
Towards a Service-based Collaborative Framework for
Data-intensive Grid Applications

Hsi-Min Chen1, Chao-Chin Chang2, Jan-Jan Wu2, Chien-Min Wang2, Chun-Chen Hsu2

1Department of Computer Science and Information Engineering,
National Central University, Taoyuan, Taiwan

2Institute of Information Science, Academia Sinica, Taipei, Taiwan
{seeme, preisner, wuj, cmwang, tk}@iis.sinica.edu.tw

Abstract
As data-intensive applications increase continuously in

various domains, scientists nowadays need to save,
retrieve and analyze rapidly increasing large datasets.
The long latency of data transfer over Internet results in a
serious challenge on ensuring high-performance access to
large quantities of data. Furthermore, the vision of Grid
researches is to provide a collaborative space where
scientists can share their data, resources and experiences
with others. These issues motivate us to develop a service-
based collaborative framework for data-intensive Grid
applications. In this paper, we shall describe our initial
work towards this goal. We plan to provide an integrated
and virtual infrastructure, which manages distributed and
diverse data resources and services. By means of Web
Services technologies, we can realize the interoperability
among various types of resources and integrate
computing services with storage services to serve data-
intensive applications. By making use of portals and data-
intensive applications built on the top of the framework,
users will be able to manage and analyze large quantities
of data with high performance and share useful data with
others in a way of forming virtual groups to complete
cooperative work.

1. Introduction

As data-intensive applications increase continuously in
various domains, such as high-energy physics,
astrophysics, genomic computing and digital library,
scientists now need to save, retrieve and analyze rapidly
increasing large datasets. These data are gathered from
scientific instruments, sensors, sensor networks and other
data-collection devices. Data Grid [1] is a distributed
storage infrastructure that integrates distributed,
independently managed data resources. It addresses the
problems of storage and data management, data transfers
and data access optimization, while maintaining high

reliability and availability of the data. In recent years, a
number of Data Grid projects emerge in various
disciplines, for instance, EU DataGrid [2], PPDG [3], etc.
Moreover, as we see the evolution of Gird infrastructures
from native Girds, OGSI [4] to WSRF [5], Web Services
technologies [6] play a more and more important role for
new generation Grids. By means of Web Services, we can
realize the interoperability among various types of
resources and improve the scalability of a Grid system.

The long latency of data transfer over Internet results in
a serious challenge on ensuring high-performance access
to large quantities of data. Furthermore, the vision of Grid
researches is to provide a collaborative space where
scientists can share their data, resources and experiences
with others. The high-performance and collaboration
issues motivate us to develop a service-based
collaborative framework for data-intensive Grid
applications. Our framework provides an integrated and
virtual infrastructure, which manages and integrates
distributed and diverse resources and services.

The rest of the paper is organized as follows. In the
section 2, we describe the architecture of the proposed
framework in detail. Section 3 explains the current
implementation of our framework. In the section 4, we
illustrate an application example built on the framework.
Finally, we present some concluding remarks in the last
section.

2. Service-based Collaborative Framework

Figure 1 shows the architecture of the proposed
framework. All that users can use are front-end
applications and web portals in the top layer. The middle
layer consists of web services, including data management,
workspace, registry, compilation, etc. These web services
furnish the above layer with storage and computing
supports and connect to underlying data and computing
resources. In the following, we will describe each layer of
the architecture in detail.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

Web Portals Applications

Workspace
Service

Registry
Service

Data
Management

Service Storage Services Computing Services

Data Resources Computing Resources

Front-end Applications

Compilation
Service

Figure 1. The layered architecture.

2.1. Portal and Applications

The top layer of our framework includes web portals
and data-intensive applications. Grid portal is a web site
that allows scientists, researchers and application users to
access remote resources via a familiar web interface. The
portal of our framework authenticates users to remote
resources and services, and facilitates data manipulations
by interacting with the services resided in the middle layer.

To overcome the representative limitations of web
interfaces, our framework also supports data-intensive
Grid applications that are developed as desktop ones for
rich rendering.

2.2. Web Services

We adopt Web services technologies that can
interoperate across heterogeneous resources and
components by means of standard transport protocols and
XML-based messages. In our framework, the middle layer
comprises a number of web services providing various
features. Moreover, it enables scalability so that we can
add new services with ease to meet new requirements.
Because services are composable, we can assemble a new
service by reusing existing ones and have no need to
create from scratch. Web Services technologies reduce the
coupling and complexity of implementations and improve
the interoperability and scalability of our framework.

2.3. Resources

There are three categories of data resources that our
framework plans to support initially: parallel file systems,
i.e. PVFS (Parallel Virtual File System) [7], Relational
Database, and WWW. To alleviate I/O bottleneck of data
Grid, we adopt PVFS as the primary data storage of our
framework in which applications can access experimental
data in a way of parallel I/O. PVFS also supports several

features, including file striping across nodes, multiple
access interfaces, utilizing commodity network and
storage hardware, etc. By using PVFS, high-performance
data accesses are improved.

3. Implementation

The implementation of proposed framework supports
functionalities for web portal and applications. The
fundamental infrastructure consists of data management,
data registry, workspace, compilation, and computing
services.

3.1 Data Management Service

Data management service is a high-level one that
provides users of web portal or applications to manage
their data. It supports basic data operations such as listing,
cutting, copying, deleting, and renaming data. Furthermore,
it integrates with other services to furnish advanced
functionalities. Data management service provides a
uniform interface by which web portal and applications
can access the underlying storage services in the proposed
framework.

3.2 Data Registry Service

The data registry, as shown in figure 2, keeps records
associated with storage data. When users create a piece of
data, such as saving a PVFS file, a directory and a link, the
service will register it in the registry and ask users to
annotate it for searching. A registry entry includes a
unique identifier, a name, a set of metadata that describe
the data, an access control list, and a link pointing to the
physical storage data. Users don’t care about which
physical storage stores the data, and they simply need a
logical identifier to look for it.

 Since the registry keeps a large mount of entries
pointing to the physical data, it is difficult for users to get
a desired one with identifiers. The service provides
searching function by which users can look storage data up
with ease.

3.3 Personal and Group Workspace

Collaboration is one of crucial visions for Gird that
allows users to share their data, resources, and experiences.
In our framework, personal and group workspaces enable
collaboration of users. Personal workspace is one that
users can construct their favorite data links in a structure
way. Figure 2 shows the relationship among data registry,
storage data, and personal and group workspaces. All of
data are saved by owners in the virtual storage and

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

registered in the registry. Data owners can share their data
with others by writing access control lists that allows
group members or others to access the data.

Figure 2. Data registry and workspaces.

3.4 Compilation Service

A uniform global name space over dispersed physical
data storages helps users manipulate their data with
transparency. However, it is incompatible with existing
programs that access data directly through native I/O calls.
Therefore, we provide a new library of I/O calls that can
access globally named files. By replacing native I/O
library with the new one, existing programs can access
files in the dispersed data storages as if these files are in
local disks. Another advantage of this approach is that it
has the flexibility to implement more performance
optimizations in the future.

A similar problem arises when users compile their
programs on the proposed framework. The physical
locations of source files in the proposed framework are
unknown to the compilers. To overcome this problem, we
build a compilation service so that users can compile their
programs as if these files are in local disks. The
compilation service and the new I/O library make user
data accessible not only to the users themselves but also to
their programs. With these supports, users are able to
analyze large quantities of data stored in the dispersed
data storages with programs.

4. Application Example

In this section, we will demonstrate the proposed
framework with a data-intensive application on
collaborative filtering recommendation [10]. A high-
performance computing service for collaborative filtering
is implemented. Users can combine the storage
management service and the collaborative filtering service
to find items in which they might be interested.

4.1 Collaborative Filtering

Collaborative filtering (CF) attempts to alleviate
information overload by identifying which items a user

will find worthwhile. It focuses on identification of other
users with similar tastes and the use of their options to
recommend items. In the past year, a wide range of web
sites have begun to use CF recommendations in a diverse
set of domains including books, grocery products, art,
entertainment and information.

There are a variety of CF recommendation algorithms.
In the following, we adopt the one used in the GroupLens
system [8]. The input dataset can be modeled as a two-
dimensional sparse matrix, where the columns are users,
the rows are items, and the cells contain the ratings. A
rating is a number from 1 to 5, with 5 highest and 1 lowest.
Prediction can be modeled as matrix filling. A CF system
predicts scores for missing cells before the users examine
the corresponding items.

4.2 The Scheduling Algorithm

The prediction of scores in a CF system can be
computed independently for each user. Let the prediction
of scores for a single user is a task. A practical CF system
will compute a lot of independent tasks. To speedup the
computation, we can distribute these independent tasks to
processors in computing resources. Such a process is
called task scheduling. Each processor can read the
necessary input data directly from data resources, compute
its own tasks, and then store the result back to data
resources.

Task scheduling can be done statically or dynamically.
Since Grids are dynamic and heterogeneous in nature, it is
more appropriate to schedule tasks dynamically. Self-
scheduling is a dynamic scheduling method, in which each
processor autonomously acquires a task for execution
whenever it becomes idle. It is a good technique for
balancing the load when task execution time is
unpredictable. Furthermore, it offers the user a simple
programming model. The main disadvantage is its large
number of scheduling operations. The number of
scheduling operations can be reduced if a block of tasks is
allocated simultaneously. To get the best performance, the
block size must be properly chosen to balance the
scheduling overhead against the load imbalance. The
determination of the best block size desires a better
understanding of the scheduling overhead and the load
imbalance. In the following, we define parameters used in
modeling the performance of the Grid system and propose
an adaptive algorithm to determine the block size.

� p: the number of processors.
� n: the number of tasks.
� r: the number of unallocated tasks.
� k: the number of tasks to be allocated and computed.
� ts: the measured scheduling overhead of previous

allocation on the same processor.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

� tp: the measured execution time of tasks in previous
allocation on the same processor.

� t1: the estimated execution time of a task on the same
processor.

� µr: the expected execution time of unallocated r tasks.
� µn: the expected execution time of all n tasks.
��: an adjustable parameter of load balancing.
��: an adjustable parameter of efficiency.

Intuitively, the block size has an upper bound n/p and a

lower bound 1. We shall set the block size to pnk = in

the first allocation of each processor so that the block size
is neither too large nor too small for the subsequent
allocations. In our algorithm, we use the scheduling
overhead and execution time of previous allocation to
predict the future performance on the same processor.
Without knowing what will happen in the future, we
simply assume the scheduling overhead is unchanged and
the execution time of a task is a negative exponential
distribution with t1 as mean. Hence, the scheduling
overhead of the new allocation will be ts and the expected
execution time will be k·t1. The expected imbalance time

is approximated as 1
1

ktretk µ−⋅⋅ . Although this model may

not be very accurate, we can use the two adjustable
parameters to control the inefficiency factor and the
imbalance factor.

� Let
1t

t
k sβ≥ , then the inefficiency factor =

β
1

1

≤
⋅ tk

ts .

� Let
1t

k r

⋅
≤

α
µ

, then the imbalance factor α

α
−

⋅
≤ e

n

r
.

As indicated in the above, a larger block size can
reduce the number of scheduling operations and the
inefficiency factor. On the other hand, a smaller block size
can make the distribution more even and reduce the
imbalance factor. This implies the two adjustable
parameters are related. If the inefficiency factor and the
imbalance factor are treated as equal importance, we can
combine these inequalities and derive the best block size
as follows:

11 t
k

t

t rs

⋅
==

α
µ

β and α

αβ
−

⋅
= e

n

r1

s

r

t⋅
=⇒

α
µ

β and ααβ e
r

n⋅=

Xe =⇒ αα 2 where
s

r

tn

r
X

⋅
⋅

=
µ

Since it is difficult to get a closed-form solution for�,
here we make another approximation. If X≥e, let�=ln(X).
Otherwise, let�=X1/2. This choice of the block size looks
reasonable. When there are a large number of unallocated

tasks, a larger block size is preferred. On the contrary, a
smaller block size will be better if only a small number of
tasks remain unallocated. In addition, a higher scheduling
overhead will tend to increase the optimal block size.

4.3 Performance Comparison

We have implemented the CF recommendation system
in MPI over Grids. To explore and compare the
performance of the proposed adaptive-block self-
scheduling, fixed-block self-scheduling is implemented as
a reference. There are also two versions of I/O schemes
implemented: one uses sequential server I/O and data
communication and the other uses PVFS I/O directly.
Since PVFS provides a Unix I/O interface for
programmers, it is much easier to use PVFS I/O than
sequential server I/O and data communication.

The dataset for this demonstration is drawn from the
EachMovie collaborative filtering dataset [9]. In this
dataset, some 72916 users entered a total of 2811983
numeric ratings for 1628 different movies (films and
videos). It has been used in numerous collaborative
filtering publications. To explore the effect of different
numbers and execution times of independent tasks, the
demonstration is performed with three datasets of 2,500,
10,000, and 40,000 users, respectively.

•
•
••
••
••
••
••
••
••
••
••

• • • • • • • • •

••••••••• •••• •••

Figure 3. I/O Performance.

The experiment is conducted on the Taiwan UniGrid
[11] using 4, 8, and 16 processors, respectively. First, we
compare the performance of PVFS I/O and server I/O. As
shown in Figure 3, in all the experiments, the performance
of direct PVFS I/O is superior to the server I/O and data
communication. This indicates that direct PVFS I/O not
only simplifies the programming model but also improves
the performance of MPI programs on Grid systems.

Next, we compare the performance of the two
scheduling functions. To explore the best block size, 7

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

different block sizes are tested in the fixed-block self-
scheduling. Since the block size varies in adaptive-block
self-scheduling, we count the number of scheduling
operations to compare it with fixed-block self-scheduling.
The experimental results on 16 processors are shown in
Tables I, II, and III. Similar results can be obtained from
experiments of 4 and 8 processors and are omitted here
due to page limitation. These results clearly show the
impact of the block sizes on the performance. As we can
see in these tables, a smaller block size results in a large
number of scheduling operations that will slow down the
performance. On the contrary, a larger block size also
slows down the performance due to load-imbalance. It can
be observed that the performance of adaptive-block self-
scheduling is superior to any fixed block size in all the
experiments. Although the proposed adaptive algorithm is
not optimal in either scheduling operations or imbalance
time, it provides the best trade-off between these criterions.
This indicates that it is useful in real environments.

••••••••••• •••••••• ••• •• •• •• • • •

•••••••••••••••• ••• •• •• ••• ••• ••• •••• ••••

••••••••••••••• •••••• •••••• •••••• •••••• •••••• •••••• •••••• ••••••

••••••••••••••• •••••• •••••• •••••• •••••• •••••• •••••• •••••• ••••••

Table I. Experimental result for 2,500 users.

••••••••••• •••••••• ••• ••• •• •• •• • •

•••••••••••••••• ••• •• ••• ••• ••• •••• •••• •••••

••••••••••••••• ••••• ••••• ••••• ••••• ••••• ••••• ••••• •••••

••••••••••••••• •••••• •••••• •••••• •••••• •••••• •••••• •••••• ••••••

Table II. Experimental result for 10,000 users.

••••••••••• •••••••• ••• ••• •• •• •• • •

•••••••••••••••• ••• ••• ••• ••• •••• •••• •••• •••••

••••••••••••••• •••• ••••• ••••• •••• •••• •••• •••• ••••

••••••••••••••• •••••• •••••• •••••• •••••• •••••• •••••• •••••• ••••••

Table III. Experimental result for 40,000 users.

5. Concluding Remarks

In this paper, we present our initial work towards a
service-based collaborative framework for data-intensive
Grid applications. The fundamental infrastructure consists
of data management, data registry, computing, compilation
and workspace services. As a demonstration, we also
implement a collaborative filtering computing service. The
preliminary result looks promising. By means of Web
Services technologies, we can integrate computing
services with storage management services to serve data-

intensive applications. Adaptive task scheduling
algorithms and direct I/O to parallel file systems help the
realization of high-performance computing and data
access on Grid systems. There still remain many research
issues to explore and services to implement. In the future,
we will continue working towards this goal to make it a
reality.

Acknowledgement

This work is sponsored by the National Center for
High-performance Computing, Taiwan, under the grant
NCHC-KING_010200.

Reference

[1] Ian Foster, C. Kesselman, and S. Tuecke, “The
Anatomy of the Grid: Enabling Scalable Virtual
Organizations,” International J. Supercomputer
Applications, 15(3), 2001.

[2] EU DataGrid, available at http://www.edg.org.

[3] PPDG: Particle Physics Data Grid, available at
http://www.ppdg.net/.

[4] S. Tuecke, et. al, “OGSI Specification Version 1.0,”
Global Grid Forum, available at
http://www.gridforum.org/ogsi-wg/.

[5] Karl Czajkowski, et. al, “The WS-Resource
Framework version 1.0,” Global Grid Forum,
available at http://www.globus.org/wsrf/.

[6] Web Services Activity, W3C, available at
http://www.w3.org/2002/ws/.

[7] Philip H. Carns and Walter B. Ligon III, “PVFS: A
Parallel File System for Linux Clusters,” Proc. of the
Extreme Linux Track: 4th Annual Linux Showcase
and Conference, October 2000.

[8] P. Resnick, N. Iacovou, M. Sushak, P. Bergstrom,
and J. Riedl, “GroupLens: An open architecture for
collaborative filtering of netnews,” Proceedings of
the 1994 Computer Supported Collaborative Work
Conference, 1994.

[9] The EachMovie collaborative filtering data set,
http://research.compaq.com/SRC/eachmovie/.

[10] J. Herlocker, J. Konstan, and J. Riedl, “Explaining
Collaborative Filtering Recommendations,”
Proceedings of ACM 2000 Conference on Computer
Supported Cooperative Work, pp. 241-250,
December 2000.

[11] Taiwan UniGrid, http://unigrid.nchc.org.tw.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

