
An On-Line Page-Structure Approximation Scheme for Web Proxies

Jiunn-Jye Lee, Pan-Lung Tsai, and Chin-Laung Lei
Department of Electrical Engineering, National Taiwan University

{jye, charles}@fractal.ee.ntu.edu.tw, lei@cc.ee.ntu.edu.tw

Abstract

To render a Web page, a browser must first download
an HTML document, parse it, and then issue a sequence
of additional requests to fetch the embedded objects ac-
cording to the content of theHTMLdocument.Therefore,
it should be straightforward for Web proxies to accurately
predict future client requests by considering the charac-
teristics of such regular behavior. However, the strong
bindings between embedded objects and their containing
documents are often ignored by modern Web proxies be-
cause there still exists no efficient solution for Web prox-
ies to obtain the knowledge of page structures without per-
forming the computation-intensive operations of HTML
parsing. In this paper, we propose an effective and low-
overhead scheme for Web proxies to approximate page
structures and refine the approximation as new client re-
quests arrive. The results of simulation show that the ap-
proximation converges quickly and reaches high accuracy
after a relatively small number of incoming requests have
been processed.

Keywords: Page structure, embedded object, Web
proxy, lifespan characteristics.

1. Introduction

For many recent Web applications, Web-page struc-
tures are highly associated with clients’ access se-
quences. Taking Web browsing, one of the most popu-
lar applications as an example, when a user clicks on
a link pointing to a Web site, the browser first sends
an HTTP request to the server and waits for the re-
sponse from the server. After retrieving the Web page,
the browser analyzes the page content and transmits
the requests for the embedded objects required for ren-
dering the page to the server. Thus, for a proxy server
located between clients and servers, to predict what
are the remaining parts that clients will request for af-
ter receiving the first few requests may help a lot in

many aspects like caching, prefetching, and content fil-
tering.

It is not difficult for Web servers to obtain the knowl-
edge of the container-embedded object relationships.
However, for a proxy server positioned in the mid-
dle of many clients and many servers, difficulties arise.
First, parsing every incoming Web page is infeasible
for a loaded Web proxy. Matching the prefix of each
request’s URL seems to be a good idea, but the em-
bedded objects may not have the same prefix as the
container does, and, furthermore, even merely pattern
matching still incurs a heavy burden for proxy servers.
Thus, to dig out such information, proxy servers must
adopt other methods.

As a normal Web access, the request sequence ex-
hibits spanning characteristics. That is, after parsing
the container page and retrieving the URLs of the em-
bedded objects, browsers request the Web servers for
these objects. Thus, from the viewpoint of a proxy
server, a request span is observed. According to this
spanning behavior, we focus on the leaf proxy servers
that are deployed closest to the clients and propose a
simple and lightweight scheme to approximate the page
structures. The results of simulations over real proxy
logs show that our scheme can achieve high accuracy
with a fast converging speed.

The rest of the paper is organized as follows. Sec-
tion 2 discusses former researches that have been pro-
posed to improve the performance of Web proxies, and
section 3 explains the proposed scheme in detail. Ex-
perimental results and analysis of our scheme are de-
scribed in section 4. Section 5 concludes the paper.

2. Related Works

The primary difficulty for a proxy server to obtain
Web page structures comes from the interleaving ar-
rival of client requests. The heavy workload limits the
resources a proxy server can use to analyze the Web
page. Thus, to design an on-line page-structure approx-
imation scheme, simplicity and low overhead should be
taken into consideration.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

C
1

C
2

C
3

O
1

O
2

O
3

O
4

O
5

O
6

O
7

P
1

P
2

P
3

Figure 1. Page structures of page P1, P2, and P3.

The Markov-chain model [1][2] is famous in predict-
ing Web access behavior. Subsequent researches based
on this model such as prediction by partial match
(PPM) [3][4], error-pruning methods [5] further im-
prove the prediction accuracy and reduce the space re-
quirement. However, most of these researches focus on
the Web-site link prediction and user access patterns,
rather than single-page structures.

Many researches also focus on identifying user trans-
actions from Web-proxy servers [6][7]. To construct
Web page structures, [8] mines the Web log in an
off-line fashion. Owing to the computation cost, these
works are not suitable for a real-time deployment.

Thus, based on the observation of lifetime behavior
[9] and Web object relationships [10], we propose an
effective and low-overhead scheme for Web proxies to
approximate page structures in an on-line fashion. The
details of the proposed scheme and the simulations are
described in the following sections.

3. The Proposed Scheme

From the proxy server’s point of view, the arrivals
of client requests are interleaved. For example, assume
there exist three clients (A, B, and C) requesting Web
pages (P1, P2, P3) independently. The page structures
are shown in Figure 1, where O3 is an embedded ob-
ject of both P1 and P2, and O5 is embedded in both P2

and P3, respectively. Figure 2(a) illustrates the arrival
sequence of the requests on the proxy server, where
Ci,j represents the container object Ci requested by
the client j and similarly for embedded object Oi,j . To
analyze this sequence, an intuitive thought is to clas-
sify the request according to where they come from.
Thus, the sequence can be divided into three subse-
quences, as shown in Figure 2(b). However, it confuses
the proxy server when trying to find out the page struc-
tures. For example, the server cannot decide whether
object O2,B is embedded in container object C3,B or in
C1,B .

C
1,A

C
2,A

O
1,A

O
2,A

O
3,A

O
4,A

O
5,A

C
1,B

C
3,B

O
3,B

O
3,A

O
2,B

O
1,B

O
6,B

O
7,B

O
5,B

C
2,C

O
3,C

O
4,C

O
5,C

(a) Original access sequence.

C
1,A

C
2,A

O
1,A

O
2,A

O
3,A

O
4,A

O
5,A

C
1,B

C
3,B

O
3,B

O
3,A

O
2,B

O
1,B

O
6,B

O
7,B

O
5,B

C
2,C O

3,C
O

4,C
O

5,C

(b) Three subsequences divided according to the
source addresses of different clients.

Figure 2. An example of subsequence division
with respect to client source addresses.

By concentrating on leaf proxy servers that sit right
in front of a local area network (LAN), we assume uni-
form network latency for each client; that is, the lifes-
pan of fetching a complete Web page does not vary
a lot. The idea used in the proposed scheme, making
use of page structures from chaotic access sequences,
is quite simple: Just include every object seen within the
lifespan, and statistics will tell.

3.1. Notations and Data Structures

As the first step, some parameters and data struc-
tures must be defined. They are listed and explained
in the following paragraph.

Three kinds of nodes are used in our scheme: Em-
bedded Nodes, Container Nodes, and Queue Nodes.
The functionality and the data fields of these nodes
are shown in Figure 3.

Embedded Nodes, abbreviated as ENodes, are used
for storing information of embedded objects. Each
ENode encapsulates an embedded object’s URL (url),
timestamp (t), and client IP address (ip).

For each container object, there exists a corre-
sponding Container Node (CNode) to retain necessary
records. In additional to the same data field as an
ENode’s, the IP address, and embedded count fields,
a CNode maintains an access count (ac), a sliding
window (sw) for relative accesses, and an Embedded
Object Table (EOT). The EOT keeps information of
embedded-object candidates of a CNode, including ref-
erences (en) to the related ENodes, the corresponding
access counts (ac) and sliding windows (sw). How the

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

QNode Q
1

CNode Reference: cn

Timestamp: t

IP Address: ip

Bias Counter: bc

CNode C
1

URL: url

Access Count: ac

Sliding Window: sw

Embedded-Object Table: EOT

ENode E
1

URL: url

Timestamp: t

IP Address: ip

A
cc
es
s
C
ou
nt
: a
c

Sl
id
in
g
W
in
do
w
: s
w

Figure 3. Data structures used in the proposed
scheme and their relationships.

sliding-window field helps will be explained in the next
subsection in detail.

The last type of the nodes, the Queue Nodes
(QNodes), are used to keep track of active con-
tainer objects. A container is considered active if
the time elapsed after the container objects be-
ing requested is smaller than the lifespan (LS). The
data fields a QNode has to keep include a refer-
ence (cn) to the corresponding CNode, a timestamp
(t) that is equal to the arrival time of the request, the
client’s IP address (ip), and a bias counter (bc) that co-
operates with the sliding window of the CNode.

Lifespan(LS) and count threshold(CT) are two
more parameters to be described. The former is a pre-
defined span that represents the life time of QNodes,
and the latter is the lower bound of CNodes ac-
cess counts. Only those CNodes with access counts
greater than the CT will be analyzed.

3.2. Approximating Page Structures

According to the span characteristic, once the proxy
server received a client request with container object
type, it is reasonable for the proxy server to expect the
occurrence of some requests of the embedded objects
in a short time. Thus every request sent by the same
client acquiring an embedded-object will be counted
as one of the embedded-objects of the container. After
the access count of the same container reaches some
extent, the objects with total and relative access fre-
quency higher than the predefined thresholds are recog-
nized as the true embedded-objects of the container. In
the following sections, two kinds of counters are used:
access count(ac) is used to record total access times of

Queue

head

Q
1

cn

C
1

5

00011111

10

11111111

C
2

C
3

2

00000011

E
1

E
2

E
3

E
4

E
5

E
6

E
7

EOT EOT EOT

3
0
0
0
0
1
1
0
1

5

0
0
0
1
1
1
1
1

1

0
0
0
0
1
0
0
0

500011111

Q
2

cn

Q
3

cn

Q
4

cn

Q
5

cn ．．．

Figure 4. A snapshot of data structures in action.

an object, and sliding window(sw) is a bit vector rep-
resenting the latest n accesses of the object.

In our scheme, on receiving a request from the client,
the proxy server first identify the requested object type
after retrieving the HTTP header of the request. Re-
quests are divided into two groups: container objects
(e.g., text/html) and embedded objects (e.g., jpeg).

If the incoming request asked for a container ob-
ject, the proxy server first looks up the CNode list. In
the case no information is retained in the list, that is,
none of the CNodes in the list has the same URL as
the requested object, the proxy server setup a CNode
for this new object. Otherwise, it updates the infor-
mation of the CNode found by increasing the access
count ac by one, left shifting the sliding window sw by
1, set the lowest bit of sw to 1, and left shifting the
sliding windows of the entries in its EOT by 1. After
that, a QNode referring to this CNode is created and
put into the active container queue. Each incoming re-
quest of container type will generate a QNode, even
if there already exists another QNode referring to the
same CNode. In other words, same requests from differ-
ent clients will be treated as different QNodes and the
subsequent requests of embedded objects are processed
separately. Thus, many QNodes may refer to the same
CNode. Figure 4 illustrates such cases, QNodes Q2, Q4,
and Q5 with different IP addresses are referring to the
same CNode C2.

During the search process, if any QNode referring
to the same CNode is encountered, each QNode’s bc is
increased by one. This bias counter (bc) field indicates
which bit of the sliding window this QNode represents
and thus, bc is set to 0 initially. Finally, a QNode is
removed from the queue after its lifespan is passed.

On the other hand, once an embedded object request
is arrived, an ENode Ei is created if the proxy server
can not find any other ENode owning the same URL

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

Algorithm 1 Construction of the Embedded-Object Table

1: CList ← null; EList ← null; QList ← null;
2: procedure ConstructEOT
3: for each incoming request object O do
4: if O ∈ ContainerType then
5: Ci ← Search(CList, O);
6: if Ci = null then
7: Create(CNode Ci, O);
8: Insert(CList, Ci);
9: else

10: Ci.ac ← Ci.ac + 1;
11: LeftShift(Ci.sw, 1);
12: Ci.sw ← Ci.sw | 1;
13: for each enj ∈ Ci.EOT do
14: LeftShift(enj .sw, 1);
15: enj .sw ← enj .sw | 1;
16: end for
17: end if
18: Create(QNode Qi, Ci);
19: Insert(QList, Qi);
20: for each Qj ∈ QList do
21: if Qj .cn = Qi.cn then
22: Qj .bs ← Qj .bs + 1;
23: end if
24: end for
25: else
26: Ei ← Search(EList, O);
27: if Ei = null then
28: Create(ENode Ei, O);
29: Insert(EList, Ei);
30: else
31: Update(Ei);
32: end if
33: for each Qj ∈ QList&&Ei.t − Qj .t > LS do
34: Remove(QList, Qj);
35: end for
36: for each Qj ∈ QList&&Qj .IP = Ei.IP do
37: enk ← Search(Qj .cn.EOT, Ei);
38: if enk = null then
39: Create(EOTEntry enk, Ei);
40: Insert(Qj .cn.EOT, enk);
41: else
42: enk.ac ← enk.ac + 1;
43: temp ← LeftShift(1, Qj .bc);
44: enk.sw ← enk.sw | temp;
45: end if
46: end for
47: end if
48: end for
49: end procedure

as the request’s. Or the server updates the timestamp
and the IP address fields. Afterwards, based on the
timestamp tr of the request, the server removes obso-
lete QNodes(i.e., {Qi|tr − tQi > LS}) from the queue.

For each remaining QNode, say Qj , that has the
same IP address as Ei’s, the proxy server updates the
embedded-object table EOT of the CNode referred by
the Qj ’s cn field. That is, if none of those entries in
Qj .cn.EOT has the en field referring to Ei, the proxy
server will create a new entry in the EOT , set both the
ac and sw fields of the entry to 1. Otherwise, it will in-
crease the entry’s ac by one and turn the Qj .bc-th low-
est bit of the sw to 1. If none of the QNodes has the
same IP as Ei’s, then Ei is regarded as a single object
not belonging to any container, and thus is dropped.

Algorithm 2 Output of page structures

procedure OutputPage(CNode Ci)
for each enj ∈ Ci.EOT do

ARj ← enj .ac / Ci.ac;
RARj ← NumOf1s(enj .sw) / NumOf1s(Ci.sw);
if enj .ac > CT && ARj > AC RATIO && RARj >

SW RATIO then
Output(enj);

end if
end for

end procedure

The detailed algorithm is describe in Algorithm 1.
The metrics to determine if a ENode is embedded in

a CNode is quite flexible. One can design his own met-
rics to fit the system environment. In this paper two
kinds of confidence metrics are used: the Access Ratio
(AR) and the Relative Access Ratio (RAR). To iden-
tify the embedded-objects of a container node Ci with
its access count ac larger than the predefined count
threshold CT , the server calculates the access ratio and
the relative access ratio of each entry enj in Ci’s EOT .
The access ratio of the entry enj (ARj) is defined as
the the ratio of enj .ac to the Ci.ac, and the relative ac-
cess ratio of enj (RARj) is defined as the ratio of the
total number of bits equaling to 1 in enj .sw to those
in Ci.sw. If both ARj and RARj exceeds the prede-
fined thresholds AC RATIO and SW RATIO, then
the embedded node Ek referred by enj is regarded as
one of Ci’s embedded object. The decision-making al-
gorithm is illustrated in Algorithm 2.

4. Experimental Results

In this section, a series of simulation is conducted
based on the proxy log to demonstrate the accuracy
of the proposed scheme. The environment consists of
a Squid proxy server [11] deployed at the edge of a
network containing 16 clients. Each client keeps ran-
domly accessing a Web site without client caches from
a group of 272 Web sites whose page structures con-
tain mostly static embedded objects.

Figure 5(a) shows the effect of count threshold para-
meter. The lifespan is set to 3 seconds, the AC RATIO
and the SW RATIO are both set to 0.5, and the size
of sliding window is set to 32 bits. The result shows
that our scheme achieves high prediction accuracy up
to 93.5% with relatively as low a count threshold as 4,
which implies the convergence speed is quite fast.

In Figure 5(b), various SW RATIO is measured
with SW SIZE being 4, 8, 16, and 32 bits, respec-
tively. For a sliding window of size 8, the prediction ac-
curacy exceeds 90% with the SW RATIO larger than
0.4. The less than 10% misses are mostly due to the dy-
namic part of the Web pages such as the advertisement
banners.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

(a) Accuracy of approximated page structures vs. count thresh-
old.

(b) Accuracy of approximated page structures vs. SW RATIO.

Figure 5. Accuracy of approximated page struc-
tures under different base-count andSW RATIO
values, respectively.

The length of the lifespan LS parameter is also a
dominant factor. For a too short lifespan, some requests
for the embedded objects associate with the container
object will be dropped. On the other hand, too long a
lifespan causes more unrelated objects to be included,
and further more lowers down the accuracy. Network
latency and the computing power of the client comput-
ers are two dominating factors of setting of the lifespan.
However, for leaf proxy servers that are set in front of a
local area network (LAN), the network latency of each
client can be treated as a constant, and moreover, the
difference of the computing power on each client is eli-
gible compared to the unit of lifespan. Thus, a not-too-
short lifespan is sufficient for our scheme.

5. Conclusions

In this paper, we propose an effective and low-
overhead on-line scheme for leaf Web proxies to ap-
proximate the page structures of Web pages. Based
on the observation of lifespan characteristics and sim-
ple counting techniques, the proposed scheme produces
approximated page structures with high accuracy once
the corresponding numbers of requests for the same
Web pages exceed the base-count threshold.

The results of simulation with actual proxy logs
show that the chosen base-count threshold can be
relatively small. That is, the approximation of page
structures converges quickly and reaches high accu-
racy(more than 90%) after a small number of incoming
requests have been processed.

References

[1] RameshR. Sarukkai, “LinkPrediction andPathAnalysisUs-
ing Markov Chains,” Computer Networks, Vol. 33, No. 1-6,
pp. 377-386, June 2000.

[2] JianhanZhu, JunHong, and JohnG.Hughes, “UsingMarkov
Models for Web Site Link Prediction,” Proceedings of the
Thirteenth ACM Conference on Hypertext and Hypermedia
2002,CollegePark,Maryland,USA, pp. 169-170, June 11-15,
2002.

[3] Themistoklis Palpanas and Alberto Mendelzon, “Web
Prefetching Using Partial Match Prediction,” Proceedings of
theFourth InternationalWebCachingWorkshop, SanDiego,
CA, March 1999.

[4] Mukund Deshpande and George Karypis, “Selective Markov
models for Predicting Web Page Accesses,” ACM Transac-
tions on Internet Technology (TOIT), Vol. 4, No. 2, pp. 163-
184, May 2004.

[5] S. ule Gündüz and M. Tamer Özsu, “A Web Page Prediction
Model Based on Click-Stream Tree Representation of User
Behavior,” Proceedings of the Ninth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Min-
ing, Washington, D.C, pp. 535-540, August 24-27, 2003.

[6] Wenwu Lou, Guimei Liu, Honjun Lu, and Qiang Yang, “Cut-
and-pick transactions for proxy log mining,” Proceedings of
theEighthExtendingDatabaseTechnology (EDBT)Confer-
ence, Prague, Czech, March 2002.

[7] Qiang Yang, Haining Henry Zhang, and Tianyi Li, “Min-
ing Web Logs for Prediction Models in WWW Caching and
Prefetching,” Proceedings of the Seventh ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining, San Francisco, California, pp. 473-478, August 2001.

[8] Xin Chen and Xiaodong Zhang, “Popularity-Based PPM: an
Effective Web Prefetching Technique for High Accuracy and
Low Storage,” Proceedings of 2002 International Conference
on Parallel Processing, (ICPP ’02), Vancouver, Canada, pp.
296-304, August 18-21, 2002.

[9] Xiangping Chen and Prasant Mohapatra, “Lifetime Behav-
ior and its Impact on Web Caching,” Proceedings of the 1999
IEEE Workshop on Internet Applications, pp. 54, July 26-27,
1999.

[10] MikhailMikhailov andCraigWills, “ExploitingObjectRela-
tionships for Deterministic Web Object Management,” Pro-
ceedings of the Seventh InternationalWorkshop onWebCon-
tent Caching and Distribution, Boulder, Colorado, August
2002.

[11] ”Squid Web Proxy Cache,” http://www.squid-cache.org/.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

