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ABSTRACT
Fingerprint verification is one of the most reliable 

personal identification methods in biometrics. In this 
paper, an effective fingerprint verification system is 
presented. We describe an enhanced fingerprint 
verification system consisting of image pre-processing, 
feature extraction and matching processes. Improved 
image pre-processing and broken ridge reconnection 
methods are proposed here. In this paper, we also 
describe the design and implementation of a fingerprint 
verification system on SoC. 

1. Introduction 

Fingerprint recognition has been researched for many 

years. Most automatic systems for fingerprint comparison 

are based on minutiae matching. Recent detection 

methods of minutiae still use gray-scale fingerprint image. 

The gray level image can be transformed to a binary 

image through a binarization process. Most minutiae 

detection methods that have been proposed in the 

literature are based on image binarization [1] [2]. Figure 1 

shows the processing flow of our proposed methods. In 

section 2, we will illustrate how to calculate the 

orientation field of a fingerprint. Section 3 describes the 

pre-processing steps of a fingerprint image. In section 4, a 

singular point detection method and a minutiae matching 

algorithm are introduced. Section 5 addresses the 

embedded system design. Section 6 some results of our 

approaches are presented. Finally, a conclusion is given. 

2. Calculation of the orientation field 

Several methods for estimating image directional 

information have been proposed in the literature [3] [4]. 

The orientation field, θ , is defined as a NM× image,

where ),( jiθ  represents the local ridge orientation at 

pixel ),( ji . Local ridge orientation is usually specified 

for a block rather than at every pixel. In this paper, we 

calculate the orientation of each image pixel. In this way, the 

direction locality of an image can be preserved and the 

orientation field of an image can be more smoothly recalculated. 

Finally, with pixels neighborhood, Gaussian smoothing 

operator is used to smooth the orientation fields of an image 

[5]. 

Figure 1. The processing flow of fingerprint verification 
system. 

3. Fingerprint pre-processing 

There are several pre-processing methods used in a 

gray-scale image and a binarization image [6] [1]. The 

pre-processing procedures will affect the result of extracting 

fingerprint minutiae. In this section, we will describe 

foreground (object) detection, image equalization, and Gabor 

Filter.  

3.1. Fingerprint Foreground detection 

After investigating a fingerprint image, we know that the 

ratio of ridges to valleys is nearly equal in a fingerprint. We use 

this characteristic of a fingerprint to deal with this problem.  

A foreground detection procedure is illustrated as follows: 

1. First, we set a rough threshold (T) value for a fingerprint 

image using image histogram. 

2. The image is divided into four equal 

regions,
iA , 4,3,2,1=i , by dividing the image vertical and 

horizontal equally (Figure 2). 

3. Using a window block B ( mm × ), a gray-scale fingerprint 

image ( nn × ) is divided into 
m

n blocks. In each block, the 
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gray value is bigger than threshold (T) indicating the 

foreground (value 1), otherwise, background (value 0). A

block of an image will be considered as foreground 

region if the ratio of count-1 to count-0 in this block is 

less than a threshold value. 

4. Apply the dilation operation to the 

region
iA , 4,3,2,1=i , then scan the image from the center 

toward the boundary and put the foreground blocks together. So, 

the entire foreground region can be obtained. 

5. The foreground region obtaining from step 4 may have some 

small holes inside the region; we need to 

eliminate these holes and make the boundary area smooth. 

Then we get the final foreground image region, 

foreground mask. Figure 3 shows some examples.  

Figure 2. Four regions of an image.  

  (a)          (b)          (c)         (d) 
Figure 3. Examples of foreground extraction. (a, c) 
Original thinned binary fingerprint (b, d) the tracing 
result. 

After retrieving the foreground of an image, we apply 

an image equalization procedure in the foreground region. 

Doing so helps to avoid the influence of background 

noise during the equalization procedure. 

3.2. Fingerprint Image Enhancement 

After foreground extraction and image equalization, 

we use the Gabor filters to enhance the fingerprint image. 

An even symmetric Gabor filter has the following general 

form in the spatial domain: 
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where f is the frequency of the sinusoidal plane wave 

along the direction θ  from the x-axis, the filter 

frequency can be set to the average ridge frequency (1/ 

K ), where K is the average inter-ridge distance. If f is

too large, spurious ridges are created in the filtered image 

whereas if f is too small, nearby ridges are merged into 

one. The values 
'xδ and

'yδ are the space constants of the 

Gaussian envelope along 'x  and 'y  axes, respectively. 

If
'xδ and

'yδ  (standard deviations of the Gaussian 

envelope) values are too large, the filter is more robust to noise, 

but is more likely to smooth the image to the extent that the 

ridge and valley details in the fingerprint are lost. If 
'xδ and

'yδ values are too small, the filter is not effective in removing 

the noise. The values for each were empirically determined and 

set to 4.0 (about half the average inter-ridge distance) [6] [7]. 

We perform the filtering on an image in the spatial domain with 

a mask size of 18*18  . However, to speed up the filtering 

process, we designed a circuit, named Gabor redundancy circuit 

(GRC) which will be discuss in section 6. 

According to each pixel’s orientation, the corresponding 

Gobal filter is used to enhance this pixel. By setting a proper 

threshold value to the enhanced image, a binary image can be 

obtained. An example of fingerprint image processing is shown 

in Figure 4. 

(a)            (b)             (c) 

(d)            (e)             (f) 
Figure 4. (a) Original fingerprint (b) the foreground of the 
original fingerprint (c) the gray-scale image of the original 
fingerprint after equalization (d) the direction field of the 
original fingerprint (e) the binary image of the original 
fingerprint after Gabor filter and segmentation (f) the 
thinning image of the original fingerprint. 

4.Singular detection and Matching algorithm 

4.1 Singular detection 

Figure 5. A core and a delta in a fingerprint. 

4A 3A

2A1A

core

delta

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05) 
0-7695-2281-5/05 $20.00 © 2005 IEEE 



There are two kinds of singular points, core and delta. 

Figure 5 shows the shapes of core and delta. A point in the 

directional image is classified as an ordinary point, core 

or delta by computing the Poincar  index [4] along a 

small closed curve around the point. The Poincar  index 

is computed by summing up the changes in the direction 

angle around the curve. When making a full 

counter-clockwise turn around the curve in a directional 

image, we see that the direction angle turns 0, ± 180 and 

± 360 degree during this trip. A point is termed ordinary 

if the angle has turned 0 degree, core if it has turned 180 

degree and delta if it has turned -180 degree. 

In a block image (each block contains 9x9 pixels), we 

compute the Poincar  index at every block (i, j) in a 2 x 2 

rectangle, where the upper left corner is placed at the 

pixel of interest. The rectangle is traversed in the 

counterclockwise direction: 

),()1,()1,1(),1(),( jijijijiji →+→++→+→
when computing the difference between two angles 

(which is determined up to ± 180), we take the 

difference that is smallest in the absolute value. 

4.2 Matching algorithm 

In this work an alignment-based matching algorithm 

is implemented. This alignment-based matching algorithm 

is decomposed into two stages: 

1) Alignment stage:

We use the minutiae of a template image as base and 

align them to the minutiae of the input image. A 

transformation function )( ii XFY = between input 

image 
iY  and template image 

iX  can be written as: 

TXRsY ii +⋅⋅= ,where s is the scale factor, set to 

value 1, in our fingerprint verification system because the 

same size of fingerprints are used. 

The value θ is the rotation angle between two 

fingerprints. We use the core point as center and the 

distance r from core point as the radius, and then we 

construct a local structure of each fingerprint. Then we 

find the most corresponding point pair ),( 21 PP through 

structure matching. We extract the orientations ),( 21 θθ
of the point pair ),( 21 PP , and then compute the 

difference parameter 
12 θθθ −= as the rotation angle.  

The rotation matrix
é
ê

è
=

θ
θ
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θ
cos

sin , is used to align 

both images minutiae in the same orientation. The 

translation vector ][ T
yx ttT ,= is used to adjust the 

distance r of template image minutiae, we calculate the 

difference of the distance  between the core points of the 

two fingerprints, and then move all minutiae of template 

image by adding the parameter .

2) Matching stage:

After alignment each pair of corresponding minutiae points 

is completely coincident if two identical munitiae are exactly 

aligned with each other.  

Let }{ TI
M

I
M

I
M

TIII yxyxI ),,(,.....,),,( 111 θθ=  denote the set of M 

minutiae in the input image and 

}{ TP
N

P
N

P
N

TPPP yxyxP ),,(,.....,),( 11,1 θθ=  denote the set of N minutiae 

in the template image. We denote the reference point (core 

point) as ),,( r
I

r
I

r
I yx θ and ),,( r

P
r
P

r
P yx θ  for each input image 

and template image. Then we construct match 

tables
IM and

PM  for matched minutiae pair
MI ,

NP , and 

we compute the following parameters and store them in each 

match table IM and PM .

1. The distance of x and y coordinate from reference point to 

others in an image. 

2. The angle difference of the input image and the template 

image. 

3. The type of the minutiae in the input point patterns and the 

template point patterns.  

4. The quadrant using the core point as a center point.  

After creating match tables, we compare these two tables 

and find the set of points that are best matched between input 

and template image. 

5. Embedded System Design 

In this section, we illustrate our SoC architecture, design 

flow and verification flow. System partition is the first step in 

Hardware and Software Co-design. We can’t make decisions 

without a particular system analysis. Every embedded 

processor possesses individual operations capability. Therefore 

we must proceed to a case by case system analysis. We 

implement our fingerprint algorithm in software and execute it 

using a Nios processor. Thereby we can obtain accurate 

information and determine the appropriate system partition 

method. There are four points for attending to the system 

partition.

The part of hardware: 

We must take care of hardware complexity, which affects 

the system cost. 

The part of system software: 

System execution time must fit in specification. 

Instruction ROM size is fixed by specification. 

Memory size is fixed, so system software in execution time 

cannot waste memory space. 

5.1. SoC Architecture 

Figure 6 shows our SoC architecture which consists of Nios 

CPU, memory, sensor controller, gradient fields, Gabor 

redundancy circuit (GRC), thinning hardware, Avalon bus and 

Infineon FingerTIP sensor. We use SOPC Builder to generate 
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all hardware except flash memory, a SRAM module, a 

sensor controller and the Infineon FingerTIP sensor. The 

Infineon FingerTIP sensor is connected to SoC by parallel 

port. The sensor provides an 8-bit representation of the 

gray levels for each pixel. A fingerprint image consists of 

224 columns and 288 lines, yielding 64,512 bytes plus the 

end of line marks. The sensor controller is implemented in 

Verilog HDL code. Using a custom instruction and 

memory mapping method, all system hardware can be 

connected together.  Using the thinning hardware 

reduces complexity as it implements the algorithm by 

custom instruction. The circuits of gradient fields and 

GRC are implemented by memory mapping method. The 

thinning, gradient fields and GRC hardware architectures 

are shown in Figure 7 and Figure 8. Because the gradient 

fields and GRC circuit use the same circuit to perform 

their functions, we use one circuit to implement both 

functions (Figure 9). In this way, the area of the hardware 

can be greatly reduced. 

5.2. Design Flow 

The design flow begins with pre-design activity, 

which includes an analysis of the system requirements. In 

hardware design flow, we use the SOPC Builder and the 

Quartus II software to create and process our own Nios 

system module design that interfaces with components 

provided on the Nios development board. In software 

design flow, first we can begin coding device-independent 

C/C++ software, such as arithmetic algorithms or control 

programs. After we define the custom Nios processor 

hardware system using SOPC Builder, SOPC Builder 

generates a custom software development kit (SDK) that 

forms the foundation for the software development flow. 

With the SDK in hand, we can begin coding software that 

interacts at a low level with hardware components. The 

SDK defines the software view of the custom hardware, 

including the memory map and the data structures for 

accessing hardware components in the system. The SDK 

provides software routines for accessing standard 

peripherals such as UARTs, PIOs, and DMA controllers. 

We use the GNUPro Toolkit to compile and link software 

together with the SDK routines, header files, and other 

software libraries. Compilation results in an executable 

software image. After we prototype the basic Nios 

processor hardware working on the development board, 

we can download the executable software to the 

development board using an Altera ByteBlasterMV. 

6. Experimental Result 

In our fingerprint verification experiments, 1000 

fingerprint images are captured from 200 different fingers, 

5 images from the same finger as a template. Totally, 200 

templates are contained in the database. Each fingerprint 

image in the database is verified with its own other four images 

of the same finger, and with the other 199 templates. There are 

totally 999000 (1000*999) times of matching in a verification 

process, and the verification rate is 97.32%, the rejection rate 
is 9.2%. The FAR is 0.0009255 and the FRR is 0.0275.Table 1 

reports the average computational times (B,C,D,E)[8] in 

automatic minutiae extraction on a PC-80486-DX 50 Mhz. (A) 

is the average computational times of our SoC which contains a 

33 Mhz Nios CPU. 

Table 1. Average computational time.
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Figure 6. Our SoC architecture. 

7. Conclusion 

This paper describes the techniques used in a fingerprint 
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verification system as well as an implementation of such a 

system by means of a system-on-chip design. Several 

processing phases are applied to the fingerprint image like 

the fingerprint foreground detection, image equalization, 

enhancement by a Gabor filter and thinning to obtain an 

improved binary image of the given fingerprint. The 

matching algorithm is based on the detection of cores in 

the fingerprint, and a given fingerprint is rotated and 

translated to match another fingerprint. 

The presented image processing algorithms and the 

matching algorithms are implemented with SoC 

technology using the SOPC Builder. A special hardware 

circuit is developed for the Gabor filter while the thinning 

process is implemented on chip as a special instruction of 

the microprocessor. The reason for this choice is that the 

hardware complexity of the thinning process is low in 

contrast to the Gabor filter. Moreover, the Gabor filter and 

the computation of the gradient field can use the same 

hardware circuit so that the area is reduced greatly. Finally, 

experimental results show that the developed system 

works well and the hardware support makes the system 10 

times faster. 

1-bit

F_ADD

1-bit

F_ADD

1-bit

H_ADD

2-bit

F_ADD

3-bit

F_ADD

Compare

N(P1)>2

or

N(P1)<6

N(P1

)

Step-1 S/F 

1-bit

F_ADD

1-bit

F_ADD

1-bit

H_ADD

2-bit

F_ADD

3-bit

F_ADD

Compare 

1

Step-2 S/F 

Step-3 & 4 

S/F 

P2

P3

P4

P5

P6

P7

P8

P9

Figure 7. The thinning hardware architectures. 

References 

[1] S. Greenberg, M. Aladjem, D. Kogan and I.Dimitrov,

“Fingerprint image enhancement using filtering techniques”
Proceedings of the 2000 IEEE  Conference on Pattern 

Recognition , 2000,pp. 322 - 325  

[2] M. Tico and P. Kuosmanen, “An algorithm for fingerprint 

image post-processing,” Proceedings of the Thirty -Fourth 

Asilomar Conference on Signals, Systems and Computers, 2000, pp. 

1735 – 1739. 

[3] T. Chang, “Texture analysis of digitized fingerprints for singularity 

detection,”in Proc. 5th Int. Conf. Pattern Recognition, 1980, pp. 

478–480.

[4] M. Kawagoe and A. Tojo, “Fingerprint pattern classification,”

Pattern Recognit., 1984, vol. 17, no. 3, pp. 295–303. 

[5] Sen Wang,Student Member, IEEE, and Yangsheng Wang, 

“Fingerprint Enhancement in the Singular Point Area” IEEE Signal  

Processing Letters, Jan. 2004, vol. 11, no. 1, pp.16 - 19
[6] Anil K. Jain, Fellow, IEEE, Salil Prabhakar, Lin Hong, and Sharath 

Pankanti” Filterbank-Based Fingerprint Matching” IEEE Trans. on 

Image Processing, May 2000, vol. 9, no. 5, pp.846 - 859 

[7] A. K. Jain, S. Prabhakar, and L. Hong, “A multichannel approach 

to fingerprint classification,” IEEE Trans. Pattern Anal. Machine 

Intell., 1999, vol. 21, no. 4, pp. 348–359. 

[8] D. Maio and D. Malton, “Direct gray-scale minutiae detection in 

fingerprints,” IEEE Trans. on Pattern Analysis and Machine 

Intelligence, Jan. 1997, vol. 19, pp.27 – 40. 

Figure 8. The gradient fields and GRC hardware 
architectures. 

Figure 9. Element of gradient fields & GRC.
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