

Design and Analysis of a Fault-Tolerant Mechanism

for a Server-Less Video-On-Demand System

Jack Y. B. Lee

Department of Information Engineering

The Chinese University of Hong Kong
Shatin, N.T., Hong Kong

Email: jacklee@computer.org

Raymond W. T. Leung

Department of Information Engineering

The Chinese University of Hong Kong
Shatin, N.T., Hong Kong

Email: wtleung0@ie.cuhk.edu.hk

Abstract
Video-on-demand (VoD) systems have traditionally

been built on the client-server architecture, where a video
server stores, retrieves, and transmits video data to video
clients for playback. This paper investigates a radically
different approach to building VoD systems, one where the
server, and hence the primary bottleneck, is completely
eliminated. This server-less architecture comprises
homogeneous hosts, called nodes, which serve both as
client and as mini-server. Video data are distributed over
all nodes and these nodes cooperatively stream video data
to one another for playback. However, unlike traditional
video server that runs on high-end server hardware in a
carefully controlled and protected data centre, a node in a
server-less system is likely to be far more unreliable.
Therefore it is essential that sufficient data and capacity
redundancies are incorporated to maintain an acceptable
service reliability. This paper presents and analyzes a fault
tolerant mechanism based on inter-node striping and
erasure correction codes to tackle this challenge. By
formulating the system’s reliability as a Markov chain
model, we obtain insights into the feasible operating region
of the system, such as the amount of redundancy required
and the node-level reliability that can be tolerated.
Numerical results show that a server-less VoD system of
200 nodes can achieve reliability surpassing that of
dedicated video server using a redundancy overhead of
only 21.2% even though individual nodes are highly
unreliable.

1. Introduction
Current video-on-demand (VoD) systems are commonly

designed around the client-server architecture. Under this

architecture, a client sends a request to the video server for a

video title and then the server transmits video data to the

client for playback. As the number of user increases, the

server will eventually reach its capacity limit. To further

increase the system capacity, one can add more servers and

distribute the requests to them, such as parallel server [1]

and distributed server [2-3] architectures. As each server

serves only part of the users rather than all users, the total

system capacity is extended.

Nevertheless, the cost of upgrading servers can be

substantial, as video servers typically require high-end

server hardware with high I/O bandwidth, large memory

capacity, as well as storage capacity. Even in the best case,

such as parallel server and distributed server architectures
that do not require data replication, the server cost will still

increase at least linearly with the traffic demand. Moreover,

apart from server cost, the distribution network will also

need to be upgraded with more bandwidth to carry the vast

amount of video traffic to the users. Given the high cost of

long-distance backbone networks, it is no wonder why

metropolitan-scale VoD services are still uncommon in

practice.
In this study, we take a radically different approach to

building scalable, reliable, and cost-effective VoD systems.

In particular, we turn our attention to an often-neglected

element in a VoD system – the client-side device or

commonly called the set-top box (STB).

Developments of STB have continued for many years

and current STBs not only are low cost, but also are

relatively powerful due to the rapid technological
development and economy of scale achieved by the

personal computer industry. While early generations of

STB are very limited in function and capability, the current

trend in STB development is towards evolving from a

simple video-receiving and decoding device into a home

entertainment center with functions like VoD,

TV-over-Internet, harddisk-based personal video recorder,

messaging center, web browser, CD player, DVD player,
digital audio jukebox, or even game console. This evolution

not only greatly enhances the usefulness of a STB, but also

opens a radically new way to build VoD systems.

 Specifically, we take advantage of the increased storage

and processing capability of STBs to build a completely

distributed VoD system that does not require dedicated

server at all. We call this a server-less architecture for
obvious reason. In this server-less architecture, all STBs, or

Proceedings of the Ninth International Conference on Parallel and Distributed Systems (ICPADS’02)

1521-9097/02 $17.00 © 2002 IEEE

called a node in this paper, in the system serve both as a

client and as a mini-server. Video data are distributed

among the nodes and multiple nodes work together to serve

video streaming requests from other nodes. The beauty of
this architecture is that the system is inherently scalable, i.e.,

when new users are added to the system, they add both

streaming load and streaming capacity to the system.

Moreover, network costs can also be reduced because the

nodes are likely to be clustered together, reducing the need

for costly long-distance network backbone.

However, building a server-less VoD system is not

without challenges. In a previous study [4], we investigated
the issues of data placement, scheduling, and streaming.

The architecture has been shown to be feasible with today’s

hardware platforms. In this study, we investigate another

critical issue of the server-less architecture − reliability.
Unlike a client-server VoD system, video data are

distributed in a server-less VoD system. While this data

placement policy eliminates the storage overhead in

replication, such as the case in current peer-to-peer (P2P)

systems [5-6], the system cannot function if any of the

nodes fails. To tackle this problem, we develop a fault
tolerant mechanism based on the use of erasure correcting

codes to enable the system to sustain node failures. With

this mechanism, we derive the system’s

mean-time-to-failure (MTTF) using a Markov chain model

to find out the amount of redundancy required to achieve a

given system MTTF, and to investigate how low the

reliability of STB can go before the redundancy overhead

becomes too excessive. Numerical results show that a
server-less VoD system of 200 nodes can achieve reliability

surpassing that of dedicated video server (MTTF of

100,000 hours) using a redundancy overhead of only 21.2%

even when individual nodes are highly unreliable (MTTF of

256 hours).

The rest of the paper is organized as follows: Section 2

reviews some previous related works; Section 3 presents an

overview of the server-less VoD architecture; Section 4
presents the fault tolerant mechanism; Section 5 presents a

model for the system reliability; Section 6 evaluates the

system reliability using numerical results; and Section 7

concludes the paper.

2. Related works
Current VoD architectures can be classified into

centralized and distributed architectures [7]. In centralized

server architectures, only the central server serves user

requests and so it becomes the system’s primary bottleneck.

By contrast, requests are shared by multiple servers in a

distributed server architecture such that capacity can be

scaled up by adding more servers.
Serpanos, et al. [7] compared the performance of

centralized and distributed architectures for video servers.

They concluded that in general, a centralized architecture is

preferable in terms of performance and management, but at

the expense of higher cost. To improve cost effectiveness,

distributed or parallel server architectures [1-3] are

commonly employed. For example, one can replicate video

data to multiple servers and equally divide requests between
them. To further reduce the storage overhead due to

replication, replication can be limited to the more popular

video titles.

For example, On, et al. [2] studied replication

assignment and update frequency in relation to the desired

data availability, consistency, and QoS requirements.

Serpanos, et al. [3] proposed a MMPacking video

assignment algorithm based on video popularity to achieve
load and storage balance. Another approach is the use of

parallel server architectures (see Lee [1] for a review of

parallel server architectures) that employ server-level data

striping. Compared to replication and caching, parallel

server architectures eliminate the need for data replication

and are inherently load balanced. Moreover, one can

introduce data and hardware redundancies into the system

to achieve server-level fault tolerance, making the system
even more reliable than central-server designs.

Another area related to our study is the peer-to-peer (P2P)

concept popularized by software systems such as Napster [5]

and Gnutella [6]. These P2P systems are primary designed

to function as a large distributed storage system [8-9]. In a

P2P system, a user shares files with a group of other users

and can search for the desired files by submitting a query to

neighbors or to a directory server. Once the desired files are
located, the user then downloads the data directly from the

other user’s computer. As the data are selectively replicated

among user nodes, this structure allows sharing of files by a

large community at low cost, as a dedicated server is no

longer needed. The main challenge comes from the

complexity in distributing replicated files to achieve load

balance and fault tolerance [9]. As users in a P2P system

have varying network bandwidth and processing capability,
quality-of-service cannot be guaranteed and slow or even

broken connections are not uncommon. Nevertheless, the

ease of setting up and participating in a P2P system and the

need for a decentralized file-sharing platform have

outweighed these limitations.

Compared to traditional client-server architecture, the

server-less architecture distributes the server functions to

the clients. This approach not only eliminates the primary
bottleneck in the system, but is also inherently scalable.

Compared to current P2P systems such as Naptser and

Gnutella, the server-less architecture employs distributed

data storage rather than extensive file replication to improve

availability. This difference is essential as video data

consume significantly more storage than MP3 audio files.

Moreover, unlike file sharing, VoD applications have

stringent performance requirements that are essential to the
correct operation of the system. Consequently, the

server-less VoD architecture requires completely different

data placement policy, retrieval scheduling, transmission

Proceedings of the Ninth International Conference on Parallel and Distributed Systems (ICPADS’02)

1521-9097/02 $17.00 © 2002 IEEE

scheduling, and fault tolerance mechanism compared to

current P2P systems.

3. System architecture
In this section, we present details of the server-less

architecture, including the data placement policy and the

retrieval and transmission schedulers. A server-less VoD

system comprises a pool of user nodes connected by a

network as shown in Fig. 1. Each node has its own CPU,

memory and disk storage. Inside each node there is a mini
video server software that serves a portion of each video

title to other nodes in the system. Unlike conventional video

server, this mini server serves a much lower aggregate

bandwidth and therefore can readily be implemented in

today’s STBs and PCs. For large systems, the nodes can be

further divided into clusters where each cluster forms an

autonomous system that is independent from other clusters.

3.1. Data placement policy
As discussed in Section 2, existing distributed systems

commonly employ data replication and caching to improve

scalability. However, unlike video servers where storage

capacity is usually large, a node in the form of a STB or a

PC will have relatively limited storage capacity. Therefore,

instead of replication, we propose the use of striping as the
data placement policy for the architecture.

Specifically, each video title is divided into fixed-size

striping units (or called blocks) of Q bytes each. And we

assume there exist an archive server that distributes the

striping blocks to all nodes in the cluster in a round-robin

manner. This node-level striping scheme avoids data

replication while at the same time divides the storage

requirement equally among all nodes in the cluster.
To initiate a video streaming session, a client node will

first locate the set of server nodes carrying blocks of the

desired video title, the striping policy and other parameters

(format, bitrate, etc.) through the directory service. These

server nodes will then be notified to start transmitting the

video blocks to the client node. The notification can be

performed directly by the client node or indirectly by the

directory service, of which the exact mechanism involved is
beyond the scope of this study.

3.2. Retrieval and transmission scheduling
Let N be the number of nodes in the cluster and assume

all video titles are constant-bit-rate (CBR) and share the

same bitrate Rv. For a server node in a cluster, it may have to

retrieve video data for up to N video streams, of which N−1
of them are transmitted while the remaining one played

back locally. Note that as a video stream is served by N
nodes concurrently, each node only needs to serve a bitrate

of Rv/N for each video stream.

Many existing video server designs employ round-based

schedulers such as SCAN and its variants [10-11]. In our

design, we employ the Grouped Sweeping Scheme (GSS)

proposed by Yu, et al. [12] to schedule a node’s disk

retrieval and network transmission. Compared to the more

common SCAN scheduler that maximizes throughput at the

expense of buffer overhead, GSS allows one to control the

tradeoff between disk efficiency and buffer requirement.
This is a crucial feature as disk throughput may not be the

bottleneck in a server-less VoD system. Interested readers

are referred to Lee and Leung [4] for more details on the

scheduling algorithms.

4. Fault tolerant mechanism
In a server-less VoD system, fault tolerance becomes an

essential capability as reliability of STBs and PCs will be

significantly lower than dedicated video servers located in a

data centre run by professional operators around the clock.

Moreover, given the relatively large number of nodes, the

system needs to expect and prepare to recover not from a

single failure, but from multiple simultaneously failures as

well. The following sections present a fault tolerant
mechanism to extend the architecture described in Section 3

to sustain node failures.

4.1. Capacity and data redundancy
When a node fails, all data stored in that particular node

becomes unavailable. In communications terminology this

is called erasure as opposed to error. To recover from data
erasures, erasure-correcting codes such as the

Reed-Solomon Erasure Correcting (RSE) Code [13,14] can

be used. Compared to replication, Weatherspoon et al. [15]

showed that erasure-resilient systems require an order of

magnitude less redundancy overhead to achieve similar

reliability. Thus we employ erasure-correcting codes to

sustain node failures in the server-less architecture.

Specifically, a (n, h)-RSE codeword comprises n

symbols of which (n−h) of them are message symbols (i.e.

data) and the remaining h are redundant symbols. One can

recover all (n−h) message symbols as long as any (n−h) out
of the n symbols are correctly received. Let N be the number

of nodes in the system. Then by extending the

striping-based placement policy in Section 3.1 with a (N,

h)-RSE code, the system will have sufficient redundant data

Autonomous
Clusters

STB

STB

STB

STB

STB

Playback

Fig. 1. Architecture of the server-less
video-on-demand system.

Proceedings of the Ninth International Conference on Parallel and Distributed Systems (ICPADS’02)

1521-9097/02 $17.00 © 2002 IEEE

for a client node to recover all video data with up to h node

failures in the cluster. To accommodate the RSE-code, we

need to modify the placement policy, the schedulers, and

the client node’s buffering algorithm. For the placement
policy, an additional encoding step will be needed to

compute the h redundant blocks for each group of (N−h)

video data blocks. Moreover, as now only (N−h) of the
stored data are playable data, we will need to increase the

strip unit size from Q bytes to

 r

N
Q Q

N h

 =  − 
 (1)

bytes to maintain the same data size of a striping group.

After the encoding step, the archive server then distributes

these N blocks (including h redundant blocks) to all nodes.
For the disk scheduler, the retrieval unit will be

increased from Q bytes to Qr bytes. Transmission rate will

also increase from Rv to

 r v

N
R R

N h

 =  − 
 (2)

to maintain the same video bitrate.

4.2. Redundant data transmission policy
Clearly, to support fault tolerant the system has to bear

overheads associated with the use of data and capacity

redundancy. Apart from the extra storage required to store

the redundant data, there will also be overheads in disk

retrievals as well as network transmissions, especially when
there is no failure in the system.

So far, we have assumed that all redundant data are

transmitted at all times, regardless of whether there is any

failure in the system. We call this static redundant data

transmission for obvious reason. With a (n, h)-RSE code,

the network overhead incurred by redundant data will

amount to h/(n−h).
Another possibility would be to transmit redundant data

only when needed − dynamic redundant data transmission.
Specifically, the system can initially transmit only k out of

the h redundant data blocks in a group to the receiver.
Assume there are f failed nodes in the system, then the

system can survive up to (k−f) more simultaneous node
failures. For every new failure, the system will activate the

transmission of another previously dormant redundant

block, until all redundant data blocks are transmitted. The

network overhead in this case will be reduced to k/(n−h),

where k≤h.
The downside of dynamic transmission, however, is that

the system will need to actively detect node failures and

reconfigure the redundant data transmission process once a

new node failure occurs. This detection and reconfiguration

process obviously takes time, and the system will fail if k or
more nodes fail before the reconfiguration completes.

Therefore these tradeoffs must be carefully evaluated

against the resource savings to conclude the suitability of

the dynamic transmission approach. We will assume static

transmission in this paper and leave the investigation of the

dynamic transmission approach to future works.

5. Reliability modeling
In this section we formulate a model for measuring the

system reliability with static redundant data transmission.

We use mean time to failure (MTTF), defined as the

average time between two consecutive occurrences of
system failure, as the measure of the system’s reliability.

Using a (N, h)-RSE code, the system fails when more than h

out of the N nodes in the system fail simultaneously. We

assume nodes fail independently with a MTTF

exponentially distributed with a mean . A node, once failed,

will be repaired immediately and independently. The repair

time is also exponentially distributed with a mean µ. Our

goal is to derive the relationship between h and the system
MTTF.

We model the system using a continuous-time Markov

chain model as shown in Fig. 2. Let state i be the system

state where i out of the N nodes have failed. For example,

state 0 means all nodes are operational, state 1 means one of

them has failed, and so on. We assume that once a system

fails, it will be shutdown and all failed nodes repaired

before it is restarted.
Let i be the rate at which the system transits from state i

to state i+1 and µi be the rate at which the system transits

from state i to i−1. We can obtain i and µi from

 ()i N iλ λ= − (3)
 i iµ µ= (4)

Let Ti be the expected time the system takes to reach
state h+1 from state i. Starting from state 0, the expected

time to reach state h+1 is equal to the expected time to reach

state 1 from state 0, i.e., equal to 1/λ0, plus the expected
time to reach state h+1 from state 1, i.e., T1 by definition.

Thus we can obtain the following relation:

0 1

0

1
T T

λ
= + (5)

Next we consider state 1. The system may either transit

to state 2 with probability (1/(1+µ1)), or transit to state 0
with probability (µ1/(1+µ1)). The combined transition rate

is equal to (1+µ1) and so the expected time until transition

occurs is equal to 1/(1+µ1). Using argument similar to the

case of state 0, we can obtain another relation:

1 1
1 2 0

1 1 1 1 1 1

1
T T T

λ µ
λ µ λ µ λ µ

= + +
+ + +

 (6)

Repeating this procedure for T2 to Th+1. We can obtain
the following set of equations:

Proceedings of the Ninth International Conference on Parallel and Distributed Systems (ICPADS’02)

1521-9097/02 $17.00 © 2002 IEEE

1 1
1 2 0

1 1 1 1 1 1

1 1

1

1

1

0

h h

h h h

h h h h h h

h

T T T

T T T

T

λ µ
λ µ λ µ λ µ

λ µ
λ µ λ µ λ µ+ −

+

= + +
+ + +

= + +
+ + +

=

�
 (7)

Substitute (5) into (6), we can eliminate the term T0 and

express T1 in terms of T2 only. Repeating this substitution
recursively, we can simplify the above equations into the

following equations:

1
1 2

1 1 0

2 2 1

2 3

2 2 1 2 1 0

1

0

1

0

0

1

1

1

0

j

i ki
k

i ij
j

i k

k

h

T T

T T

T T

T

µ
λ λ λ

µ µ µ
λ λ λ λ λ λ

µ

λ

−

−
=

+
=

−
=

+

= + +

= + + +

 
 
 = +
 
 
 

=

∏
∑

∏

�

�

 (8)

As Th+1 is zero, we can obtain the value of T0 by

backward substitution:

1

0

0

0 0

0

j

i kh i
k

j
i j

i k

k

T

µ

λ

−

−
=

= =
−

=

 
 
 =
 
 
 

∏
∑ ∑

∏
 (9)

of which is the MTTF of the system.

6. Reliability evaluation
High-end video servers operated in a controlled

environment such as a data centre typically have MTTF of

at least 10,000 hours, or more if hardware redundancies are

available (e.g. RAID disk, redundant power supply, etc.).

Client-side devices such as STBs and PCs on the other hand,
will be far less reliable. Although hardware reliability of

STBs and PCs are not too far behind servers, the operating

environment is far more hostile. For example, a STB may

be shutdown due to power surge, power outage, or simply

because the user unplugs the STB to move it to another

location.

On the other hand, these non-hardware-induced failures
are also fixed more quickly than hardware failures. For

example, a STB inadvertently unplugged will stop working

and the user will likely fix it immediately if the user is using

the device; or fix it the next time the user uses the device. In

any case, these frequent breakdowns do not require

maintenance service by a professional and thus can be

corrected more quickly.

As no data exists for the failure rate and repair rate of
STBs, we first investigate the sensitivity of the system’s

MTTF with respect to the failure rate. The results are

computed using the formula derived in Section 5 and the

results are plotted in Fig. 3. We can observe that the

redundancy overhead increases exponentially when the

node MTTF falls below 200 hours, or around eight days,

while the node MTTR is 10 hours at a system size of 200

nodes. Compared to consumer electronic devices such as a
VCR or a satellite TV receiver, this node-level MTTF

should be achievable.

Fig. 4 plots the redundancy overhead versus node

mean-time-to-repair (MTTR) while the node MTTF is 256

hours at a system size of 200 nodes. Unlike the MTTF case,

we observe that the redundancy overhead increases nearly

linearly with longer node MTTR. However with a

conservative node MTTR of 32 hours, the redundancy
overhead is modest (e.g. 26.6% for achieving system MTTF

of 100,000 hours).

To investigate how well the system scales, we assume

conservatively a node MTTF of 256 hours and a node

MTTR of 24 hours, and then plot in Fig. 5 the redundancy

overheads for system sizes ranging from 50 to 500 nodes.

There are two observations from the results. First, the

redundancy overhead is relatively modest, e.g. 21.2% and
23.5% for a 200-node system achieving system MTTF of

100,000 hours and 1,000,000 hours respectively. While not

insignificant, the redundancy over is still significantly

lower than replication. The second observation is that the

proportion of redundant data required decreases with

increase in the number of nodes in the system. This suggests

that the redundancy overhead will not become a limiting

factor when one scales up a system to more nodes.

7. Conclusions
In this study, we investigated the reliability issue in a

server-less VoD system. Unlike conventional VoD systems

built around the client-server architecture, individual nodes

in a server-less VoD system are far more likely to fail due to
non-hardware-induced failures. Using a Markov chain

model, we evaluated the architecture’s reliability and

studied its sensitivity to the nodes’ MTTF and MTTR. With

the conservatively estimated parameters, we found that one

can achieve system reliability surpassing dedicated

0 1 h h+1

. . .

. . .

λ0

2

λ1

µ1 µ2

λh

system failure

Fig. 2. A Markov chain model.

Proceedings of the Ninth International Conference on Parallel and Distributed Systems (ICPADS’02)

1521-9097/02 $17.00 © 2002 IEEE

high-end video servers with less than 25% redundancy

overhead. This result is encouraging as the amount of

redundancy required is significantly lower than the more

common replication approaches. Nevertheless, there are
still many open issues that warrant further investigations.

Two examples are the dynamic redundant data transmission

approach discussed in Section 4.2, and automatic video data

rebuild for nodes recovering from hardware failure.

8. Acknowledgements
This research is partially funded by research grants

(Direct Grant, Earmarked Grants CUHK6095/99E) from

the HKSAR Research Grant Council and the AoE-IT, a

research grant from the HKSAR University Grants Council.

References
[1] J. Y. B. Lee, “Parallel Video Servers: A Tutorial”, IEEE

Multimedia, vol.5(2), April-June 1998, pp.20–28.

[2] G. On, M. Zink, M. Liepert, C. Griwodz, J.B. Schmitt, and R.
Steinmetz, “Replication for a Distributed Multimedia
System” Proceedings of the Eighth International Conference

on Parallel and Distributed Systems, 2001, pp.37−42.

[3] D. N. Serpanos, L. Georgiadis, and T. Bouloutas,
“MMPacking: A Load and Storage Balancing Algorithm for
Distributed Multimedia Servers”, IEEE Transactions on
Circuits and Systems for Video Technology, vol.8(1), Feb

1998, pp.13−17.

[4] J. Y. B. Lee and R. W. T. Leung, “Study of a Server-less
Architecture for Video-on-Demand Applications”,
Proceedings of the IEEE International Conference on

Multimedia and Expo 2002, Lausanne, Switzerland, Aug
2002.

[5] Napster. http://www.napster.com.
[6] Gnutella. http://gnutella.wego.com.
[7] D. N. Serpanos and A. Bouloutas, “Centralized versus

Distributed Multimedia Servers”, IEEE Transactions on
Circuits and Systems for Video Technology, vol.10(8), Dec

2000, pp.1438−1449.

[8] M. Parameswaran, A. Susarla, and A. B. Whinston, “P2P
Networking: An Information Sharing Alternative”, Computer,
vol.34(7), July 2001, pp.31–38.

[9] G. Fox, “Peer-to-peer networks”, Computing in Science &
Engineering, vol.3(3), May-June 2001, pp.75–77.

[10] A. L. N. Reddy and J. C. Wyllie, “I/O Issues in a Multimedia

System”, Computer, vol.27(3), March 1994, pp.69–74.
[11] D. J. Gemmell, H. M. Vin, D. D. Kandlur, P. V. Rangan, L. A.

Rowe, “Multimedia Storage Servers: A Tutorial”, Computer,
vol.28(5), May 1995, pp.40–49.

[12] P. S. Yu, M. S. Chen, and D. D. Kandlur, “Grouped
Sweeping Scheduling for DASD-based Multimedia Storage
Management”, ACM Multimedia Systems, vol.1(2), 1993,

pp.99−109.

[13] S. B. Wicker, Error Control Systems for Digital
Communication and Storage, Englewood Cliffs, NJ:

Prentice-Hall, 1995, pp.227−234.

[14] A. J. McAuley, “Reliable Broadband Communication Using
a Burst Erasure Correcting Code”, Proceedings of the ACM
SIGCOMM 90, Philadelphia, PA, September 1990, pp.

287−306.
[15] H. Weatherspoon and J. D. Kubiatowicz, “Erasure Coding vs.

Replication: A Quantitative Comparison”, Proceedings for
the 1st International Workshop on Peer-to-Peer Systems
(IPTPS '02), Mar 2002.

Fig. 5. Redundancy versus system size.

0 100 200 300 400 500
0

20

40

60

Achieving MTTF of 10,000 hrs

Achieving MTTF of 100,000 hrs

Achieving MTTF of 1,000,000 hrs

Achieving MTTF of 10,000,000 hrs

System Size (number of nodes)

R
ed

u
n
d
an

cy
 O

v
er

h
ea

d
 (

%
)

0 200 400 600 800 1000 1200
0

25

50

75

100

125

150

Achieving MTTF of 10,000 hrs

Achieving MTTF of 100,000 hrs

Achieving MTTF of 1,000,000 hrs
Achieving MTTF of 10,000,000 hrs

Per-node MTTF

R
e
d
u
n
d
a
n
c
y
 O

v
e
rh

e
a
d
 (

%
)

Fig. 3. Redundancy versus node reliability.

Fig. 4. Redundancy versus node MTTR.

0 20 40 60 80 100 120
0

16.67

33.33

50

66.67

83.33

100

Achieving MTTF of 10,000 hrs

Achieving MTTF of 100,000 hrs

Achieving MTTF of 1,000,000 hrs

Achieving MTTF of 10,000,000 hrs

Per-node MTTR

R
ed

u
n

d
an

cy
 O

v
er

h
ea

d
 (

%
)

Proceedings of the Ninth International Conference on Parallel and Distributed Systems (ICPADS’02)

1521-9097/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

