
t

Enabling Requirements-Based Programming for Highly-Dependable
Complex Parallel and Distributed Systems

Michael G. Hinchey, James L. Rash
NASA Goddard Space Flight Center

Information Systems Division
Greenbelt, Maryland 2077 1, USA

michae1.g.hinchey @nasa.gov

Abstract

The manual application of formal methods in system
specifcation has produced successes, but in the end, de-
spite any claims and assertions by practitioners, there i s
no provable relationship between a manually derived sys-
tem specifcation or formal model and the customer’s orig-
inal requirements. Complex parallel and distributed sys-
t e m present the worst case implications for today s dearth
of viable approaches for achieving system dependability.
No avenue other than formal methods constitutes a seri-
ous contender for resolving the problem, and so recognition
of requirements-based programming has come at a critical
juncture. We describe a new, NASA-developed automated
requiremnts- based programming method that can be ap-
plied to certain classes of systems, including complex par-
allel and distributed systems, to achieve a high degree of
dependability.

Key Words: Distributed Systems Validation, Verifica-
tion, Formal Methods, Automatic Code Generation, CSP

1. Introduction

The inherent complexity in building highly-dependable
parallel and distributed systems is well known. As we build
more and more sophisticated applications with more strin-
gent timing constraints, the difficulties continue to rise in
measure with the complexity, despite the best efforts of the
research and development community to address means of
tackling the problem. Expectations for dependability, effi-
ciency, performance, maintainability and cost-effectiveness
over a system’s entire life cycle cannot be lowered, and in-
deed are seen to rise from any given level achieved in the
past. Consequently, the combined effect of increasing sys-
tem complexity and rising expectations suggests that a crit-
ical need has arisen for a new way to resolve this issue.

Christopher A. Rouff
SAIC

Advanced Concepts Business Unit
McLean, VA 22102

rouffc @saic.com

Requirements-Based Programming (RPB) has been ad-
vocated as a means, perhaps the only means, of developing
highly dependable complex systems that can be guaranteed
to be correct [2,3]. We present Requirements-to-Design-to-
Code, a NASA-developed approach to Requirements-Based
Programming, which has the distinct advantage of offering
a fully formal underpinning. The approach has been demon-
strated to have applicability in a variety of domains.

2. Requirements-Based Programming

Requirements-Based Programming effectively extends
Model-Based Development (MBD) by adding a “front-
end”. While MBD holds that code-generation can be ef-
ficient and practical from an appropriate model, RBP ad-
dresses the adequate development of that model, by ensur-
ing a direct mapping from requirements through to specifi-
cation and modeling.

RBP, therefore, affords the systematic and mechanical
transformation of requirements into executable code. While
this is an obvious goal of system development, other a p
proaches (including the manual application of formal speci-
fication to derive a system model) have failed to address the
entire lifecycle and ensure that generated code does in fact
match the requirements [5 ,6] .

As we will describe in Section 3, we have found it to have
a number of interesting applications in verification and Val-
idation, as well as in system development ab initio.

2.1. R2D2C

Requirements-to-Design-to-Code (R2D2C) is the provi-
sional name for a NASA technology that provides a mathe-
matically tractable round-trip engineering approach to sys-
tem development.

In this approach, engineers (or others) may write speci-
fications as scenarios in constrained (domain-specific) nat-
ural language, or in a range of other notations (including

UML use cases). These will be used to mechanically derive
a formal model (Figure 1) that is guaranteed to be equivalent
to the requirements stated at the outset, and which will sub-
sequently be used as a basis for code generation. The for-
mal model can be expressed using a variety of formal meth-
ods. Currently we are using CSP, Hoare’s language of Com-
municating Sequential Processes [8], which is suitable for
various types of analysis and investigation, and as the ba-
sis for fully formal implementations, as well as for use in
automated test case generation, etc.

2.2. Formal Requirements-Based Programming

R2D2C is unique in that it allows for full formal devel-
opment from the outset, and maintains mathematical sound-
ness through all phases of the development process, from
the requirements capture stage to the automatic code gen-
eration phase [1 I]. Applicable to the class of system whose
behavior can be described as a set of scenarios, the approach
may also be used for reverse engineering, that is, in retriev-
ing models and formal specifications from existing code.
The approach can also be used to “paraphrase” (in natural
language, etc.) formal descriptions of existing systems.

The R2D2C approach involves a number of phases,
which are reflected in the system architecture described in
Figure 1. The following describes each of these phases.

D1 Scenarios Capture: Engineers, end users, and others
write scenarios describing intended system operation.
The input scenarios may be represented in a con-
strained natural language using a syntax-directed ed-
itor, or may be represented in other textual or graphi-
cal forms.

D2 Traces Generation: Traces and sequences of atomic
events are derived from the scenarios defined in D 1.

D3 Model Inference: A formal model, or formal specifica-
tion, expressed in CSP is inferred by an automatic the-
orem prover-in this case, ACL2 [9]-using the traces
derived in phase 2. A deep’ embedding of the laws of
concurrency [4] in the theorem prover gives it suffi-
cient knowledge of concurrency and of CSP to perform
the inferencing. The embedding will be the topic of a
future paper.

D4 Analysis: Based on the formal model, various analy-
ses can be performed, using currently available com-
mercial or public domain tools, and specialized tools
that are planned for development. Because of the na-
ture of CSP, the model may be analyzed at different

1 “Deep” in the sen% that the embedding is semantic rather than merely
syntactic.

levels of abstraction using a variety of possible imple-
mentation environments. This will be the subject of a
future paper.

D5 Code Generation: The techniques of automatic code
generation from a suitable model are reasonably well
understood. The present modeling approach is suitable
for the application of existing code generation tech-
niques, whether using a tool specifically developed for
the purpose, or existing tools, or converting to other
notations suitable for code generation (e.g., converting
CSP to B and then using the code generating capabili-
ties of the B Toolkit).

It should be re-emphasized that the “code” generated
may be code in a high-level programming language, low-
level instructions for (electro-) mechanical devices, natural-
language business procedures and instructions, or the like.

23. Short-cut R2D2C

The approach described in Section 2.2 is the way that
R2D2C is intended to be applied, from requirements spec-
ification through code generation. The approach, however,
requires significant computing power in the form of an au-
tomated theorem prover performing significant inferences
based on traces input and its “knowledge” of the laws of
concurrency. While this is well warranted for certain appli-
cations, it is likely to be beyond the resources of many de-
velopers and organizations. As a practical concession, we
also define a reduced version of R2D2C called the “short-
cut version” (Figure 2), whereby the use of a theorem prover
is avoided, yet without sacrificing high confidence in the va-
lidity of the approach. The following describes each of the
phases for the shortcut R2D2C:

S1 Scenarios Capture: As before, intended system behav-
ior is described by scenarios input in natural language,
or an appropriate graphical or semi-formal notation.

S2 Translation to Intermediate Notation: Scenarios are
translated to an intermediate notation, termed EzyCSP,
which is a simple natural language-like subset of CSP
that can be used to describe a large number of situa-
tions and scenarios (recall that scenarios are domain
specific).

S3 Analysis: While far more simple than CSP, EzyCSP al-
lows some simple analyses to be performed.

S4 Implementation in Java: EzyCSP is sufficiently simple
that it may easily be translated to Java and executed.

This simplified or shortcut approach clearly has signif-
icant disadvantages when compared to our full approach.
First, the correctness of the development process is contin-
gent on the correctness of both the translation of scenarios
to the intermediate (EzyCSP) notation and the translation of

exishng prototype

future enhancement - commerclaliy available

Figure 1. The entire process with D1 through D5 illustrating the development approach and R1
through R4 the reverse engineering.

EzyCSP to Java. However, the correctness of the translators
for these is assured via a proof of correctness undertaken
with the ACL2 theorem prover. Second, we do not have a
reverse process, suitable to support reverse and (ultimately)
re-engineering, for free; however, a Java-to-EzyCSP trans-
lator would certainly be possible for highly constrained sub
sets of Java.

The significant advantage of this simplified approach,
however, is that although a proof of correctness involving
a theorem prover is still required, this is required exactly
once and would be performed by the support system devel-
opers (presumably expert in the art). This is significantly
less expensive computationally than using a theorem prover
in the development of each individual application.

Figure 2. Short cut R2D2C.

3. Application Areas

The motivation for this work was the need for automatic
code generation for ultra-high dependability systems, but
the method described in this paper has a broad range of a p
plicability.

We have developed a prototype tool to support the
R2D2C approach [IO, 121 and have successfully a p
plied it in a range of areas:

MultiAgent Systems: We have successfully under-
taken the redevelopment of a prototype NASA sys-
tem to automate the “lights out” (untended) operation
of a ground control system. The system had pre-
viously been formally specified and checked by
hand. Our R2D2C tool successfully found all the er-
rors that we detected by hand, and additionally found
a number of undetected errors, all in a matter of sec-
onds [IO].

Wireless Sensor Networks: An application of the a p
proach to the development of highly dependable wire-
less sensor networks is detailed in [7].

Robotic Operations: We have been experimenting with
generating code to control robotic devices. Perhaps
more interesting is the use of this approach to in-
vestigate the validity and correctness of procedures
for complex robotic assembly or repair tasks involv-
ing multiple robots and interacting parallel processes.
We have begun exploratory work in this direction,
to validate procedures from the Hubble Robotic Ser-
vicing Mission (HRSM)-for example, verification of
the procedures for replacement of a wide-field cam-
era on the Hubble Space Telescope (HST) is described
in [111.

File Edit Tools Help

:!:!I / j 11]
.... Compile Run j View
.

' Natural Language Input 1' Requirements Design 1'. Code 1' Testing I
Trans action b oltrel e as e = new Tra n s acti on (2);
Transaction brakeset = new Transaction@);
Transaction stabilize = new Transaction(2);
Trans action wfcto o I a q u i re = new Tra n sa ctio n (2);
GA GA-init = new GA(brakeset);
DRone DRone-init = new DRone(boltreIease, brakeset, stabilize);
D Rtwo D Rtwo-i nit = n ew D Rtwo (bo It re I e a s e , b rake s et, wfcto o I a q u i re);
DR o n e-i n it. starto;
D Rtwo-i n it. sta rto;
GA-initstarto;

EXEC UTI NG:

brakes et
brakes et

DEADLOCK DETECTED !I

Figure 3. Application of R2D2C prototype tool to example robotic repair procedure, showing detec-
tion of deadlock.

4. AnExample

To illustrate the capability of the R2D2C method using
the prototype tool, we have selected an example procedure
from HRSM for the replacement of a wide-field camera on
the Hubble Space Telescope (HST).

This example procedure, one of many possible varia-
tions for replacing the camera, was modified to intentionally
include an error for purposes of demonstrating the error-
detection capability of our prototype tool.

Figure 3 shows an execution fragment from a run of the
tool, in which the tool has produced a message indicating

the example procedure leads to a deadlock condition. While
this error was detected by running the Java program pro-
duced automatically by the tool, the formal model generated
automatically by the tool can be subjected to automated the-
orem proving techniques to detect the same error, as well as
many others.

The importance of this procedure verification capabil-
ity looms large when it is recognized that no other tool or
method can mechanically and automatically transform nat-
ural language requirements into a mathematically equiva-
lent formal model and analyze that model for errors.

While procedure verification is an important area of ap-

. * .
* L

plication of the R2D2C method, the more general area of
software verification and requirements validation is targeted
for application of an expanded prototype tool. Additional
future work will include expanding the error-detection ca-
pability, incorporating theorem-proving relative to the for-
mal model generated by the tool from the user’s require-
ments expressed in natural language.

5. Conclusions

The development of complex parallel and distributed
systems continues to pose difficulties and challenges. These
will continue to grow unless we develop better means of
controlling the complexity inherent in such systems and/or
develop new techniques that will allow us to ensure that im-
plementations truly meet requirements and allow for formal
analysis and formal proof. Without a formal underpinning,
such analysis and proof is impossible [11.

Requirements-Based Programming has been rec-
ommended as an approach that will lead to improved
system quality, particularly in complex applications in-
volving significant amounts of concurrent processing.
R2D2C is the provisional name of a NASA approach to
Requirements-Based Programming, which not only has au-
tomated (prototype) tool support, but also is fully formal,
giving greater levels of confidence in the correctness of par-
allel and distributed systems.

Acknowledgments

This work was funded in part by the NASA Goddard
Space Flight Center Technology Transfer Office. Denis
GraEanin (Virginia Tech) and John Erickson (University of
Texas at Austin) worked with us on the intermediate a p
proach described in Section 2.3, and undertook the imple-
mentation of the prototype tool. The approach described in
this paper is protected under United States and international
Patent Applications assigned to the United States govern-
ment.

References

E L. Bauer. A trend for the next ten years of software engi-
neering. In H. Freeman and P. M. Lewis, editors, Sofhvare
Engineering, pages 1-23. Academic Press, 1980.
D. Harel. From play-in scenarios to code: An achievable
dream. IEEE Computer, 34(1):53-60,2001.
D. Harel. Comments made during presentation at “Formal
Approaches to Complex Software Systems” panel session.
ISoLA-04 First International Conference on Leveraging Ap-
plications of Formal Methods, Paphos, Cyprus. 3 I October
2004.

M. G. Hinchey and S. A. Jarvis. Concurrent Systems: Formal
Development in CSP. International Series in Software Engi-
neering. McGraw-Hill International, London, UK, 1995.
M. G. Hinchey, J. L. Rash, and C. A. Rouff. Requirements
to design to code: Towards a fully formal approach to auto-
matic code generation. Technical Report TM-2005-2 12774,
NASA Goddard Space Flight Center, Greenbelt, MD, 2004.
M. G. Hinchey, 1. L. Rash, and C. A. Rouff. A formal ap-
proach to requirements-based programming. In Pmc. IEEE
International Conference and Workshop on the Engineering
of Computer Based Systems, ECBS-2005, Greenbelt, Mary-
land, USA, 4-5 April 2005. IEEE Computer Society.
M. G. Hinchey, J. L. Rash, and C. A. Rouff. Towards an
automated development methodology for dependable sys-
tems with application to sensor networks. In Workshop on
Information Assurance in Wireless Sensor Networks (WS-
NIA200S), Proc. 24th IEEE International Peqormance Com-
puting and Communications Conference (IPCCC 2005),
Phoenix, AZ, 7-9 April 2005. IEEE Computer Society Press.
C. A. R. Hoare. Communicating Sequential Processes. Pren-
tice Hall International Series in Computer Science. Prentice
Hall International, Englewood Cliffs, NJ, 1985.
M. Kaufmann and Panagiotis Manolios and J Strother
Moore. Computer-Aided Reasoning: An Approach. Ad-
vances in Formal Methods Series. Kluwer Academic Pub-
lishers, Boston, 2000.
J. L. Rash, M. G. Hinchey, C. A. Rouff, D. Gracanin, and
J. D. Erickson. Experiences with a requirements-based pro-
gramming approach to the development of a NASA au-
tonomous ground control system. In EASe. 2nd IEEE Work-
shop on Engineering of Autonomic Systems, P m . ECBS
200S, 12th IEEE International Conference on Engineering of
Computer-Based Systems, Greenbelt, MD, 4-7 April 2005.

[I I] J. L. Rash, M. G. Hinchey, C. A. Rouff, and D. GraEanin.
Formal requirements-based programming for complex sys-
tems. In Pmc. International Conference on Engineering of
Complex Computer Systems, Shanghai, China, 16-20 June
2005. IEEE Computer Society Press.

[12] J. L. R p h , M. G. Hinchey, C. A. Rouff, D. GraEanin, and
J. D. Erickson. A tool for requirements-based program-
ming. In Pmc. International Conference on Integrated De-
sign and Process Technology (IDPT 200S), Beijing, China,
13-17 June 2005. The Society for Design and Process Sci-
ence.

