbol of the grammar. Another
alternative consists in producing a set containing the
multiset derived from the origin “O”, but it’s a more
expensive way.

It’s easy to verify that the multiset given below, which
is an example of a double linked list, belongs to the shape
HDL. This can be observed in a simple way:
M = {p a1, pred a1 a1, next a1 a2, pred a2 a1, next a2 a3, pred
a3 a2, next a3 a3}

Applying the rewriting system to the multiset, we
have:

next a3 a3, X → La3, X
next a2 a3, pred a3 a2, La3, X → La2, X a3 ∉ X
next a1 a2, pred a2 a1, La2, X → La1, X a2 ∉ X
p a1, pred a1 a1, La1 → Doubly
Then, we have the confirmation that the given multiset

satisfies the type defined by the shape HDL. X is used to
represent the reduction context, in which variables that
disappeared from the right side of the production rules
can’t show in the rest of the reduction, anymore.

4. Implementation of Structured Gamma

The first phase of Structured Gamma implementation
consisted, obviously, in the construction of the lexical
analyzer, in which are recognized the language words that
aren’t in huge quantity. In the second phase, it was
realized the syntactical analysis that verifies, by the
construction of a grammatical tree, the syntactical
structure of the program. These two phases of the
compiler were developed using Yac, a tool that comes
with Lex [6]. The generated grammar is non-ambiguous.

About the generated data structure (grammatical tree) by
the syntactical analysis, it was made the type verification
and the code generation. To make a better idea of this
phase, let’s have an example, using the syntax that was
implemented:
shape:

<{Doubly, L}, (next, pred, p), Doubly>
tipo:

Doubly = p (x), pred (x x), L (x)
L x = next (x y), pred (y x), L (y)
L x = next (x x)

Programa:
P1 {p (a1), pred (a1 a1), next (a1 a2), pred (a2 a1), next
(a2 a3), pred (a3 a2), next (a3 a3) valores: (a1 := 5), (a2 :=
3), (a3 := 6) } where
P1 = p (a), next (a b), pred (b a) (b == a) ⇒ p (a), next
(a e), pred (e a), next (e b), pred (b e) (e := b)
The program above has as shape a double linked list,

and its action consists in inserting one element after the
first element in the list. The tree mounted in this phase has
some dozens of pointers, being impossible to show here
an illustration of it. The first token to be recognized by the
grammar is “shape:”. After that, comes between < > the
non-terminal ones, terminal ones and the grammar origin
symbol, respectively. After recognizing the token “tipo:”,
it’ll examine and will put, in the adequate position of the
syntactical tree, the free context grammar rules. And,
finally, after token “Programa:”, we’ll have in first place
the name of the programs, in the case of our example P1,
but also, we could have, for example, P1 | P2; P3, what
means that P1 and P2 will be executed in parallel. Token
“;” means that P3 will be run after P1 and P2 finish.

Each reaction will be set to a process, in the case of
the operators referenced above, each one will also be
transformed in a respective process. If we have P1 | P2, the
“|” will be a process that will have the function to control
execution of processes equivalent to reactions P1 and P2.

We also can, in the program declaration area,
specifically in action, to make use of attributions, to alter
the values of variables that already exist or new ones
dynamically created. For example, a1 := a2, in which the
value stored in address a1 has its contents changed for the
value contained in the address a2. In condition, we also
can have value comparisons. For example, a1 = = a2, i.e.,
if the contents of the given addresses are identical, it will
return an affirmative answer. We have, beyond the one
showed here, the other known relational operators.

4.1. Type Verification

Together with the creation of new system types, it
must exist an algorithm for type verification. At
Structured Gamma context, the algorithm must ensure
that the executed program keep the data structure defined

in the type, i.e., that it doesn’t degenerate. This is an
invariant property of the system [2].

The first part of the type verification must be applied
to the given multiset, because it must guarantee that it’s
according the grammar. The difference, when related to
the algorithm that we’ll see later, is that it’s necessary to
reach the grammar origin symbol. Using the rewriting
system for a double linked list, we have:

CheckC,A(PR,O) = VerifyA (BuildC(PR,O)) where:
• BuildC(PR,O) returns a tree with root C, condition C

represents the initial condition given in the program,

and the nodes 1+⎯→⎯ i
X

i CC i , such that:

program; by the returned treein the C rspredecesso

 its torelated when isomorphicnot is nd

) ())r ((

) (

e)),(,(,

j

1

1

+

+ +−=
−=

∈∃∈=∃

i

ii

ii

i

Ca

lcC

CrX

rlCUMGPRrl

σσ
σ

σ

• VerifyA (Tree) returns true, if and only if,

k;
*

11

k1

2

C ...XA

leaf, a is C and C C tree,

 generated in thepath complete ... 1

PRX

CCC

k

k
XX

i
ki

⎯→⎯+++

=
⎯⎯ →⎯⎯→⎯∀

−

−

• UMG(C,(l,r)) is the set of all substitutions σ from left
variables and from right of production rules (PR),
such that:

∅≠∩−∅≠∩ r)) (-Var(Cl)) ()r ((e)r (σσσσ VarVarC
The implemented algorithm tries to build paths in the

tree, from the given condition. If it doesn’t reach a non-
terminal, then it erases the traced path and afterwards,
tries to build another path. Consequently, we may have
more than one valid non-terminal, after the tree
construction, but all of them must be tested by the action,
and result in the same non-terminals. For the action,
another tree is generated. After comparing both trees, and
a result being found, validation or not of the program,
according to the specified type in the grammar. It must be
observed that, in the action, we can use as a node value,
one element ∅, because the fundamental thing is to get to
the same non-terminal reached in the condition.

Let’s consider a practical example. Applying
therewriting paradigm to the double linked list one has:
p x, pred x x, Lx → RDoubly Doubly
next x y, pred y x, Ly, X → RDoubly Lx, X, y ∉ X
next x x, X → RDoubly Lx, X

Observe that, in the second rule, y ∉ X. This has to be
ensured in order to avoid variable sharing. The definition
of the type double linked list is:

Doubly = p x, pred x x, Lx
Lx = next x y, pred y x, Ly
Lx = next x x

P1 = p a, next a b, pred b a ⇒
p a, next a a’, pred a’ a, next a’ b, pred b a’
Note that P1 do an action that inserts an element at the

beginning of a double linked list. A condition given by the
program is that: p a, next a b, pred b a. Hence, using the
type checking algorithm, one has that the reduction X1 =
(next a b, pred b a, Lb) – (p a, next a b, pred b a), what
will result in Lb. The first step is to obtain σr, what was
done via applying the rewriting system to the double
linked list. One can easily see that the condition matches
with the rule next x y, pred y x, Ly, X → RDoubly Lx, X, y
∉ X. After the first step of the type checking algorithm,
one has two contexts: the first one is Lb, the reduction
context, and the second one is the remaining of the
condition, p a in this case. The restriction that a variable
does not exist at the left side of the production rule applies
to the last context.

The next step of the type checking algorithm is to find
C1 that is equal to ((p a, next a b, pred b a) – (next a b,
pred b a, Lb)) + (La), what will result in p a,La.
Proceeding with the construction of the reduction tree,
one has X2 = (p a, pred a a, La) – (p a, La),that will result
in pred a a. The new derived condition is ((p a, La) – (p a,
pred a a, La)) + (Doubly), that will result in Doubly. The
reduction tree is ready as illustrated below:

 p a, next a b, pred b a
 Lb
 p a, La
 pred a a
 Doubly
To conclude the type checking algorithm one has only

to check the action defined by the program against the
reduction contexts, what should lead to the same non-
terminal and proving that the shape is kept invariant:

 p a, next a a’, pred a’a, next a’b, pred b a’
 Lb
 p a, next a a’, pred a’a, La
 φ

 p a, La
 pred a a

 Doubly
Observe that, one can use the f element as the edge

value since is essential to arrive at the same non-terminal
reached by the condition.

The role of MGU — Most General Unifier —[7] is
described next. As the multiset variables are different
from the ones found at the program and, by their turn,
those are different from the ones defined by the grammar,
there must exist a way to associate the mall. Remember
that we are dealing with an injective function.

We have applied MGU to do that. A disagreement set
is created in order to realize the matching of variables.
Consider as example the following rule:

Lx = pred x y
If there is a pred a1 a2 in the multiset then the

disagreement set would be {x|a1, y|a2}. MGU would use
this disagreement set to perform the substitutions due. By
matching a rule, MGU does the possible substitutions of
the non-terminal under investigation. One has also to
check if the differing elements, between non-terminals
and terminals of the rule, are not present at the remaining
context (X). This has been implemented by constructing a
linked list where, at each element of the list, a
disagreement set is found and kept for each iteration of
the program.

In the code generation cells are created. The cell 0 has
the function to send multiset copies to the other ones.
Each program, i.e., each transform (C ⇒ A) become a
cell, which is responsible for the multiset change, and,
after that, returns the same to the cell 0.

We may have processes connected to operators as “;”
that specifies a sequence to be followed by the processes,
i.e., the processes after the “;” will have to wait the finish
of the previous ones, so that they begin their executions.

We used a message change interface in a distributed
system. Each cell receives a program copy and executes
its part. The cell 0 will end the program, when no more
reactions may occur.

More exactly, cells are created, at execution time, each
one being associated to a specific process. However, there
will always be two cells, i.e., cell 0 and cell 1. Cell 0 is
responsible for the management of the multiset, that is, to
accept the requests for accessing the multiset and
receiving it back after the execution of reactions have
been performed by other cells. Cell1 is responsible for the
execution of the other cells, including terminating them..

5. Conclusions

We have implemented a new parallel language,
following a new paradigm (multiset rewriting). In the
beginning of the implementation work [8] we have made
a careful investigation towards checking if there was any
implementation of Structured Gamma and none was
found. In the implementation process, the Most General
Unifier [7], was implemented and several extensions were
purposed in this work. One can also find the proofs for the
termination of the type verification algorithm in [2],
where it was also implemented successfully. We have
firstly shown the theoretical aspects of Structured Gamma
and the potential advantages of its implementation, such
as easy creation of data structures and the guarantee of
having the type defined in a free context grammar, kept
during all the program execution trough type verification.

At last, we implemented the code generator. The
compiler output is a C program. As we have already
stated, each reaction is associated to a specific process.
The message interchange interface used was MPI
(Message Parsing Interface), version LAM from Ohio 6.1
[9], which has proved to be very practical since the only
need when moving from a distributed platform to another
is to change parameters particular to the target system.

We were really content with the work, because our
goal, which was to supply a implementation of a new
parallel language, was reached. We intend to go on by
purposing some extensions, and implementing them,
giving, by this way, continuity to our work.

Acknowledgements

Finally, we would like to thank Othon Batista for
helping in the definition of the first version of this paper
and Claudio Prata for his help at the first stages in the
implementation of Structured Gamma. This work was
partially supported by CNPq and CAPES, Brazilian
research Agencies.

References

[1] BANÂTRE, J.-P., LE MÉTAYER, D, A New Computational
Model and its Discipline Programming, Rapport de recherche
INRIA, nº 566, septembre 1986.
[2] FRADET, P., LE MÉTAYER, D., Structured Gamma, Irisa
Research Report PI-989, March 1996.
[3] BANÂTRE, J.-P., LE MÉTAYER, D., Gamma and the
Chemical Reaction Model: Ten Years After, Coordination
Programming Mechanisms, Models and Semantics, Imperial
College Press, 1996.
[4] BANÂTRE, J.-P., LE MÉTAYER, D. Programming by
Multiset Transformation, Communication of the ACM, Vol. 36-
1, pp. 98-111, January 1993.
[5] FRADET, P., LE MÉTAYER, D., Shape Types, Proc. ACM
SIGPLAN Symposium on Principles of Programming
Languages, pp. 27-39, 1997.
[6] LEVINE, John R., MASON Tony, BROWN, D., Lex &
Yacc, United States of America, Editor Dale Dougherty, 1992.
[7] CASANOVA, Marco A., GIORNO, Fernando C.,
FURTADO, Antonio L., Programação em Lógica e a
Linguagem Prolog, Capítulo 4, Rio de Janeiro, Brasil, Editora
Edgard Blücher Ltda, 1987.
[8] PAILLARD, G.A.L., A Parallel and Distributed
Implementation of Structured Gamma, MSc Thesis,
PESC/COPPE, Universidade Federal do Rio de Janeiro,
September 1999.
[9] GDB/RDB, MPI Primer Developing with LAM, 1996, The
Ohio State University.

