
This research was supported by the Ministry of Economics, Taiwan under contract number 93-EC-17-A-08-S1-0006

An Area-Efficient Architecture of Reed-Solomon Codec for Advanced
RAID Systems

Min-An Song, I-Feng Lan, and Sy-Yen Kuo

Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
E-mail: sykuo@cc.ee.ntu.edu.tw

Abstract
In this paper, a simple codec algorithm based on Reed-

Solomon (RS) codes is proposed for erasure correcting in
RAID level 6 systems. Unlike conventional RS codes,
here this scheme with a mathematical reduction method,
called Reduced Static-Checksum Table Approach, could
improve coding performance. We used Reed Solomon
codes which are designed according to characteristics of
advanced RAID systems to handle two disk failures in
RAID system. Also, this scheme performs all
computations with only simple exclusive-OR (XOR)
operators just the same as Even-Odd codes. This new
XOR-based RS codes could adapt to implementation in
terms of improving reliability and flexibility.

1. Introduction

 In storage systems, especially for large disk arrays,
reliability is getting critical while storage systems scale up.
In [1], it has been demonstrated that disk failures would be
a daily event in petabyte-scale file systems. So, how to
improve the capability of detecting or even correcting
failures has been a significant issue for large storage
systems. RAID systems which could be classified from
level 0 to 6 are commonly used to achieve this issue.
Unlike other levels, RAID level 6, or so-called RAID 6,
not only provide correcting capability, but also could
recover at least two disk failures simultaneously. Usually
each specific algorithm in RAID 6 performs a particular
parities distribution [2]. Over the last two decades, lots of
erasure-correcting codes’ algorithms in RAID 6 have been
proposed such as Even-Odd codes [3], Reed-Solomon (RS)
codes [4], and X-codes [5].

RS code, a very popular error control code, has been
studied in various applications, especially in
communication systems [6]. Also, researchers have
suggested some RS based solutions to avoid hazards
happening in RAID-like systems [7-10], but those
schemes might not be suitable to meet the desire of
recovering system as quick as Even-Odd codes.
Therefore, in this paper, we present an XOR-based RS
codec scheme, which uses a reduced static-checksum table
approach, to manipulate the erasures-only hazard.
Basically, in this new scheme, it is similar to the
conventional RS codec algorithm [4] that involves pipeline
procedure, which consists of Syndrome Calculation (SC),

Key Equation Solver (KES), Chien Search (CS), and
Forney Algorithm (FA), but without involving the portions
of either KES or CS. Both KES and CS are used to locate
errors and need extra cost of finite field operators. For the
erasure-only RAID system, system controller is not
necessary to locate such errors since the individual disk
devices have their own error-control coding mechanisms
to recover from errors [2]. Moreover, usually in large disk
arrays, failures of a single storage device could be detected
by the storage system controllers and then could be
marked as well [11]. Since device failures can be marked
as erasures, erasure-correcting codes are usually employed
to achieve the information recovery, the failed data in
disks can be recovered and system still can work as usual
without broken. Compared with the traditional RS codec
scheme, a simpler scheme is proposed in this paper in
terms of less cost, improving flexibility and reliability. The
rest of this paper is organized as follows. Section 2
describes general ideas in our encoding algorithm for the
erasure-only RS-RAID system and the main feature of our
scheme, called reduced static-checksum table approach, is
suggested as well. Our decoding approach will be shown
in Section 3. Section 4 gives results of performance
analysis and also a comparison in the number of XOR
operations with the Even-Odd, the traditional RS-RAID
structure, and the XOR-based RS code as well. The
Hardware implementation of the proposed RS
decoder/encoder is described in Section 5. Finally, Section
6 gives the conclusions.

2. RS-RAID Encoder
 The encoding procedure in our scheme not only

follows the rules of a mapping with systematic codes, but
also builds a look-up table with an aspect of the constant
multiplier. A mapping, in most RS encoders, and the
encoder usually generates systematic codes, namely,
message bits of a symbol could be presented explicitly in
its corresponding codeword. Equation)()(xbxcw

knxxm)(shows a result after applying the systematic

coding method, where cw(x), b(x), and m(x) are codeword,
checksum and message respectively. W is the codeword
length in the RS code [8]. If W=4, there could be 4
checksum drives and 11 data drives in this system, i.e.
b(x)={C1, C2, C3, C4} and m(x)={D1 , D2 , D3 , ……. ,
D10 , D11}.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

2.1 Basic Scheme in RS Encoding

The RS code is a class of linear block codes [4], so its
computation must satisfy a linear property, that is to say,
we can treat each data symbol (drive) independently. In
other words, any change in each data drive would affect
checksum symbols (drives) independently. Here, we
deduce the linear property of our RS-RAID model using
constant multipliers as follows:

g(x))mod(xm

g(x))mod(xmg(x))mod(xm

g(x))modm(x

g(x))modm(xg(x))modm(x

g(x)mod)xmxmxm(mx

g(x)modm(x)xb(x)

1-n
1-k

1k-n
1

k-n
0

1-k
1-n

1
1k-n

0
k-n

1-k
1-k

2
210

k-n

k-n

 (1)

For that reason, the effect of each data symbol (drive)
could be computed separately to see how it works to
checksum symbols first. Then the complete checksum
symbols must be computed by accumulating the effects of
all independent drives.

Algorithm for Building Checksum Symbols (Encoding
Procedure):

Step 1. Premultiply (or shift) the message polynomial
m(x) by xn-k.

Step 2. Construction of a static-checksum table:
Computing the item: [mix

n-k mod g(x)], where each mi

equals to multiplicative identity: 1 in GF(x), would know
what the effect is in each location (drive).

Step 3. By using the table we built in Step 2, checksum
symbols b(x) would be obtained by multiplying all values
of static-checksum table by the practical value of m(x). It
can be presented as))(mod(0 xgxm kn

))(mod(1
1 xgxm kn .We are able to easily apply the

constant multiplier to operate all computations after
constructing the static-checksum table, because all values
of the constant table from Step 2 are fixed.

2.2 Reduced Static-Checksum Table Approach

The encoding process is still very crucial due to operating
too many XOR gates, even after constructing the previous
look-up table. Therefore, a further work to reduce the
number of required XOR gates during the encoding
process is proposed in this paper. In case of GF(24), for
example, applying the aspects of constant multipliers with
only a variable could build a table, called constant-
multiplier- coefficient table (abbreviated as CMC table),
as Table 1, where 3

4
2

321 aaaaA

is the variable with 4 coefficients 41 ~ aa , and '~' 41 aa

are coefficients of A’ which is generated after being

multiplied by z , where z = 0 14:

Table 1. The constant- multiplier- coefficient table

 Now, if we take a generator polynomial:

,

with a
capability to tolerate up to two erasures, the checksums
b(x)=C2x+C1 could be shown as Table 2.In order to obtain
the sixth column, which indicates as the number of XOR
operations after the reduction, in Table 2, our approach
consists of following steps:

Step 1. For each location of the static-checksum table,
first, two values of checksums, C1 and C2, are marked.
And then in the CMC table, i.e. Table 1, each marked
value could be represented as 4 parts of a single row.

Step 2. Comparing each part of the two rows, there might
be some common terms in both rows, which we marked in
Step1. If so, we could reduce half of these common terms
until there is no more common term between both rows.

Step 3. Finally, the value of the sixth column in Table 2
can be accumulated by the rest of XOR operations in each
part of the two marked rows in Table 1.

xx

xx

xxxg

42

2

10

)1(

))(()(

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

Table 2. The reduced static-checksum table with m(x) = 1

For instance, to reduce location D2 in the Static-
Checksum Table

Step 1. C1=
5 and C1=

10, therefore, we marked the
rows A* 5 and A* 10.

Step 2. Through comparing the following two marked
rows,

as we can see,
43 aa ,

31 aa , 421 aaa , and

32 aa are all the common terms between the two rows.

Hence, after applying this approach, the total XOP
operations could be reduced by 5 XOR operations.

Step 3. The number of required XOR operations after
processing step 2 is 14-5 = 9.

Besides, this scheme applies the shortened code
method as well to achieve a better performance on coding
process [4]. With this method, active drives are placed on
some exact locations first. This disk location arrangement
is based on which disk costs fewer XOR-gates after our
reducing approach. That is to say, in the case of Table 2,
to reach higher performance of computations, the
locations must be arranged with the order, D8, D13, D1,
D9, etc.

Let’s assume that a message polynomial, m(x)=
4x4, has to be stored into an empty RS-RAID in GF(24).
And all data in checksum drives could be computed as
follows: B , from the location D1, x2 of the Table 2,

we could put data * and 4* into two checksum

drives separately. Similarly, by 4 , from D5, x6 in Table
2, the stored data of the two checksum drives
are 74 * and 94 * . Therefore, values stored in the
two checksum-drives after the above processes are:

C1=)*()*(74 = 9

C2=)*()*(944 = 7

Figure 1 illustrates data placement in our RS-RAID
system, where C1 and C2 are checksum drives, D1 D13
are data drives, and for each column, values of the second
row are corresponding symbols to their binary values.

Figure 1. Data allocation in RS-RAID System with
Shortened Code method

3. RS-RAID Decoder
In this section, two cases of decoding algorithm are

discussed over GF(24), and they are carried out by a
solving equations method, called crammer rule, directly.

3.1 Single Failed Disk
We take 1 to be one of the roots with consecutive

powers in our generator polynomial, i.e., g(x)=(x- 0)(x-
1). Therefore, in the case of single failed disk condition,

the decoding would be performed as easily as the parity
scheme of the RAID level 5. From the equation: Failed-
Drive= S0= (All Normal Drives), recovering the failed
disk needs only to do XOR operations in the rest of active
disks together. Assuming that only the data-drive D1 has
been erased as Figure 2.

Figure2. A RAID with only a failed disk

The original information of D1 could be recovered as:

D(1,1)=C(1,1)+C(2,1)+D(5,1)=0+1+1=0
D(1,3)=C(1,3)+C(2,3)+D(5,3)=0+0+0= 0

D(1,2)=C(1,2)+C(2,2)+D(5,2)=1+1+1=1
D(1,4)=C(1,4)+C(2,4)+D(5,4)=1+1+0= 0 .

3.2 Two Failed Disks at the Same Time
In this case, in order to recover two disks which

simultaneously fail, the decoding procedure in our scheme
could be treated as solving a simultaneous linear equation

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

with two unknown variables. Here the matrix form of this
equation is as follows.

1

011

S

S

B

A
ji

, where i and j are both the very positions of the two failed
disks in this condition, and then syndrome:

kz
Z

n

z
kS cw

1

0

 is computed from all normal drives.

By the crammer rule, the two variables, A and B, could be
represented as follows respectively:

ji

j SS
A 10 ,

ji

i SS
B 10 . (2)

 Furthermore, applying the same idea of the CMC table
to build a table fulfilled with inverse-elements of

(ji) in advance would be more efficient. This
table can avoid the extra cost of implementation on
designing an ALU. In the circuit implementation:

0S could be computed through XOR all the normal drives.

For the syndrome 1S , if the implementation of 1S ’s

hardware must be an VLSI chip, it could share the same
hardware with the encoder designed, both of them could
share the same circuit of the multiplier.

4. Results and Comparisons

In order to demonstrate how the encoding performance of
our XOR-based RS algorithm is, we implement both CMC
table and reduced static-checksum table in GF(28) to
count the total number of XOR operators. Besides, a disk
drive set {7, 11, 13, 17, 23, 29, 31, 41, 43} is our
experimental example. Here, Figure 3 shows
corresponding curves to Table 3.

Table 3. # of XOR gates while encoding with the XOR-
based RS, the conventional RS and the Even-Odd codes

of Disk
Drives

Even-
Odd

codes

XOR based
Reed-

Solomon
codes

Conventional
Reed-Solomon

codes

7
11
13
17
23
29
31
41
43

664
1752
2488
4344
8088

12948
14872
26232
28888

1068
3020
4392
7968

15554
25704
29700
54200
60018

954
3250
5112

10624
24442
46648
56250

124000
142002

From both Table 3 and Figure 3, we can see, the Even-
Odd codes perform a more efficient encoding capability

than what the XOR-based RS code does. However our
approach indeed needs less XOR operators than the
conventional RS codes did in [3].

Figure 3. Curves plotted by the # of XOR gates while
encoding with the XOR-based RS, the conventional RS

and the Even-Odd code.

Moreover, here Figure 4 shows that traditionally Even-
Odd codes need to be implemented by coding through a 3-
dimension structure while our algorithm can be easily
implemented through a 2-dimension array structure. For
Figure 4, if there is a byte data changed, we need to deal
with eight codewords from Page 0 to Page 7. Therefore,
the data update might be an overhead to Even-Odd codes,
but it does not happen in our scheme because we chose 8
bits to be the length of a codeword in the 2D array
structure.

Figure 4. The 3-dimension structure of Even-Odd
implementation (8n)

In order to compare RS codes with Even-Odd codes,
we use Even-Odd codes proposed in [3] directly, which
encodes (m-1) bytes/disk and m data drives, and the
estimated number of this Even-Odd code is
8)122(2 mm . That is there are m*(m-1) bytes will

be encoded. In order to process the same amount of data,
we multiply the data above by (m-1) directly, and the
amount of data is also equal to m*(m-1) bytes. The
comparisons are listed as follows.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

Figure 5. The number of XOR gates to encode m*(m-1)
bytes

Apparently, the calculating speed of RS code is slower
than Even-Odd codes. If there are 5 to 253 hard disks, the
calculation amount is from 1.4 to 2.75. However, the main
point mentioned here is that from the coding framework,
Reed Solomon codes proposed in the paper can process
data in parallel. That is because the encoding process of
the proposed Reed Solomon Code can calculate the effects
of each data drive to checksum drives respectively. Finally,
we add the effects of each data drive to checksum drives.
Hence, the framework is suitable for parallel processing.
Therefore, calculating process can be speeded up and time
can be saved

Table 4. A comparison sheet between RS code and Even-

Odd codes

 Reed Solomon

codes

Even-Odd codes

MDS code Yes Yes
Calculating
Complexity

Medium Easy

Encoding
Mapping is easy
and intuitive

Mapping is done in tree
dimension, hard to do
data addressing.

Decoding Processes are
simple

large amount of buffers
(memory)

Flexibility Yes Yes
Frameworks Parallel process Multi-array parallel

process
Update
complexity

of checksum
drives

>2

Fault-
tolerant
capability

Design free Only 2

5. Hardware Implementation of This RS-
RAID Codec

In this section, we use Altera Stratix FPGA Device
(EP1S10F484C5) to implement RS Codec, Figure 6. is the
Functional Diagram.

Codec
Encoder

Decoder

/

/

clk

nrst

wr_en

wr_done

drive_no

data

/

fail

fail_no

clk

nrst

wr_en

wr_done

drive_no

data

clk
nrst

fail

fail_no

C1

C2

C1

C2

/

/

/

C1

C2

data_2B

data_2A

data_1A

4

4

4

4

4

/

/
4

4

2

 Figure 6. GF(24) Codec functional diagram

5.1 The Encoder Block
In the encoder block, we create a “const_MUL”

module (a multiplication table) that will help to generate
the checksum data (C1, C2) as soon as there is any data
written to Hard Drive.

clk

/

/

nrst

wr_en

wr_done

drive_no

data

D1

D2

D12

D13

0100

0000

1101

0110

const_MUL

const_MUL

const_MUL

const_MUL

C1_d1_new

C2_d1_new

C1_d13_new

C2_d13_new

Xor

Xor

C1_d1_new

C1_d13_new

C2_d1_new

C2_d13_new

C1

C2

C1

C2

4

4

4

4

/

/

C1

C2

 Figure 7. Encoder block diagram

5.2 The decoder block

The decoder block includes two sub modules:
(a) FSM_decoder: It is a State Machine to control the

data path for even one or two Hard Drive data errors.
(b) datapath: The data path is the function(P-G-Z

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

algorithmic) to calculate the correct data with C1 ,C2
and other correct Hard Drive Data when there is any
Hard Drive Data failed.

 data_1A : The correct data of the failed
hard drive;

 data_2A , data_2AB: The two correct data
of the 2 failed hard drives.

clk

/

nrst

wr_en

data

wr_done

drive_no

C1 /

/

/

C2

fail

fail_no

FSM_decoder

datapath

data_1A

data_2B

data_2A

data_1A

data_2A

data_2B

4

/
4

4

4

2

/

/

/

4

4

4

en_1i

en_1A
en_2i
en_2j

en_S0
en_S1
en_2A
en_2B

Figure 8. Decoder block diagram

During the FPGA implementation, we will use the
EDA Tools in Table 5.

Table 5. EDA Tools

During the FPGA Implementation, we will use the
EDA Tools in Table5. The detail is described as follows:

(a) RTL Coding: We use Verilog HDL to create all the
design files.

(b) Function Simulation: Use ModelSim to verify the
Codec design function.

(c) Synthesis and P&R: Use QuartusII to map the Verilog
HDL format to Altera Atmos format netlist, and
perform the Timing Analyzing.

(d) Timing Simulation: Use ModelSim to verify the
Codec design Timing.

(e) Power Estimation: Use QuartusII to estimate the
internal and I/O power.

Fig 9. FPGA floorplan

Table 6. Pin name description

Tool Name Function Description

Text Editor RTL Coding

ModelSim Function and Timing Simulatiom

Quartus II
Altera FPGA Compiler for Synthesis,
P&R,Timing Analyzing and Power
Estimation

Pin name I/O Description

clk I System Clock

nrst I Reset Signal

wr_en I Write Enable Signal

wr_done I Write Done Signal

drive_no I Hard Drive No for Write Data

data I Data for Write to Hard Drive

fail I Hard Drive Fail Signal

fail_no I Failed Hard Drive No

C1 O Encoder Checksum Data1

C2 O Encoder Checksum Data2

data_1A O Decoder Recovery Data

data_2A O Decoder Recovery Data1

data_2B O Decoder Recovery Data2

fail[0]
fail[1]

fail_no[0] fail no[2]

fail no[3]

data 1A[0]
data 1A[1]
data 1A[2]
data 1A[3]

data 2A[0]
data 2A[1]
data 2A[2]
data 2A[3]

data 2B[0]
data 2B[1]
data 2B[2]
data 2B[3]

C1[1]
C1[0] C1[2]

C1[3]
C2[0]

C2[1] C2[3]
C2[2]

fail_no[1]

clk
nrst

wr en

wr_done
data no[0]

data[0]

data no[1]
data no[2]

data no[3]

data[1]
data[2]
data[3]

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

Table 7 Summarizes chip characteristics and clarifies
whether the structure owns the feature of power efficiency.

Table 7. Chip characteristics

Device : EP1S10F484C5

Total logic elements 1,511

Actual Time 108.66 MHz (period

= 9.203 ns)

Simulation End Time 9.0 us

Simulation Netlist Size 1576 nodes

Total Number of Transitions 4022

Total Power 114.48 mW

5.3 Simulation Waveform

(A) Encoder
If m(x) =

Write D1: 0100; D5: 1100. Then results are C1: 0101; C2:
1101, as shown in Figure 10

Figure 10. Encoder simulation waveform

(B) Decoder
If 5th Hard Drive (Drive_NO:4) fail, then the encoder

will calculate the correct data (DATA_1A:1100) with all
other Hard Drive data and C1, C2. as shown in Figure 11.

Figure 11. Decoder simulation waveform

6. Conclusion
 In this paper, we proposed an XOR-only RS-RAID
algorithm with two auxiliary tables, the CMC table and
the reduced static-checksum table, which not only
constructing the XOR-based RS algorithm, but also
speeding our scheme up. The above features also make
those advanced RAID systems with our scheme be carried
out by merely using regular industrial RAID level 5
controllers, which are capable of performing the XOR
calculations very well. Therefore a lower cost controller
could be applied in our RAID 6 algorithm in stead of a
specific designed controller, which usually cost a lot,
needed in other RAID 6 algorithms. We proposed an
XOR-only RS-RAID algorithm to optimize the coding
circuits is suitable for RAID Systems applications where
the accuracy, power, speed, and area issues are crucial.

References
[1] Qin Xin, E.L. Miller, T. Schwarz, D.D.E. Long, S.A.

Brandt, W. Litwin, “Reliability mechanisms for very large
storage systems”, Mass Storage Systems and Technologies,
2003. (MSST 2003). Proceedings 20th IEEE/11th NASA
Goddard Conference, 7-10 April 2003, pp.146-156.

[2] P.M. Chen, E.K. Lee, G.A. Gibson, R.H. Katz, and D.A.
Patterson, “RAID: High-Performance, Reliability
Secondary Storage”, ACM Computing Surveys, June 1994,
pp. 145-185.

[3] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD:
An efficient scheme for tolerating double disk failures in
RAID architectures”, IEEE Transactions on Comput., Feb.
1995, pp. 192-202.

[4] Irving S. Reed, Xuemin Chen, “Error-Control Coding For
Data Networks”, Kluwer Academic Publishers, 1999.

[5] L. Xu and J. Bruck, “X-code: MDS array codes with
optimal encoding”, IEEE Transactions on Information
Theory, , Jan. 1999 , pp. 272-276.

[6] Telemetry Channel Coding, Recommendation for Space
Data Systems Standards, CCSDS 101.0-B-3, Blue Book,
Issue 3, May 1992.

[7] J.S. Plank, “Correction to the 1997 Tutorial on Reed-
Solomon Coding”, Technical Report UT-CS-03-504,
University of Tennessee, April, 2003.

[8] J.S. Plank, “A tutorial on Reed-Solomon coding for fault-
tolerance in RAID-like systems. Software – Practice&
Experience”, September 1997, 27(9):995–1012.

[9] T.K. Truong, J.H. Jeng, T.C. Cheng, “A New Decoding
Algorithm for Correcting Both Erasures and Errors of
Reed-Solomon Codes”, IEEE Transactions on
Communications, March 2003, pp.381-388.

[10] D.V. Sarwate, N. R. Shanbhag, “High-Speed Architectures
for Reed-Solomon Decoders”, IEEE Transactions on VLSI,
2001, pp.641-655.

[11] Lihao Xu, “Highly Available Distributed Storage Systems”,
Ph.D. Dissertation, 1999.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

