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Abstract 
In this paper, a simple codec algorithm based on Reed-

Solomon (RS) codes is proposed for erasure correcting in 
RAID level 6 systems.  Unlike conventional RS codes, 
here this scheme with a mathematical reduction method, 
called Reduced Static-Checksum Table Approach, could 
improve coding performance. We used Reed Solomon 
codes which are designed according to characteristics of 
advanced RAID systems to handle two disk failures in 
RAID system. Also, this scheme performs all 
computations with only simple exclusive-OR (XOR) 
operators just the same as Even-Odd codes. This new 
XOR-based RS codes could adapt to implementation in 
terms of improving reliability and flexibility.

1. Introduction

  In storage systems, especially for large disk arrays, 
reliability is getting critical while storage systems scale up.  
In [1], it has been demonstrated that disk failures would be 
a daily event in petabyte-scale file systems.  So, how to 
improve the capability of detecting or even correcting 
failures has been a significant issue for large storage 
systems.  RAID systems which could be classified from 
level 0 to 6 are commonly used to achieve this issue.  
Unlike other levels, RAID level 6, or so-called RAID 6, 
not only provide correcting capability, but also could 
recover at least two disk failures simultaneously.  Usually 
each specific algorithm in RAID 6 performs a particular 
parities distribution [2].  Over the last two decades, lots of 
erasure-correcting codes’ algorithms in RAID 6 have been 
proposed such as Even-Odd codes [3], Reed-Solomon (RS) 
codes [4], and X-codes [5]. 

RS code, a very popular error control code, has been 
studied in various applications, especially in 
communication systems [6].  Also, researchers have 
suggested some RS based solutions to avoid hazards 
happening in RAID-like systems [7-10], but those 
schemes might not be suitable to meet the desire of 
recovering system as quick as Even-Odd codes. 
Therefore, in this paper, we present an XOR-based RS 
codec scheme, which uses a reduced static-checksum table 
approach, to manipulate the erasures-only hazard.  
Basically, in this new scheme, it is similar to the 
conventional RS codec algorithm [4] that involves pipeline 
procedure, which consists of Syndrome Calculation (SC), 

Key Equation Solver (KES), Chien Search (CS), and 
Forney Algorithm (FA), but without involving the portions 
of either KES or CS.  Both KES and CS are used to locate 
errors and need extra cost of finite field operators.  For the 
erasure-only RAID system, system controller is not 
necessary to locate such errors since the individual disk 
devices have their own error-control coding mechanisms 
to recover from errors [2].  Moreover, usually in large disk 
arrays, failures of a single storage device could be detected 
by the storage system controllers and then could be 
marked as well [11].  Since device failures can be marked 
as erasures, erasure-correcting codes are usually employed 
to achieve the information recovery, the failed data in 
disks can be recovered and system still can work as usual 
without broken. Compared with the traditional RS codec 
scheme, a simpler scheme is proposed in this paper in 
terms of less cost, improving flexibility and reliability. The 
rest of this paper is organized as follows.  Section 2 
describes general ideas in our encoding algorithm for the 
erasure-only RS-RAID system and the main feature of our 
scheme, called reduced static-checksum table approach, is 
suggested as well.  Our decoding approach will be shown 
in Section 3.  Section 4 gives results of performance 
analysis and also a comparison in the number of XOR 
operations with the Even-Odd, the traditional RS-RAID 
structure, and the XOR-based RS code as well. The 
Hardware implementation of the proposed RS 
decoder/encoder is described in Section 5. Finally, Section 
6 gives the conclusions.

2. RS-RAID Encoder  
 The encoding procedure in our scheme not only 

follows the rules of a mapping with systematic codes, but 
also builds a look-up table with an aspect of the constant 
multiplier.  A mapping, in most RS encoders, and the 
encoder usually generates systematic codes, namely, 
message bits of a symbol could be presented explicitly in 
its corresponding codeword.  Equation )()( xbxcw

knxxm )(  shows a result after applying the systematic 

coding method, where cw(x), b(x), and m(x) are codeword, 
checksum and message respectively. W is the codeword 
length in the RS code [8]. If W=4, there could be 4 
checksum drives and 11 data drives in this system, i.e. 
b(x)={C1, C2, C3, C4} and m(x)={D1 , D2 , D3 , ……. , 
D10 , D11}. 
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2.1 Basic Scheme in RS Encoding  

The RS code is a class of linear block codes [4], so its 
computation must satisfy a linear property, that is to say, 
we can treat each data symbol (drive) independently.  In 
other words, any change in each data drive would affect 
checksum symbols (drives) independently.  Here, we 
deduce the linear property of our RS-RAID model using 
constant multipliers as follows: 

g(x))mod(xm

g(x))mod(xmg(x))mod(xm

g(x))modm(x
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For that reason, the effect of each data symbol (drive) 
could be computed separately to see how it works to 
checksum symbols first. Then the complete checksum 
symbols must be computed by accumulating the effects of 
all independent drives. 

Algorithm for Building Checksum Symbols (Encoding 
Procedure): 

Step 1. Premultiply (or shift) the message polynomial 
m(x) by xn-k.

Step 2. Construction of a static-checksum table: 
Computing the item: [mix

n-k mod g(x)], where each mi

equals to multiplicative identity: 1 in GF(x), would know 
what the effect is in each location (drive). 

Step 3. By using the table we built in Step 2, checksum 
symbols b(x) would be obtained by multiplying all values 
of static-checksum table by the practical value of m(x).  It 
can be presented as ))(mod(0 xgxm kn

))(mod( 1
1 xgxm kn .We are able to easily apply the 

constant multiplier to operate all computations after 
constructing the static-checksum table, because all values 
of the constant table from Step 2 are fixed. 

2.2 Reduced Static-Checksum Table Approach  

The encoding process is still very crucial due to operating 
too many XOR gates, even after constructing the previous 
look-up table.  Therefore, a further work to reduce the 
number of required XOR gates during the encoding 
process is proposed in this paper.  In case of GF(24 ), for 
example, applying the aspects of constant multipliers with 
only a variable could build a table, called constant- 
multiplier- coefficient table ( abbreviated as CMC table), 
as Table 1, where 3

4
2

321 aaaaA

is the variable with 4 coefficients 41 ~ aa , and '~' 41 aa

are coefficients of A’ which is generated after being 

multiplied by z , where z = 0 14: 

Table 1. The constant- multiplier- coefficient table 

 Now, if we take a generator polynomial: 

,

with a 
capability to tolerate up to two erasures, the checksums 
b(x)=C2x+C1 could be shown as Table 2.In order to obtain 
the sixth column, which indicates as the number of XOR 
operations after the reduction, in Table 2, our approach 
consists of following steps: 

Step 1. For each location of the static-checksum table, 
first, two values of checksums, C1 and C2, are marked.  
And then in the CMC table, i.e. Table 1, each marked 
value could be represented as 4 parts of a single row. 

Step 2. Comparing each part of the two rows, there might 
be some common terms in both rows, which we marked in 
Step1.  If so, we could reduce half of these common terms 
until there is no more common term between both rows. 

Step 3. Finally, the value of the sixth column in Table 2 
can be accumulated by the rest of XOR operations in each 
part of the two marked rows in Table 1. 
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Table 2. The reduced static-checksum table with m(x) = 1 

For instance, to reduce location D2 in the Static-
Checksum Table 

Step 1. C1=
5 and C1=

10, therefore, we marked the 
rows  A* 5 and  A* 10.

Step 2. Through comparing the following two marked 
rows,

as we can see, 
43 aa ,

31 aa , 421 aaa , and 

32 aa  are all the common terms between the two rows.  

Hence, after applying this approach, the total XOP 
operations could be reduced by 5 XOR operations. 

Step 3.  The number of required XOR operations after 
processing step 2 is 14-5 = 9. 

Besides, this scheme applies the shortened code 
method as well to achieve a better performance on coding 
process [4].  With this method, active drives are placed on 
some exact locations first.  This disk location arrangement 
is based on which disk costs fewer XOR-gates after our 
reducing approach.  That is to say, in the case of Table 2, 
to reach higher performance of computations, the 
locations must be arranged with the order, D8, D13, D1, 
D9, etc. 

Let’s assume that a message polynomial, m(x)=
4x4, has to be stored into an empty RS-RAID in GF(24 ).  
And all data in checksum drives could be computed as 
follows: B , from the location D1, x2 of the Table 2, 

we could put data *  and 4*  into two checksum 

drives separately.  Similarly, by 4 , from D5, x6 in Table 
2, the stored data of the two checksum drives 
are 74 * and 94 * .  Therefore, values stored in the 
two checksum-drives after the above processes are: 

C1= )*()*( 74 = 9

C2= )*()*( 944 = 7

Figure 1 illustrates data placement in our RS-RAID 
system, where C1 and C2 are checksum drives, D1 D13
are data drives, and for each column, values of the second 
row are corresponding symbols to their binary values. 

Figure 1. Data allocation in RS-RAID System with 
Shortened Code method 

3. RS-RAID Decoder  
In this section, two cases of decoding algorithm are 

discussed over GF(24 ), and they are carried out by a 
solving equations method, called crammer rule, directly. 

3.1 Single Failed Disk 
We take 1 to be one of the roots with consecutive 

powers in our generator polynomial, i.e., g(x)=(x- 0)(x-
1).  Therefore, in the case of single failed disk condition, 

the decoding would be performed as easily as the parity 
scheme of the RAID level 5.  From the equation: Failed-
Drive= S0= (All Normal Drives), recovering the failed 
disk needs only to do XOR operations in the rest of active 
disks together. Assuming that only the data-drive D1 has 
been erased as Figure 2. 

Figure2. A RAID with only a failed disk 

The original information of D1 could be recovered as: 

D(1,1)=C(1,1)+C(2,1)+D(5,1)=0+1+1=0
D(1,3)=C(1,3)+C(2,3)+D(5,3)=0+0+0= 0

D(1,2)=C(1,2)+C(2,2)+D(5,2)=1+1+1=1
D(1,4)=C(1,4)+C(2,4)+D(5,4)=1+1+0= 0 . 

3.2 Two Failed Disks at the Same Time 
In this case, in order to recover two disks which 

simultaneously fail, the decoding procedure in our scheme 
could be treated as solving a simultaneous linear  equation 
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with two unknown variables.  Here the matrix form of this 
equation is as follows. 

1

011

S

S

B

A
ji

, where i and j are both the very positions of the two failed 
disks in this condition, and then syndrome: 

kz
Z

n

z
kS cw

1

0

 is computed from all normal drives.         

By the crammer rule, the two variables, A and B, could be 
represented as follows respectively: 

ji

j SS
A 10  ,         

ji

i SS
B 10 . (2) 

    Furthermore, applying the same idea of the CMC table 
to build a table fulfilled with inverse-elements of 

( ji ) in advance would be more efficient.  This 
table can avoid the extra cost of implementation on 
designing an ALU. In the circuit implementation: 

0S could be computed through XOR all the normal drives. 

For the syndrome 1S , if the implementation of 1S ’s

hardware must be an VLSI chip, it could share the same 
hardware with the encoder designed, both of them could 
share the same circuit of the multiplier.  

4. Results and Comparisons 

In order to demonstrate how the encoding performance of 
our XOR-based RS algorithm is, we implement both CMC 
table and reduced static-checksum table in GF(28 ) to 
count the total number of XOR operators.  Besides, a disk 
drive set {7, 11, 13, 17, 23, 29, 31, 41, 43} is our 
experimental example. Here, Figure 3 shows 
corresponding curves to Table 3. 

Table 3. # of XOR gates while encoding with the XOR-
based RS, the conventional RS and the Even-Odd codes 

# of Disk 
Drives

Even-
Odd

codes  

XOR based 
Reed-

Solomon 
codes 

Conventional 
Reed-Solomon 

codes 

7
11
13
17
23
29
31
41
43

664 
1752 
2488 
4344 
8088 

12948 
14872 
26232 
28888 

1068 
3020 
4392 
7968 

15554 
25704 
29700 
54200 
60018 

954 
3250 
5112 

10624 
24442 
46648 
56250 

124000 
142002 

From both Table 3 and Figure 3, we can see, the Even-
Odd codes perform a more efficient encoding capability 

than what the XOR-based RS code does.  However our 
approach indeed needs less XOR operators than the 
conventional RS codes did in [3]. 

Figure 3. Curves plotted by the # of XOR gates while 
encoding with the XOR-based RS, the conventional RS 

and the Even-Odd code.

Moreover, here Figure 4 shows that traditionally Even-
Odd codes need to be implemented by coding through a 3-
dimension structure while our algorithm can be easily 
implemented through a 2-dimension array structure.  For 
Figure 4, if there is a byte data changed, we need to deal 
with eight codewords from Page 0 to Page 7.  Therefore, 
the data update might be an overhead to Even-Odd codes, 
but it does not happen in our scheme because we chose 8 
bits to be the length of a codeword in the 2D array 
structure. 

Figure 4. The 3-dimension structure of Even-Odd 
implementation ( 8n )

In order to compare RS codes with Even-Odd codes, 
we use Even-Odd codes proposed in [3] directly, which 
encodes (m-1) bytes/disk and m data drives, and the 
estimated number of this Even-Odd code is 
8 )122( 2 mm . That is there are m*(m-1) bytes will 

be encoded. In order to process the same amount of data, 
we multiply the data above by (m-1) directly, and the 
amount of data is also equal to m*(m-1) bytes. The 
comparisons are listed as follows. 

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05) 
0-7695-2281-5/05 $20.00 © 2005 IEEE 



Figure 5. The number of XOR gates to encode m*(m-1) 
bytes 

Apparently, the calculating speed of RS code is slower 
than Even-Odd codes. If there are 5 to 253 hard disks, the 
calculation amount is from 1.4 to 2.75. However, the main 
point mentioned here is that from the coding framework, 
Reed Solomon codes proposed in the paper can process 
data in parallel. That is because the encoding process of 
the proposed Reed Solomon Code can calculate the effects 
of each data drive to checksum drives respectively. Finally, 
we add the effects of each data drive to checksum drives. 
Hence, the framework is suitable for parallel processing. 
Therefore, calculating process can be speeded up and time 
can be saved 

Table 4. A comparison sheet between RS code and Even-

Odd codes 

 Reed Solomon 

codes 

Even-Odd codes 

MDS code Yes Yes 
Calculating 
Complexity 

Medium Easy 

Encoding 
Mapping is easy 
and intuitive 

Mapping is done in tree 
dimension, hard to do 
data addressing. 

Decoding Processes are 
simple 

large amount of buffers 
(memory) 

Flexibility Yes Yes 
Frameworks Parallel process Multi-array parallel 

process 
Update 
complexity 

# of checksum 
drives

>2 

Fault-
tolerant 
capability 

Design free Only 2 

5. Hardware Implementation of This RS-
RAID Codec 

In this section, we use Altera Stratix FPGA Device 
(EP1S10F484C5) to implement RS Codec, Figure 6. is the 
Functional Diagram. 

Codec
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 Figure 6. GF(24 ) Codec functional diagram 

5.1 The Encoder Block 
In the encoder block, we create a “const_MUL” 

module (a multiplication table ) that will help to generate 
the checksum data ( C1, C2) as soon as there is any data 
written to Hard Drive. 
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/

/
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4
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4

4

/

/
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 Figure 7. Encoder block diagram 

5.2 The decoder block 

The decoder block includes two sub modules: 
(a) FSM_decoder: It is a State Machine to control the 

data path for even one or two Hard Drive data errors. 
(b) datapath: The data path is the function(P-G-Z 
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algorithmic) to calculate the correct data with C1 ,C2 
and other correct Hard Drive Data when there is any 
Hard Drive Data failed. 

 data_1A : The correct data of the failed 
hard drive; 

 data_2A , data_2AB: The two correct data 
of the 2 failed hard drives. 

clk

/

nrst

wr_en

data

wr_done

drive_no

C1 /

/

/

C2

fail

fail_no

FSM_decoder

datapath

data_1A

data_2B

data_2A

data_1A

data_2A

data_2B

4

/
4

4

4

2

/

/

/

4

4

4

en_1i

en_1A
en_2i
en_2j

en_S0
en_S1
en_2A
en_2B

Figure 8. Decoder block diagram 

During the FPGA implementation, we will use the 
EDA Tools in Table 5. 

Table 5. EDA Tools 

During the FPGA Implementation, we will use the 
EDA Tools in Table5. The detail is described as follows: 

(a) RTL Coding: We use Verilog HDL to create all the 
design files. 

(b) Function Simulation: Use ModelSim to verify the 
Codec design function. 

(c) Synthesis and P&R: Use QuartusII to map the Verilog 
HDL format to Altera Atmos format netlist, and 
perform the Timing Analyzing. 

(d) Timing Simulation: Use ModelSim to verify the 
Codec design Timing. 

(e) Power Estimation: Use QuartusII to estimate the 
internal and I/O power. 

Fig 9. FPGA floorplan

Table 6. Pin name description 

Tool Name Function Description 

Text Editor RTL Coding 

ModelSim Function and Timing Simulatiom 

Quartus II 
Altera FPGA Compiler for Synthesis, 
P&R,Timing Analyzing and Power 
Estimation 

Pin name I/O Description 

clk I System Clock 

nrst I Reset Signal 

wr_en I Write Enable Signal 

wr_done I Write Done Signal 

drive_no I Hard Drive No for Write Data 

data I Data for Write to Hard Drive 

fail I Hard Drive Fail Signal 

fail_no I Failed Hard Drive No 

C1 O Encoder Checksum Data1 

C2 O Encoder Checksum Data2 

data_1A O Decoder Recovery Data 

data_2A O Decoder Recovery Data1 

data_2B O Decoder Recovery Data2 

fail[0]
fail[1]

fail_no[0] fail no[2]

fail no[3]

data 1A[0]
data 1A[1]
data 1A[2]
data 1A[3]

data 2A[0]
data 2A[1]
data 2A[2]
data 2A[3]

data 2B[0]
data 2B[1]
data 2B[2]
data 2B[3]

C1[1]
C1[0] C1[2]

C1[3]
C2[0]

C2[1] C2[3]
C2[2]

fail_no[1]

clk
nrst

wr en

wr_done
data no[0]

data[0]

data no[1]
data no[2]

data no[3]

data[1]
data[2]
data[3]
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Table 7 Summarizes chip characteristics and clarifies 
whether the structure owns the feature of power efficiency. 

Table 7. Chip characteristics 

Device : EP1S10F484C5

Total logic elements 1,511 

Actual Time 108.66 MHz ( period 

= 9.203 ns ) 

Simulation End Time 9.0 us 

Simulation Netlist Size 1576 nodes 

Total Number of Transitions 4022 

Total Power 114.48 mW 

5.3 Simulation Waveform 

(A) Encoder
If m(x) = 

Write D1: 0100; D5: 1100. Then results are C1: 0101; C2: 
1101, as shown in Figure 10 

Figure 10. Encoder simulation waveform 

(B) Decoder 
If 5th Hard Drive (Drive_NO:4) fail, then the encoder 

will calculate the correct data (DATA_1A:1100) with all 
other Hard Drive data and C1, C2. as shown in Figure 11. 

Figure 11. Decoder simulation waveform 

6. Conclusion 
  In this paper, we proposed an XOR-only RS-RAID 
algorithm with two auxiliary tables, the CMC table and 
the reduced static-checksum table, which not only 
constructing the XOR-based RS algorithm, but also 
speeding our scheme up. The above features also make 
those advanced RAID systems with our scheme be carried 
out by merely using regular industrial RAID level 5 
controllers, which are capable of performing the XOR 
calculations very well.  Therefore a lower cost controller 
could be applied in our RAID 6 algorithm in stead of a 
specific designed controller, which usually cost a lot, 
needed in other RAID 6 algorithms. We proposed an 
XOR-only RS-RAID algorithm to optimize the coding 
circuits is suitable for RAID Systems applications where 
the accuracy, power, speed, and area issues are crucial. 
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