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Abstract 
Video-on-demand (VoD) systems have traditionally 

been built on the client-server architecture, where a video 
server stores, retrieves, and transmits video data to video 
clients for playback. This paper investigates a radically 
different approach to building VoD systems, one where the 
server, and hence the primary bottleneck, is completely 
eliminated. This server-less architecture comprises 
homogeneous hosts, called nodes, which serve both as 
client and as mini-server. Video data are distributed over 
all nodes and these nodes cooperatively stream video data 
to one another for playback. However, unlike traditional 
video server that runs on high-end server hardware in a 
carefully controlled and protected data centre, a node in a 
server-less system is likely to be far more unreliable. 
Therefore it is essential that sufficient data and capacity 
redundancies are incorporated to maintain an acceptable 
service reliability. This paper presents and analyzes a fault 
tolerant mechanism based on inter-node striping and 
erasure correction codes to tackle this challenge. By 
formulating the system’s reliability as a Markov chain 
model, we obtain insights into the feasible operating region 
of the system, such as the amount of redundancy required 
and the node-level reliability that can be tolerated. 
Numerical results show that a server-less VoD system of 
200 nodes can achieve reliability surpassing that of 
dedicated video server using a redundancy overhead of 
only 21.2% even though individual nodes are highly 
unreliable. 

1. Introduction 
Current video-on-demand (VoD) systems are commonly 

designed around the client-server architecture. Under this 

architecture, a client sends a request to the video server for a 

video title and then the server transmits video data to the 

client for playback. As the number of user increases, the 

server will eventually reach its capacity limit. To further 

increase the system capacity, one can add more servers and 

distribute the requests to them, such as parallel server [1] 

and distributed server [2-3] architectures. As each server 

serves only part of the users rather than all users, the total 

system capacity is extended. 

Nevertheless, the cost of upgrading servers can be 

substantial, as video servers typically require high-end 

server hardware with high I/O bandwidth, large memory 

capacity, as well as storage capacity. Even in the best case, 

such as parallel server and distributed server architectures 
that do not require data replication, the server cost will still 

increase at least linearly with the traffic demand. Moreover, 

apart from server cost, the distribution network will also 

need to be upgraded with more bandwidth to carry the vast 

amount of video traffic to the users. Given the high cost of 

long-distance backbone networks, it is no wonder why 

metropolitan-scale VoD services are still uncommon in 

practice. 
In this study, we take a radically different approach to 

building scalable, reliable, and cost-effective VoD systems. 

In particular, we turn our attention to an often-neglected 

element in a VoD system – the client-side device or 

commonly called the set-top box (STB).  

Developments of STB have continued for many years 

and current STBs not only are low cost, but also are 

relatively powerful due to the rapid technological 
development and economy of scale achieved by the 

personal computer industry. While early generations of 

STB are very limited in function and capability, the current 

trend in STB development is towards evolving from a 

simple video-receiving and decoding device into a home 

entertainment center with functions like VoD, 

TV-over-Internet, harddisk-based personal video recorder, 

messaging center, web browser, CD player, DVD player, 
digital audio jukebox, or even game console. This evolution 

not only greatly enhances the usefulness of a STB, but also 

opens a radically new way to build VoD systems. 

 Specifically, we take advantage of the increased storage 

and processing capability of STBs to build a completely 

distributed VoD system that does not require dedicated 

server at all. We call this a server-less architecture for 
obvious reason. In this server-less architecture, all STBs, or 
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called a node in this paper, in the system serve both as a 

client and as a mini-server. Video data are distributed 

among the nodes and multiple nodes work together to serve 

video streaming requests from other nodes. The beauty of 
this architecture is that the system is inherently scalable, i.e., 

when new users are added to the system, they add both 

streaming load and streaming capacity to the system. 

Moreover, network costs can also be reduced because the 

nodes are likely to be clustered together, reducing the need 

for costly long-distance network backbone. 

However, building a server-less VoD system is not 

without challenges. In a previous study [4], we investigated 
the issues of data placement, scheduling, and streaming. 

The architecture has been shown to be feasible with today’s 

hardware platforms. In this study, we investigate another 

critical issue of the server-less architecture − reliability.  
Unlike a client-server VoD system, video data are 

distributed in a server-less VoD system. While this data 

placement policy eliminates the storage overhead in 

replication, such as the case in current peer-to-peer (P2P) 

systems [5-6], the system cannot function if any of the 

nodes fails. To tackle this problem, we develop a fault 
tolerant mechanism based on the use of erasure correcting 

codes to enable the system to sustain node failures. With 

this mechanism, we derive the system’s 

mean-time-to-failure (MTTF) using a Markov chain model 

to find out the amount of redundancy required to achieve a 

given system MTTF, and to investigate how low the 

reliability of STB can go before the redundancy overhead 

becomes too excessive. Numerical results show that a 
server-less VoD system of 200 nodes can achieve reliability 

surpassing that of dedicated video server (MTTF of 

100,000 hours) using a redundancy overhead of only 21.2% 

even when individual nodes are highly unreliable (MTTF of 

256 hours). 

The rest of the paper is organized as follows: Section 2 

reviews some previous related works; Section 3 presents an 

overview of the server-less VoD architecture; Section 4 
presents the fault tolerant mechanism; Section 5 presents a 

model for the system reliability; Section 6 evaluates the 

system reliability using numerical results; and Section 7 

concludes the paper. 

2. Related works 
Current VoD architectures can be classified into 

centralized and distributed architectures [7]. In centralized 

server architectures, only the central server serves user 

requests and so it becomes the system’s primary bottleneck. 

By contrast, requests are shared by multiple servers in a 

distributed server architecture such that capacity can be 

scaled up by adding more servers.  
Serpanos, et al. [7] compared the performance of 

centralized and distributed architectures for video servers. 

They concluded that in general, a centralized architecture is 

preferable in terms of performance and management, but at 

the expense of higher cost. To improve cost effectiveness, 

distributed or parallel server architectures [1-3] are 

commonly employed. For example, one can replicate video 

data to multiple servers and equally divide requests between 
them. To further reduce the storage overhead due to 

replication, replication can be limited to the more popular 

video titles.  

For example, On, et al. [2] studied replication 

assignment and update frequency in relation to the desired 

data availability, consistency, and QoS requirements. 

Serpanos, et al. [3] proposed a MMPacking video 

assignment algorithm based on video popularity to achieve 
load and storage balance. Another approach is the use of 

parallel server architectures (see Lee [1] for a review of 

parallel server architectures) that employ server-level data 

striping. Compared to replication and caching, parallel 

server architectures eliminate the need for data replication 

and are inherently load balanced. Moreover, one can 

introduce data and hardware redundancies into the system 

to achieve server-level fault tolerance, making the system 
even more reliable than central-server designs.  

Another area related to our study is the peer-to-peer (P2P) 

concept popularized by software systems such as Napster [5] 

and Gnutella [6]. These P2P systems are primary designed 

to function as a large distributed storage system [8-9]. In a 

P2P system, a user shares files with a group of other users 

and can search for the desired files by submitting a query to 

neighbors or to a directory server. Once the desired files are 
located, the user then downloads the data directly from the 

other user’s computer. As the data are selectively replicated 

among user nodes, this structure allows sharing of files by a 

large community at low cost, as a dedicated server is no 

longer needed. The main challenge comes from the 

complexity in distributing replicated files to achieve load 

balance and fault tolerance [9]. As users in a P2P system 

have varying network bandwidth and processing capability, 
quality-of-service cannot be guaranteed and slow or even 

broken connections are not uncommon. Nevertheless, the 

ease of setting up and participating in a P2P system and the 

need for a decentralized file-sharing platform have 

outweighed these limitations. 

Compared to traditional client-server architecture, the 

server-less architecture distributes the server functions to 

the clients. This approach not only eliminates the primary 
bottleneck in the system, but is also inherently scalable. 

Compared to current P2P systems such as Naptser and 

Gnutella, the server-less architecture employs distributed 

data storage rather than extensive file replication to improve 

availability. This difference is essential as video data 

consume significantly more storage than MP3 audio files. 

Moreover, unlike file sharing, VoD applications have 

stringent performance requirements that are essential to the 
correct operation of the system. Consequently, the 

server-less VoD architecture requires completely different 

data placement policy, retrieval scheduling, transmission 
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scheduling, and fault tolerance mechanism compared to 

current P2P systems. 

3. System architecture 
In this section, we present details of the server-less 

architecture, including the data placement policy and the 

retrieval and transmission schedulers. A server-less VoD 

system comprises a pool of user nodes connected by a 

network as shown in Fig. 1. Each node has its own CPU, 

memory and disk storage. Inside each node there is a mini 
video server software that serves a portion of each video 

title to other nodes in the system. Unlike conventional video 

server, this mini server serves a much lower aggregate 

bandwidth and therefore can readily be implemented in 

today’s STBs and PCs. For large systems, the nodes can be 

further divided into clusters where each cluster forms an 

autonomous system that is independent from other clusters. 

3.1. Data placement policy 
As discussed in Section 2, existing distributed systems 

commonly employ data replication and caching to improve 

scalability. However, unlike video servers where storage 

capacity is usually large, a node in the form of a STB or a 

PC will have relatively limited storage capacity. Therefore, 

instead of replication, we propose the use of striping as the 
data placement policy for the architecture. 

Specifically, each video title is divided into fixed-size 

striping units (or called blocks) of Q bytes each. And we 

assume there exist an archive server that distributes the 

striping blocks to all nodes in the cluster in a round-robin 

manner. This node-level striping scheme avoids data 

replication while at the same time divides the storage 

requirement equally among all nodes in the cluster.  
To initiate a video streaming session, a client node will 

first locate the set of server nodes carrying blocks of the 

desired video title, the striping policy and other parameters 

(format, bitrate, etc.) through the directory service. These 

server nodes will then be notified to start transmitting the 

video blocks to the client node. The notification can be 

performed directly by the client node or indirectly by the 

directory service, of which the exact mechanism involved is 
beyond the scope of this study. 

3.2. Retrieval and transmission scheduling 
Let N be the number of nodes in the cluster and assume 

all video titles are constant-bit-rate (CBR) and share the 

same bitrate Rv. For a server node in a cluster, it may have to 

retrieve video data for up to N video streams, of which N−1 
of them are transmitted while the remaining one played 

back locally. Note that as a video stream is served by N 
nodes concurrently, each node only needs to serve a bitrate 

of Rv/N for each video stream. 

Many existing video server designs employ round-based 

schedulers such as SCAN and its variants [10-11]. In our 

design, we employ the Grouped Sweeping Scheme (GSS) 

proposed by Yu, et al. [12] to schedule a node’s disk 

retrieval and network transmission. Compared to the more 

common SCAN scheduler that maximizes throughput at the 

expense of buffer overhead, GSS allows one to control the 

tradeoff between disk efficiency and buffer requirement. 
This is a crucial feature as disk throughput may not be the 

bottleneck in a server-less VoD system. Interested readers 

are referred to Lee and Leung [4] for more details on the 

scheduling algorithms.  

4. Fault tolerant mechanism 
In a server-less VoD system, fault tolerance becomes an 

essential capability as reliability of STBs and PCs will be 

significantly lower than dedicated video servers located in a 

data centre run by professional operators around the clock. 

Moreover, given the relatively large number of nodes, the 

system needs to expect and prepare to recover not from a 

single failure, but from multiple simultaneously failures as 

well. The following sections present a fault tolerant 
mechanism to extend the architecture described in Section 3 

to sustain node failures. 

4.1. Capacity and data redundancy 
When a node fails, all data stored in that particular node 

becomes unavailable. In communications terminology this 

is called erasure as opposed to error. To recover from data 
erasures, erasure-correcting codes such as the 

Reed-Solomon Erasure Correcting (RSE) Code [13,14] can 

be used. Compared to replication, Weatherspoon et al. [15] 

showed that erasure-resilient systems require an order of 

magnitude less redundancy overhead to achieve similar 

reliability. Thus we employ erasure-correcting codes to 

sustain node failures in the server-less architecture. 

Specifically, a (n, h)-RSE codeword comprises n 

symbols of which (n−h) of them are message symbols (i.e. 

data) and the remaining h are redundant symbols. One can 

recover all (n−h) message symbols as long as any (n−h) out 
of the n symbols are correctly received. Let N be the number 

of nodes in the system. Then by extending the 

striping-based placement policy in Section 3.1 with a (N, 

h)-RSE code, the system will have sufficient redundant data 

Autonomous
Clusters

STB

STB

STB

STB

STB

Playback

Fig. 1. Architecture of the server-less 
video-on-demand system. 
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for a client node to recover all video data with up to h node 

failures in the cluster. To accommodate the RSE-code, we 

need to modify the placement policy, the schedulers, and 

the client node’s buffering algorithm. For the placement 
policy, an additional encoding step will be needed to 

compute the h redundant blocks for each group of (N−h) 

video data blocks. Moreover, as now only (N−h) of the 
stored data are playable data, we will need to increase the 

strip unit size from Q bytes to 

                             r

N
Q Q

N h

 =  − 
                                 (1) 

bytes to maintain the same data size of a striping group. 

After the encoding step, the archive server then distributes 

these N blocks (including h redundant blocks) to all nodes. 
For the disk scheduler, the retrieval unit will be 

increased from Q bytes to Qr bytes. Transmission rate will 

also increase from Rv to  

                             r v

N
R R

N h

 =  − 
                                 (2) 

to maintain the same video bitrate.  

4.2. Redundant data transmission policy 
Clearly, to support fault tolerant the system has to bear 

overheads associated with the use of data and capacity 

redundancy. Apart from the extra storage required to store 

the redundant data, there will also be overheads in disk 

retrievals as well as network transmissions, especially when 
there is no failure in the system. 

So far, we have assumed that all redundant data are 

transmitted at all times, regardless of whether there is any 

failure in the system. We call this static redundant data 

transmission for obvious reason. With a (n, h)-RSE code, 

the network overhead incurred by redundant data will 

amount to h/(n−h).  
Another possibility would be to transmit redundant data 

only when needed − dynamic redundant data transmission. 
Specifically, the system can initially transmit only k out of 

the h redundant data blocks in a group to the receiver. 
Assume there are f failed nodes in the system, then the 

system can survive up to (k−f) more simultaneous node 
failures. For every new failure, the system will activate the 

transmission of another previously dormant redundant 

block, until all redundant data blocks are transmitted. The 

network overhead in this case will be reduced to k/(n−h), 

where k≤h. 
The downside of dynamic transmission, however, is that 

the system will need to actively detect node failures and 

reconfigure the redundant data transmission process once a 

new node failure occurs. This detection and reconfiguration 

process obviously takes time, and the system will fail if k or 
more nodes fail before the reconfiguration completes. 

Therefore these tradeoffs must be carefully evaluated 

against the resource savings to conclude the suitability of 

the dynamic transmission approach. We will assume static 

transmission in this paper and leave the investigation of the 

dynamic transmission approach to future works. 

5. Reliability modeling 
In this section we formulate a model for measuring the 

system reliability with static redundant data transmission. 

We use mean time to failure (MTTF), defined as the 

average time between two consecutive occurrences of 
system failure, as the measure of the system’s reliability. 

Using a (N, h)-RSE code, the system fails when more than h 

out of the N nodes in the system fail simultaneously. We 

assume nodes fail independently with a MTTF 

exponentially distributed with a mean . A node, once failed, 

will be repaired immediately and independently. The repair 

time is also exponentially distributed with a mean µ. Our 

goal is to derive the relationship between h and the system 
MTTF. 

We model the system using a continuous-time Markov 

chain model as shown in Fig. 2. Let state i be the system 

state where i out of the N nodes have failed. For example, 

state 0 means all nodes are operational, state 1 means one of 

them has failed, and so on. We assume that once a system 

fails, it will be shutdown and all failed nodes repaired 

before it is restarted. 
Let i be the rate at which the system transits from state i 

to state i+1 and µi be the rate at which the system transits 

from state i to i−1. We can obtain i and µi from 

                               ( )i N iλ λ= −                                     (3) 
                               i iµ µ=                                              (4) 

Let Ti be the expected time the system takes to reach 
state h+1 from state i. Starting from state 0, the expected 

time to reach state h+1 is equal to the expected time to reach 

state 1 from state 0, i.e., equal to 1/λ0, plus the expected 
time to reach state h+1 from state 1, i.e., T1 by definition. 

Thus we can obtain the following relation: 

                               

0 1

0

1
T T

λ
= +                                        (5) 

Next we consider state 1. The system may either transit 

to state 2 with probability ( 1/( 1+µ1)), or transit to state 0 
with probability (µ1/( 1+µ1)). The combined transition rate 

is equal to ( 1+µ1) and so the expected time until transition 

occurs is equal to 1/( 1+µ1). Using argument similar to the 

case of state 0, we can obtain another relation: 

                   

1 1
1 2 0

1 1 1 1 1 1

1
T T T

λ µ
λ µ λ µ λ µ

= + +
+ + +

             (6) 

Repeating this procedure for T2 to Th+1. We can obtain 
the following set of equations: 
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+
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= + +
+ + +

=

�
       (7) 

Substitute (5) into (6), we can eliminate the term T0 and 

express T1 in terms of T2 only. Repeating this substitution 
recursively, we can simplify the above equations into the 

following equations: 

                 

1
1 2

1 1 0

2 2 1

2 3

2 2 1 2 1 0

1

0

1

0

0

1

1

1

0

j

i ki
k

i ij
j

i k

k

h

T T

T T

T T

T

µ
λ λ λ

µ µ µ
λ λ λ λ λ λ

µ

λ

−

−
=

+
=

−
=

+

= + +

= + + +

 
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 = +
 
 
 

=

∏
∑

∏

�

�

                          (8) 

As Th+1 is zero, we can obtain the value of T0 by 

backward substitution: 

                  

1

0

0

0 0

0

j

i kh i
k

j
i j

i k

k

T

µ

λ

−

−
=

= =
−

=

 
 
 =
 
 
 

∏
∑ ∑

∏
                                     (9) 

of which is the MTTF of the system.  

6. Reliability evaluation 
High-end video servers operated in a controlled 

environment such as a data centre typically have MTTF of 

at least 10,000 hours, or more if hardware redundancies are 

available (e.g. RAID disk, redundant power supply, etc.). 

Client-side devices such as STBs and PCs on the other hand, 
will be far less reliable. Although hardware reliability of 

STBs and PCs are not too far behind servers, the operating 

environment is far more hostile. For example, a STB may 

be shutdown due to power surge, power outage, or simply 

because the user unplugs the STB to move it to another 

location. 

On the other hand, these non-hardware-induced failures 
are also fixed more quickly than hardware failures. For 

example, a STB inadvertently unplugged will stop working 

and the user will likely fix it immediately if the user is using 

the device; or fix it the next time the user uses the device. In 

any case, these frequent breakdowns do not require 

maintenance service by a professional and thus can be 

corrected more quickly. 

As no data exists for the failure rate and repair rate of 
STBs, we first investigate the sensitivity of the system’s 

MTTF with respect to the failure rate. The results are 

computed using the formula derived in Section 5 and the 

results are plotted in Fig. 3. We can observe that the 

redundancy overhead increases exponentially when the 

node MTTF falls below 200 hours, or around eight days, 

while the node MTTR is 10 hours at a system size of 200 

nodes. Compared to consumer electronic devices such as a 
VCR or a satellite TV receiver, this node-level MTTF 

should be achievable.  

Fig. 4 plots the redundancy overhead versus node 

mean-time-to-repair (MTTR) while the node MTTF is 256 

hours at a system size of 200 nodes. Unlike the MTTF case, 

we observe that the redundancy overhead increases nearly 

linearly with longer node MTTR. However with a 

conservative node MTTR of 32 hours, the redundancy 
overhead is modest (e.g. 26.6% for achieving system MTTF 

of 100,000 hours). 

To investigate how well the system scales, we assume 

conservatively a node MTTF of 256 hours and a node 

MTTR of 24 hours, and then plot in Fig. 5 the redundancy 

overheads for system sizes ranging from 50 to 500 nodes. 

There are two observations from the results. First, the 

redundancy overhead is relatively modest, e.g. 21.2% and 
23.5% for a 200-node system achieving system MTTF of 

100,000 hours and 1,000,000 hours respectively. While not 

insignificant, the redundancy over is still significantly 

lower than replication. The second observation is that the 

proportion of redundant data required decreases with 

increase in the number of nodes in the system. This suggests 

that the redundancy overhead will not become a limiting 

factor when one scales up a system to more nodes.  

7. Conclusions 
In this study, we investigated the reliability issue in a 

server-less VoD system. Unlike conventional VoD systems 

built around the client-server architecture, individual nodes 

in a server-less VoD system are far more likely to fail due to 
non-hardware-induced failures. Using a Markov chain 

model, we evaluated the architecture’s reliability and 

studied its sensitivity to the nodes’ MTTF and MTTR. With 

the conservatively estimated parameters, we found that one 

can achieve system reliability surpassing dedicated 

0 1 h h+1

. . .

. . .

λ0

2

λ1

µ1 µ2

λh

system failure

Fig. 2. A Markov chain model. 
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high-end video servers with less than 25% redundancy 

overhead. This result is encouraging as the amount of 

redundancy required is significantly lower than the more 

common replication approaches. Nevertheless, there are 
still many open issues that warrant further investigations. 

Two examples are the dynamic redundant data transmission 

approach discussed in Section 4.2, and automatic video data 

rebuild for nodes recovering from hardware failure. 
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Fig. 3. Redundancy versus node reliability.

Fig. 4. Redundancy versus node MTTR.
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