
Embedded Fingerprint Verification System

Gwo-Cheng Chao*, Shung-Shing Lee**, Hung-Chuan Lai***, Shi-Jinn Horng***

*Graduate Institute of Networking and Multimedia National Taiwan Univ., Taipei,
Taiwan

**Department of Electrical Engineering Ching Yau University, Jung-Li, Taiwan
***Department of Computer Science and Information Engineering National Taiwan Univ.

of Science & Technology, Taipei, Taiwan

ABSTRACT
Fingerprint verification is one of the most reliable

personal identification methods in biometrics. In this
paper, an effective fingerprint verification system is
presented. We describe an enhanced fingerprint
verification system consisting of image pre-processing,
feature extraction and matching processes. Improved
image pre-processing and broken ridge reconnection
methods are proposed here. In this paper, we also
describe the design and implementation of a fingerprint
verification system on SoC.

1. Introduction

Fingerprint recognition has been researched for many

years. Most automatic systems for fingerprint comparison

are based on minutiae matching. Recent detection

methods of minutiae still use gray-scale fingerprint image.

The gray level image can be transformed to a binary

image through a binarization process. Most minutiae

detection methods that have been proposed in the

literature are based on image binarization [1] [2]. Figure 1

shows the processing flow of our proposed methods. In

section 2, we will illustrate how to calculate the

orientation field of a fingerprint. Section 3 describes the

pre-processing steps of a fingerprint image. In section 4, a

singular point detection method and a minutiae matching

algorithm are introduced. Section 5 addresses the

embedded system design. Section 6 some results of our

approaches are presented. Finally, a conclusion is given.

2. Calculation of the orientation field

Several methods for estimating image directional

information have been proposed in the literature [3] [4].

The orientation field, θ , is defined as a NM× image,

where),(jiθ represents the local ridge orientation at

pixel),(ji . Local ridge orientation is usually specified

for a block rather than at every pixel. In this paper, we

calculate the orientation of each image pixel. In this way, the

direction locality of an image can be preserved and the

orientation field of an image can be more smoothly recalculated.

Finally, with pixels neighborhood, Gaussian smoothing

operator is used to smooth the orientation fields of an image

[5].

Figure 1. The processing flow of fingerprint verification
system.

3. Fingerprint pre-processing

There are several pre-processing methods used in a

gray-scale image and a binarization image [6] [1]. The

pre-processing procedures will affect the result of extracting

fingerprint minutiae. In this section, we will describe

foreground (object) detection, image equalization, and Gabor

Filter.

3.1. Fingerprint Foreground detection

After investigating a fingerprint image, we know that the

ratio of ridges to valleys is nearly equal in a fingerprint. We use

this characteristic of a fingerprint to deal with this problem.

A foreground detection procedure is illustrated as follows:

1. First, we set a rough threshold (T) value for a fingerprint

image using image histogram.

2. The image is divided into four equal

regions,
iA , 4,3,2,1=i , by dividing the image vertical and

horizontal equally (Figure 2).

3. Using a window block B (mm ×), a gray-scale fingerprint

image (nn ×) is divided into
m

n blocks. In each block, the

Gray-Scale

Fingerprint

Gabor Filter &

Segmentation

Thinning

Minutiae

Extraction

Directional Fields

Singular detection
Matching

Foreground

detection Equalization

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

gray value is bigger than threshold (T) indicating the

foreground (value 1), otherwise, background (value 0). A

block of an image will be considered as foreground

region if the ratio of count-1 to count-0 in this block is

less than a threshold value.

4. Apply the dilation operation to the

region
iA , 4,3,2,1=i , then scan the image from the center

toward the boundary and put the foreground blocks together. So,

the entire foreground region can be obtained.

5. The foreground region obtaining from step 4 may have some

small holes inside the region; we need to

eliminate these holes and make the boundary area smooth.

Then we get the final foreground image region,

foreground mask. Figure 3 shows some examples.

Figure 2. Four regions of an image.

 (a) (b) (c) (d)
Figure 3. Examples of foreground extraction. (a, c)
Original thinned binary fingerprint (b, d) the tracing
result.

After retrieving the foreground of an image, we apply

an image equalization procedure in the foreground region.

Doing so helps to avoid the influence of background

noise during the equalization procedure.

3.2. Fingerprint Image Enhancement

After foreground extraction and image equalization,

we use the Gabor filters to enhance the fingerprint image.

An even symmetric Gabor filter has the following general

form in the spatial domain:

)2cos(}
''

2

1
exp{),,,(

2

'

2

2

'

2

xf
yx

fyxG
yx

′
ù
ù
ú

ø

é
é
ê

è
+−= π

δδ
θ (1)

θθ cossin' yxx += (2)

θθ sincos' yxy −= (3)

where f is the frequency of the sinusoidal plane wave

along the direction θ from the x-axis, the filter

frequency can be set to the average ridge frequency (1/

K), where K is the average inter-ridge distance. If f is

too large, spurious ridges are created in the filtered image

whereas if f is too small, nearby ridges are merged into

one. The values
'xδ and

'yδ are the space constants of the

Gaussian envelope along 'x and 'y axes, respectively.

If
'xδ and

'yδ (standard deviations of the Gaussian

envelope) values are too large, the filter is more robust to noise,

but is more likely to smooth the image to the extent that the

ridge and valley details in the fingerprint are lost. If
'xδ and

'yδ values are too small, the filter is not effective in removing

the noise. The values for each were empirically determined and

set to 4.0 (about half the average inter-ridge distance) [6] [7].

We perform the filtering on an image in the spatial domain with

a mask size of 18*18 . However, to speed up the filtering

process, we designed a circuit, named Gabor redundancy circuit

(GRC) which will be discuss in section 6.

According to each pixel’s orientation, the corresponding

Gobal filter is used to enhance this pixel. By setting a proper

threshold value to the enhanced image, a binary image can be

obtained. An example of fingerprint image processing is shown

in Figure 4.

(a) (b) (c)

(d) (e) (f)
Figure 4. (a) Original fingerprint (b) the foreground of the
original fingerprint (c) the gray-scale image of the original
fingerprint after equalization (d) the direction field of the
original fingerprint (e) the binary image of the original
fingerprint after Gabor filter and segmentation (f) the
thinning image of the original fingerprint.

4.Singular detection and Matching algorithm

4.1 Singular detection

Figure 5. A core and a delta in a fingerprint.

4A 3A

2A1A

core

delta

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

There are two kinds of singular points, core and delta.

Figure 5 shows the shapes of core and delta. A point in the

directional image is classified as an ordinary point, core

or delta by computing the Poincar index [4] along a

small closed curve around the point. The Poincar index

is computed by summing up the changes in the direction

angle around the curve. When making a full

counter-clockwise turn around the curve in a directional

image, we see that the direction angle turns 0, ± 180 and

± 360 degree during this trip. A point is termed ordinary

if the angle has turned 0 degree, core if it has turned 180

degree and delta if it has turned -180 degree.

In a block image (each block contains 9x9 pixels), we

compute the Poincar index at every block (i, j) in a 2 x 2

rectangle, where the upper left corner is placed at the

pixel of interest. The rectangle is traversed in the

counterclockwise direction:

),()1,()1,1(),1(),(jijijijiji →+→++→+→
when computing the difference between two angles

(which is determined up to ± 180), we take the

difference that is smallest in the absolute value.

4.2 Matching algorithm

In this work an alignment-based matching algorithm

is implemented. This alignment-based matching algorithm

is decomposed into two stages:

1) Alignment stage:

We use the minutiae of a template image as base and

align them to the minutiae of the input image. A

transformation function)(ii XFY = between input

image
iY and template image

iX can be written as:

TXRsY ii +⋅⋅= ,where s is the scale factor, set to

value 1, in our fingerprint verification system because the

same size of fingerprints are used.

The value θ is the rotation angle between two

fingerprints. We use the core point as center and the

distance r from core point as the radius, and then we

construct a local structure of each fingerprint. Then we

find the most corresponding point pair),(21 PP through

structure matching. We extract the orientations),(21 θθ
of the point pair),(21 PP , and then compute the

difference parameter
12 θθθ −= as the rotation angle.

The rotation matrix
é
ê

è
=

θ
θ

sin

cos
R ù

ú

ø−
θ

θ
cos

sin , is used to align

both images minutiae in the same orientation. The

translation vector][T
yx ttT ,= is used to adjust the

distance r of template image minutiae, we calculate the

difference of the distance between the core points of the

two fingerprints, and then move all minutiae of template

image by adding the parameter .

2) Matching stage:

After alignment each pair of corresponding minutiae points

is completely coincident if two identical munitiae are exactly

aligned with each other.

Let }{ TI
M

I
M

I
M

TIII yxyxI),,(,.....,),,(111 θθ= denote the set of M

minutiae in the input image and

}{ TP
N

P
N

P
N

TPPP yxyxP),,(,.....,),(11,1 θθ= denote the set of N minutiae

in the template image. We denote the reference point (core

point) as),,(r
I

r
I

r
I yx θ and),,(r

P
r
P

r
P yx θ for each input image

and template image. Then we construct match

tables
IM and

PM for matched minutiae pair
MI ,

NP , and

we compute the following parameters and store them in each

match table IM and PM .

1. The distance of x and y coordinate from reference point to

others in an image.

2. The angle difference of the input image and the template

image.

3. The type of the minutiae in the input point patterns and the

template point patterns.

4. The quadrant using the core point as a center point.

After creating match tables, we compare these two tables

and find the set of points that are best matched between input

and template image.

5. Embedded System Design

In this section, we illustrate our SoC architecture, design

flow and verification flow. System partition is the first step in

Hardware and Software Co-design. We can’t make decisions

without a particular system analysis. Every embedded

processor possesses individual operations capability. Therefore

we must proceed to a case by case system analysis. We

implement our fingerprint algorithm in software and execute it

using a Nios processor. Thereby we can obtain accurate

information and determine the appropriate system partition

method. There are four points for attending to the system

partition.

The part of hardware:

We must take care of hardware complexity, which affects

the system cost.

The part of system software:

System execution time must fit in specification.

Instruction ROM size is fixed by specification.

Memory size is fixed, so system software in execution time

cannot waste memory space.

5.1. SoC Architecture

Figure 6 shows our SoC architecture which consists of Nios

CPU, memory, sensor controller, gradient fields, Gabor

redundancy circuit (GRC), thinning hardware, Avalon bus and

Infineon FingerTIP sensor. We use SOPC Builder to generate

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

all hardware except flash memory, a SRAM module, a

sensor controller and the Infineon FingerTIP sensor. The

Infineon FingerTIP sensor is connected to SoC by parallel

port. The sensor provides an 8-bit representation of the

gray levels for each pixel. A fingerprint image consists of

224 columns and 288 lines, yielding 64,512 bytes plus the

end of line marks. The sensor controller is implemented in

Verilog HDL code. Using a custom instruction and

memory mapping method, all system hardware can be

connected together. Using the thinning hardware

reduces complexity as it implements the algorithm by

custom instruction. The circuits of gradient fields and

GRC are implemented by memory mapping method. The

thinning, gradient fields and GRC hardware architectures

are shown in Figure 7 and Figure 8. Because the gradient

fields and GRC circuit use the same circuit to perform

their functions, we use one circuit to implement both

functions (Figure 9). In this way, the area of the hardware

can be greatly reduced.

5.2. Design Flow

The design flow begins with pre-design activity,

which includes an analysis of the system requirements. In

hardware design flow, we use the SOPC Builder and the

Quartus II software to create and process our own Nios

system module design that interfaces with components

provided on the Nios development board. In software

design flow, first we can begin coding device-independent

C/C++ software, such as arithmetic algorithms or control

programs. After we define the custom Nios processor

hardware system using SOPC Builder, SOPC Builder

generates a custom software development kit (SDK) that

forms the foundation for the software development flow.

With the SDK in hand, we can begin coding software that

interacts at a low level with hardware components. The

SDK defines the software view of the custom hardware,

including the memory map and the data structures for

accessing hardware components in the system. The SDK

provides software routines for accessing standard

peripherals such as UARTs, PIOs, and DMA controllers.

We use the GNUPro Toolkit to compile and link software

together with the SDK routines, header files, and other

software libraries. Compilation results in an executable

software image. After we prototype the basic Nios

processor hardware working on the development board,

we can download the executable software to the

development board using an Altera ByteBlasterMV.

6. Experimental Result

In our fingerprint verification experiments, 1000

fingerprint images are captured from 200 different fingers,

5 images from the same finger as a template. Totally, 200

templates are contained in the database. Each fingerprint

image in the database is verified with its own other four images

of the same finger, and with the other 199 templates. There are

totally 999000 (1000*999) times of matching in a verification

process, and the verification rate is 97.32%, the rejection rate
is 9.2%. The FAR is 0.0009255 and the FRR is 0.0275.Table 1

reports the average computational times (B,C,D,E)[8] in

automatic minutiae extraction on a PC-80486-DX 50 Mhz. (A)

is the average computational times of our SoC which contains a

33 Mhz Nios CPU.

Table 1. Average computational time.

D
ir

ec
ti

on
al

i
Se

gm
en

ta
ti

on

Sm
oo

th
in

g

T
hi

nn
in

g

M
in

ut
ia

e
ex

tr
ac

ti
on

M
at

ch
in

g

T
ot

al
 t

im
e

G
ab

o
rA

(this paper)

(Intel P4 1.8G,

SW exe. only)

1
.5

5
.1

3
8

1
.5

8

0
.0

0
0

2

0
.0

0
0

6
7

8
.3

4
8

8
7

A

(NIOS 33MHz

SW exe. only) 1
0

.3
4

4
0

.5
2

4
.9

6
5

0
.0

5

0
.1

4
8

5
7

.2
3

1
.2

2
.8

2

0
.0

0
3

0
.0

5

0
.1

4
8

5
.4

3
1

B [8] -

2
.2

5

3
.9

0

3
.1

1

0
.5

1 -

9
.7

7

C [8] -
3

.0
8

3
.9

0

3
.1

1

0
.6

7 -

1
0

.7
6

D[8] -

2
.6

4 -
3

.1
5

0
.6

6 -

6
.4

5

A
ve

ra
ge

 c
om

pu
ta

ti
on

al
 t

im
e

(s
ec

.)

E [8]

0
.5

1

1
5

.7
3 -

2
.4

5

0
.3

3 -

1
9

.0
3

Figure 6. Our SoC architecture.

7. Conclusion

This paper describes the techniques used in a fingerprint

Fingerprint Sensor

NIOS Processor

Thinning

Hardware

Sensor

control

A
v

alo
n

 B
u

s

S
R

A
M

Gradient Fields &

Gabor Redundancy Circuit

Instruction

ROM

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

verification system as well as an implementation of such a

system by means of a system-on-chip design. Several

processing phases are applied to the fingerprint image like

the fingerprint foreground detection, image equalization,

enhancement by a Gabor filter and thinning to obtain an

improved binary image of the given fingerprint. The

matching algorithm is based on the detection of cores in

the fingerprint, and a given fingerprint is rotated and

translated to match another fingerprint.

The presented image processing algorithms and the

matching algorithms are implemented with SoC

technology using the SOPC Builder. A special hardware

circuit is developed for the Gabor filter while the thinning

process is implemented on chip as a special instruction of

the microprocessor. The reason for this choice is that the

hardware complexity of the thinning process is low in

contrast to the Gabor filter. Moreover, the Gabor filter and

the computation of the gradient field can use the same

hardware circuit so that the area is reduced greatly. Finally,

experimental results show that the developed system

works well and the hardware support makes the system 10

times faster.

1-bit

F_ADD

1-bit

F_ADD

1-bit

H_ADD

2-bit

F_ADD

3-bit

F_ADD

Compare

N(P1)>2

or

N(P1)<6

N(P1

)

Step-1 S/F

1-bit

F_ADD

1-bit

F_ADD

1-bit

H_ADD

2-bit

F_ADD

3-bit

F_ADD

Compare

1

Step-2 S/F

Step-3 & 4

S/F

P2

P3

P4

P5

P6

P7

P8

P9

Figure 7. The thinning hardware architectures.

References

[1] S. Greenberg, M. Aladjem, D. Kogan and I.Dimitrov,

“Fingerprint image enhancement using filtering techniques”
Proceedings of the 2000 IEEE Conference on Pattern

Recognition , 2000,pp. 322 - 325

[2] M. Tico and P. Kuosmanen, “An algorithm for fingerprint

image post-processing,” Proceedings of the Thirty -Fourth

Asilomar Conference on Signals, Systems and Computers, 2000, pp.

1735 – 1739.

[3] T. Chang, “Texture analysis of digitized fingerprints for singularity

detection,”in Proc. 5th Int. Conf. Pattern Recognition, 1980, pp.

478–480.

[4] M. Kawagoe and A. Tojo, “Fingerprint pattern classification,”

Pattern Recognit., 1984, vol. 17, no. 3, pp. 295–303.

[5] Sen Wang,Student Member, IEEE, and Yangsheng Wang,

“Fingerprint Enhancement in the Singular Point Area” IEEE Signal

Processing Letters, Jan. 2004, vol. 11, no. 1, pp.16 - 19
[6] Anil K. Jain, Fellow, IEEE, Salil Prabhakar, Lin Hong, and Sharath

Pankanti” Filterbank-Based Fingerprint Matching” IEEE Trans. on

Image Processing, May 2000, vol. 9, no. 5, pp.846 - 859

[7] A. K. Jain, S. Prabhakar, and L. Hong, “A multichannel approach

to fingerprint classification,” IEEE Trans. Pattern Anal. Machine

Intell., 1999, vol. 21, no. 4, pp. 348–359.

[8] D. Maio and D. Malton, “Direct gray-scale minutiae detection in

fingerprints,” IEEE Trans. on Pattern Analysis and Machine

Intelligence, Jan. 1997, vol. 19, pp.27 – 40.

Figure 8. The gradient fields and GRC hardware
architectures.

Figure 9. Element of gradient fields & GRC.

Element of

gradient fields

Element of

gradient fields

Element of

gradient fields

Element of

gradient fields

Element of

gradient fields

Element of

gradient fields

Element of

gradient fields

Element of

gradient fields

Element of

gradient fields

+

+

+

+

+

+

+ +
+ Registe

r (Gyy)

+ Registe

r (Gxx)

+

GRC

- tan-1

ROM

),(yx∠
output

Registe

r (Gxy)

+

y/x

Register mux

mux

*

Gx(x, y) or Gy(x, y)

or Gabor_Value

Gray value

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

