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Abstract 
 
This paper proposes a non-cooperative game 
theoretical replica allocation technique (NCOR) to 
reduce user perceived Web access delays. NCOR uses 
distributed agents that because of their local 
knowledge act in a self-interested manner in order to 
enhance the performance of the servers that they 
represent. This can lead to some performance gains 
for some servers but has the potential to negatively 
impact the overall system’s performance. NCOR uses 
an effective cost model to guarantee the overall system 
performance gain despite the self-interested actions of 
these agents. With spontaneous and non-deterministic 
strategies, the system can exhibit Nash equilibrium. 
However, that may or may not guaranteed system-wide 
performance at a given time. Furthermore, their can 
be multiple Nash equilibria, making it difficult to 
decide which one is the best. Instead, we use the notion 
of pure Nash equilibrium, which if achieved is 
guaranteed to ensure stable optimal performance. 
Pure Nash equilibrium can be only achieved by 
deterministic strategies. In general, the existence of a 
pure Nash equilibrium is remarkably hard to achieve; 
however, we prove the existence of such an 
equilibrium in NCOR. Experimental comparisons with 
several non-game theoretical techniques reveal that 
NCOR maintains superior solution quality, in terms of 
lower communication cost and reduced execution time. 
 
1. Introduction 
 
A number of techniques for object-based Web content 
replication have been proposed with the underlying 
assumption that servers cooperate with one another in 
order to layout a replica schema that optimizes the 
overall system performance. For instance, almost all 
content distribution networks (CDNs) related replica 
allocation methods ([5], [6]) rely on a centralized 

decision making body which optimizes a given 
objective (such as to reduce the communication cost) 
regardless of the costs incurred by each server [7]. In 
reality, servers aim at maximizing their own benefits, 
possibly at the expense of the global optimal [3].  

To study this self-interested behavior, we make use 
of game theoretical techniques and abstract the Web 
(or large scale distributed computing system) as an 
agent based model. Each server in the system is 
represented by an agent which is a computational 
entity that is capable of autonomous behavior in the 
sense of being aware of the options available to it 
when faced with a decision making task related to its 
domain of interest [9]. These agents are motivated by 
their individual interests and compete in a non-
cooperative replica allocation game (NCOR). In NCOR 
each agent has two possible actions for each object. If 
an access is made to an object that is located at a 
nearby server, then the agent is better off redirecting 
the request to that server. On the other hand if the 
object is located at a far off server, then the agent is 
better off replicating that object.  

The goal of this paper is to see whether these self-
interested agents in NCOR, can layout replica schemas 
that converge to global optimum solution(s) targeted 
towards reducing the communication cost induced by 
accessing the objects. Using game theory, we show 
that in the worst-case scenario, the system as a whole 
resides in a social optimum domain, i.e., the solution 
quality can never be worse than a pareto-optimal 
solution. This social optimum domain is used as the 
basis to prove that NCOR indeed converges to global 
optimum solution(s) that conform to pure Nash 
equilibrium(s) when the self-interested agents play 
deterministic strategies according to NCOR’s cost 
model. Pure Nash equilibrium is different from the 
classical Nash equilibrium in the sense that the former 
results when the strategies played are deterministic, 
while the later results when the strategies played are 



non-deterministic. Also, a system will achieve a global 
optimum solution throughout the lifespan of the system 
once such a pure Nash equilibrium is achieved. This is 
certainly not the case when a system exhibits a 
classical Nash equilibrium, for the simple reason that 
there could be multiple Nash equilibria, making it 
difficult to decide which one is the best. An elaborate 
discussion on these two types of Nash equilibria, their 
properties and differences can be found in [4] and [19].  

The proposed NCOR is experimentally compared 
against: 1) branch and bound [8], 2) greedy [18] and 3) 
genetic algorithm [15] using GT-ITM [20] and Inet [2] 
network topology generators and Soccer World Cup 
1998 traffic logs [1]. The experimental results reveal 
that NCOR maintains superior solution quality with 
reduced execution time. 

  The remainder of this paper is organized as 
follows. In Section 2 we provide a formal description 
of the data replication problem. Section 3 concentrates 
on modeling the data replication problem as a non-
cooperative replica allocation game. Comparative 
experimental results, related work and final concluding 
remarks in Sections 4, 5 and 6, respectively. 

 
2. The data replication problem 

 
Consider a distributed system comprising M servers, 
with each server having its own processing power, 
memory (primary storage) and media (secondary 
storage). Let Si and si be the name and the total storage 
capacity (in simple data units e.g. blocks), respectively, 
of server i where 1 ≤ i ≤ M. The M servers of the 
system are connected by a communication network. A 
link between two servers Si and Sj (if it exists) has a 
positive integer c(i,j) associated with it, giving the 
communication cost for transferring a data unit 
between servers Si and Sj. If the two servers are not 
directly connected by a communication link then the 
above cost is given by the sum of the costs of all the 
links in a chosen path from server Si to the server Sj. 
Without the loss of generality we assume that c(i,j) = 
c(j,i). Let there be N objects, each identifiable by a 
unique name Ok and size in simple data unites ok where 
1 ≤ k ≤ N. Let rk

i and wk
i be the total number of reads 

and writes, respectively, initiated from Si for Ok. 
Our replication policy assumes the existence of one 

primary copy for each object in the network. Let Pk, be 
the server which holds the primary copy of Ok, i.e., the 
only copy in the network that cannot be de-allocated, 
hence referred to as primary server of the k-th object. 
Each primary server Pk, contains information about the 
whole replication scheme Rk of Ok. This can be done 
by maintaining a list of the servers where the k-th 

object is replicated at, called from now on the 
replicators of Ok. Moreover, every server Si stores a 
two-field record for each object. The first field is its 
primary server Pk and the second the nearest 
neighborhood server NNk

i of server Si which holds a 
replica of object k. In other words, NNk

i is the server 
for which the reads from Si for Ok, if served there, 
would incur the minimum possible communication 
cost. It is possible that NNk

i = Si, if Si is a replicator or 
the primary server of Ok. Another possibility is that 
NNk

i = Pk, if the primary server is the closest one 
holding a replica of Ok. When a server Si reads an 
object, it does so by addressing the request to the 
corresponding NNk

i. For the updates we assume that 
every server can update every object. Updates of an 
object Ok are performed by sending the updated 
version to its primary server Pk, which afterwards 
broadcasts it to every server in Rk.  

For the DRP under consideration, we are interested 
in minimizing the total Object Transfer Cost (OTC) 
due to object movement, since the communication cost 
of control messages has minor impact to the overall 
performance of the system. There are two components 
affecting OTC. The first component of OTC is due to 
the read requests. Let Rk

i denote the total OTC, due to 
Sis’ reading requests for object Ok, addressed to the 
nearest server NNk

i. This cost is given by:  

( ),i i i
k k k kR r o c i NN= ,             (1) 

where NNk
i = {Server j | j∈Rk ^ min c(i,j)}. The second 

component of OTC is the cost arising due to the writes. 
Let Wk

i be the total OTC, due to Sis’ writing requests 
for object Ok, addressed to the primary server Pk. This 
cost is given by the following equation:  
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Here, we made the indirect assumption that in order 
to perform a write we need to ship the whole updated 
version of the object. This of course is not always the 
case, as we can move only the updated parts of it 
(modeling such policies can also be done using our 
framework). The cumulative OTC, denoted as Coverall, 
due to reads and writes is given by:  

      ( )1 1
M N i i

overall k ki kC R W= == +∑ ∑ .                 (3) 

Let Xik = 1 if Si holds a replica of object Ok, and 0 
otherwise. Xiks define an M×N replication matrix, 
named X, with boolean elements. Equation 3 is now 
refined to: 
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Servers which are not the replicators of object Ok 
create OTC equal to the communication cost of their 
reads from the nearest replicator, plus that of sending 
their writes to the primary server of Ok . Servers 
belonging to the replication scheme of Ok, are 
associated with the cost of sending/receiving all the 
updated versions of it. Using the above formulation, 
the DRP can be defined as:  “Find the assignment of 0, 
1 values in the X matrix that minimizes Coverall, subject 
to the storage capacity constraint: 

   1 (1 )N
iik kk X o s i M= ≤ ∀ ≤ ≤∑ , and subject to the primary 

copies policy: 1   (1 )P kk
X k N= ∀ ≤ ≤ .” 

 
3. Non-cooperative replica allocation game 
 
Before we discuss the exact game structure of NCOR 
(the non-cooperative replica allocation game), it is 
essential to lay down the basis of NCOR. We start by 
defining: 
Definition 1 (Feasible Strategies):  An agent i’s 
strategy is termed feasible, φi, when the two 
constraints of the data replication problem (storage 
and no de-allocation of the primary copy) are met 
before a decision to replicate an object Ok can be 
undertaken.  

Of all these possibly infinity many feasible 
strategies, let ςi∈φi be a strategy chosen by an agent i, 
where ςi=1 means object is replicated and ςi=0 means it 
is not. (Note that ςi only focus on a specific object Ok. 
Therefore it is not necessary to write ςi as ςi,k or any 
other notation that would differentiate any two 
objects.) Since each agent chooses ςi∈φi independently 
(keeping both the constraints at par), we can look at 
the replication of each object Ok as a separate game, 
and combine the pure Nash equilibrium of these games 
to obtain a pure Nash equilibrium of the multi-object 
game, NCOR. (This argument would become clearer 
when Definition 3 and Lemma 1 are reviewed.)  
Definition 2 (Strategy Profile) [16]: A strategy 
profile ς=(ς1,…,ςM) is a set of strategies for each agent 
which fully specifies all of its actions. A strategy 
profile must include one and only one strategy for 
every agent. 

For convenience we can also write ς as (ςi,ς-i), 
where ςi is the strategy of agent i, and ς-i is the set of 
strategies of all other agents in NCOR excluding agent 
i. Given ς one can easily find out which agents have 
opted to replicate Ok.  
Definition 3 (Pure Nash Equilibrium) [19]: A 
situation in a  non-cooperative game in which agents 
play using a set of deterministic strategies whereby no 
agent can improve its benefit by changing its strategy 
unilaterally. 

Lemma 1 (Combining Pure Nash Equilibriums) [4]: 
If two games are known to have pure Nash 
equilibriums, then the union of the games is also 
guaranteed to have a pure Nash equilibrium.              ■ 

Thus, if we are able to prove that a given ς 
conforms to a pure Nash equilibrium, then ∪ςi also 
conforms to a pure Nash equilibrium. Conversely, if 
χ(ς) is the cost function associated with ς, then Σχ(ςi) 
over all N objects is the cost associated with ∪ςi. Based 
on this, we can give a formal mathematical definition 
of pure Nash equilibrium as: 
Definition 4 (Pure Nash Equilibrium 
(Mathematically)): Let (ς,χ) be a game, where ς is the 
set of strategy profiles and χ is the cost function. When 
each agent i plays ςi then agent i incurs a cost 
χi(ς)=χi(ς1,…,ςM). ς* is pure Nash equilibrium if for any 
deviation ςi by an agent i is not beneficial, that is 
χi(ςi,ς-i

*)≤ χi(ςi
*,ς-i

*). 
Definition 5 (Stability of a Pure Nash Equilibrium) 
[19]: Equilibrium is stable if an infinitesimal small 
change in the strategy of one agent leads to a situation 
where the following hold: 

(a): The agent who did not change has no better 
strategy in the new circumstance. 

(b): The agent who did change is now playing with 
a strictly worse strategy. 

It is also important that we accentuate on the 
difference between ς and Rk (replica schema of Ok). If 
we are given Rk, we only know which severs hold a 
copy of Ok, but if ς is given, we can also find out 
which agents have not opted to replicate Ok along with 
their corresponding cost functions. 
Definition 6 (Replica Schema): A replica schema, Rk, 
for object Ok is the set of servers that replicates Ok.  

We now proceed with describing the game structure 
of NCOR. 
The Setup: The Web (or large scale distributed 
computing system) described in Section 2 is 
considered, where each server is represented by an 
agent, i.e., NCOR contains M agents. Although NCOR 
is non-cooperative in nature, yet there is no 
information hiding. That is, the network topology, the 
size of the object and location of replicas are all public 
knowledge. The only information that is private to 
each agent is the frequency of reads and writes for 
each object from its server.  
Cost model: We first concentrate on deriving the cost 
model for a single object. This will be expanded later 
on to fully encapsulate the multi-object data replication 
problem as described in Section 2.  

Let φi be the set of feasible strategies for an agent i. 
For Ok, the agent chooses a strategy ςi∈φi that 
describes its desire to replicate or otherwise. Thus, 
given a strategy profile ς, we say that an agent i incurs 



a cost χi(ς) if it considers replicating object Ok. This 
cost is given as:  
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which implies that if an agent replicates Ok, then the 
cost incurred due to reads is 0 = ri

kokc(i,NNi
k) since 

NNi
k = i. The cost incurred due to local writes (or 

updates) is equal to zero since the copy resides locally, 
but whenever Ok is updated anywhere in the network, 
agent i has to continuously update Ok’s contents locally 
as well. Therefore, the aggregate cost of writes is 
equivalent to wi

kok Σ∀(j∈Rk), i≠j c(Pk,j). On the other hand 
if an agent does not replicate Ok, then the cost incurred 
due to reads is equal to ri

kokc(i,NNi
k), and the cost 

incurred due to writes is equal to wi
kokc(i,Pk) since it 

only has to send the update to the primary server which 
then broadcasts the update based on Rk to the agents 
who have replicated the object.   

Equation 5 captures the dilemma faced by an agent i 
when considering replicating Ok. If agent i replicates 
Ok then it brings down the read cost to zero, but now it 
has to keep the contents of Ok up to date. If agent i 
does not replicate Ok, then it reduces the overhead of 
keeping the contents up to date, but now it has to 
redirect the read requests to the nearest neighborhood 
server which holds a copy of Ok. Keeping these cost 
considerations in mind, for an object Ok each agent i 
has two strategies: (0) not to replicate or (1) to 
replicate; allowing us to rewrite Equation 5 in a 
visually appealing form: 

( )

( ) ( ) ( )
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Discussion on Cost Model: Each agent i’s cost to 
replicate an Ok (or otherwise) sturdily relies on the 
access (both read and write) frequencies, the replica 
locations, and the size of Ok (ok). Essentially, NCOR 
starts with a given (possibly a random) replica schema, 
and evolves it into a replica schema that exhibits pure 
Nash equilibrium as each agent alters its strategy so as 
to minimize its cost. That is, a pure Nash equilibrium 
(ς*

i,ς*
-i) for NCOR identifies a replica schema Rk such 

that ∀i∈M, i∈Rk if and only if ς*
i=1. Recall that there 

can be infinitely many feasible strategies, which in turn 
means that there can be infinitely many replica 
schemas that are identifiable by a pure Nash 
equilibrium. Let Є represent the set of all possible pure 
Nash equilibrium replica schemas and we say: 
Definition 7 (Pure Nash Equilibrium Replica 
Schema): A replica schema belongs to the set of pure 

Nash equilibrium replica schemas Rk∈Є if and only if 
each agent i∈M chooses a feasible strategy ςi∈φi such 
that when each agent i plays ςi, it cannot improve its 
cost by changing its strategy unilaterally, that is χi(ςi,ς-

i
*)≤ χi(ςi

*,ς-i
*), where ς* is a pure Nash equilibrium. 

Keeping Definition 7 in mind, for NCOR we can 
straightforwardly deduce the following:  

Rk∈Є if and only if: 
(a) ∀i∈M, ∃j∈Rk such that c(i,j) is minimum. (7)
(b) ∀j∈Rk, ∄ j’∈Rk such that c(j,j’)<c(i,j). (8)

We observe that for an object Ok’s replica schema 
to be in a state of pure Nash equilibrium, each agent i 
has placed Ok’s replica at a server that incurs minimum 
possible communication cost from Si. (That is, if the 
replica is not placed at i, then it is replicated at a server 
j which has the minimum cost of communication from 
Si, compared to any other server in the system.) On the 
other hand if agent i, has already replicated object Ok, 
then there is no benefit for agent i to drop the replica 
since the location incurs a minimal communication 
cost to at least one server (which holds the replica). 
Note that what we have just discussed above 
(Equations 7 and 8) is equivalent to the two conditions 
((a) and (b), respectively) of equilibrium stability as 
stated in Definition 5. With this said, we now expand 
this single object replica allocation cost model to the 
multi-object data replication problem. First, let us see 
what is the cost incurred by the society (all M agents) 
as a whole. 
Definition 8 (Social Optimum) [16]: The maximum 
net benefits for everybody in society, regardless of who 
enjoys the benefits. 

Social optimum is the analogous concept of 
optimum resource allocation [19]. In this paper since 
the resources are replicas, we can say the social 
optimum is equivalent to the optimum replica 
allocation, and we note that:  
Definition 9 (Pareto Optimum) [16]: A pareto 
optimum is a situation in which it is not possible to 
make any one agent better off without making some 
other agent worse off. 
Lemma 2 (A Condition for Pareto Optimum) [16]: 
A pareto optimum is not possible unless the net 
benefits for every agent in society are maximized.      ■ 

In an ideal price based competitive economy, 
achieving a social (or pareto) optimum is no big deal 
[16]. Every agent maximizes its private benefit, but 
since every agent pays for any benefits it receives, and 
bears only the corresponding costs, the result of this 
private benefit maximization is that social net benefits 
are maximized. However, when pricing is not involved 
(as is the case in NCOR), it is no longer trivial to 
guarantee social optimum. We write the social cost for 
NCOR as: 



1
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Refining Equation 9 using the definition of social 
optimum we say: 

min min( ) ( )ςχ ς χ ς= . (10)
Equation 10 encapsulates the notion of cooperation 

among all agents to layout a replica schema that incurs 
minimum communication cost. But the agents are self-
interested, hence we use χ(ςmin) as an important 
measure for the solution quality. What the agents are 
trying to achieve in conjunction to χ(ςmin) is: 

1
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Using Lemma 1 we say that: 
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Expanding Equation 12 using Equation 5 we obtain: 
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Thus, the pure Nash equilibrium in NCOR may 
exist when over the set of all objects N; all M agents 
maximize their benefits (by minimizing the 
communication costs). A closer look at Equation 13 
reveals that it is nothing more than the minimization 
problem described by Equation 3. Hence, the 
following holds: 
Theorem 1 (Equivalence): The data replication 
problem and the non-cooperative replica allocation 
game are equivalent and have the same objective.      ■ 

Based on the above discussion we describe the 
procedure for NCOR in Figure 1.  
Description of NCOR Procedure: We maintain a list 
Li at each server. This list contains all the objects that 
can be replicated by agent i onto server Si. (In other 
words Li represents the set of feasible strategies.) We 
can obtain this list by examining the two constraints of 
the data replication problem. List Li would contain all 
the objects that have their size less then the total 
available space bi. Moreover, if server Si is the primary 
host of some object Ok, then Ok would not be in Li. We 
also maintain a list LS containing all servers that can 
replicate an object, i.e., Si∈LS if Li≠NULL. The 
algorithm works iteratively. In each step the servers 
calculate the cost of replicating an object Ok using 
Equation 6 (Line 04). This cost is compared to the 
current cost incurred by the server. If this new cost is 
less or equal to the current cost, then the server opts to 
replicate that object. After a decision of replication is 
taken, each server updates the server storage capacity 
and the nearest neighbor list (Lines 8 and 9).  Servers 

also evict the object from the list Li since a decision on 
it has already been undertaken (Line 12). This 
procedure continues till the list Li becomes empty. 
When Li becomes empty, a message is sent to the 
moderator M (which is a control thread) to evict the 
server from the game since it is no longer able to 
undertake any further decisions (Line 14). We would 
like to clarify that the list Li is dynamically update in 
accordance to with the changes of server capacity. For 
example, if by replicating an object a server exhausts 
all of its storage capacity, then M dynamically adjusts 
Li to empty.  
Theorem 2 (Existence of Pure Nash Equilibrium): A 
pure Nash equilibrium exists for the self-interested 
agents, if they play according to the cost model of 
single object NCOR. 
Proof: Let M denoted the set of agents in the system, 
where each agent represents a server. Let c(i,NNi

k) 
represent the cost of assessing object Ok from server Si 
to replicated at the nearest server from NNi

k. Let M’ 
represent the set of servers for which a server Si incurs 
the minimum communication cost for all servers 
m∈M’, i.e., M’={m|c(i,m) ≤ c(i,NNi

k)}. Essentially, 
NCOR chooses a server m∈M’ such that c(i,m) ≤ 
c(i,NNi

k) ∀i∈M to hold the replica. After allocating a 
replica at m, it is removed along with all servers m∈M’ 
from M. This is done because no servers (m) has 
incentive to replicate Ok since it can access m’s replica 
at a lower or equal cost than NNi

k’s replica. NCOR 
iteratively chooses a server m till M=∅. Again, since at 
each iteration m is the remaining server with minimum 
c(i,m), no other server can be selected to replicate Ok 
such that c(i,NNi

k) ≤ c(i,m). Hence, no agent can gain 
benefit by unilaterally opting to replicate an object 
without disturbing the equilibrium.                              ■ 

The NCOR Procedure 
Initialize: 
LS, Li, χ*

i(ς)=∞, M, ς=NULL 
01 WHILE LS ≠ NULL DO 
02    PARFOR each Si∈LS DO 
03               FOR each Ok∈Li DO 
04                   Compute χi(ς)=min{χi(ς)|ςi=1, χi(ς)|ςi=0}; /* Eq. 6 */ 
05                        IF χi(ς)≤χ*

i(ς) THEN       
06                             χ*

i(ς)=χi(ς);    /* Update current best cost */  
07                             ςi=1;              /* Replicate object Ok */ 
08                             bi=bi - ok;      /* Update capacity */ 
09                             Update NNk

i; /* Update the nearest neighbors */ 
10                        ELSE  
11                             ςi=0;            /* Do not replicate object Ok */ 
12                     Li = Li - Ok;             /* Update the list*/ 
13                     IF Li = NULL THEN  
14                            SEND info to M to update LS = LS - Si;      
15               ENDFOR 
16    ENDPARFOR          /*Social cost achieved Equation 9 */ 
17 ENDWHILE /* Pure Nash equilibrium achieved Th. 2 and 3 */  

Figure 1: The Pseudo-code for NCOR Procedure. 



Theorem 3 (NCOR Pure Nash Equilibrium): A pure 
Nash equilibrium exists for the multi-object NCOR. 
Proof: Follows from Lemma 1 and Theorem 2.          ■ 
 
4. Experimental results and discussions 
 
We performed experiments on a 440MHz Ultra 10 
machine with 512MB memory. The experimental 
evaluations were targeted to benchmark the placement 
policies. NCOR was implemented using Ada and Ada 
GNAT’s distributed systems annex GLADE [17].  

To establish diversity in our experimental setups, 
the network connectively was changed considerably. 
We used GT-ITM [20] for the network topologies, the 
procedure for which we explain below.  

A random graph G(M,P(edge = p)) with 0 ≤ p ≤ 1 
contains all graphs with nodes (servers) M in which the 
edges are chosen independently and with a probability 
p. The pure random topologies were obtained with p = 
{0.4, 0.5, 0.6, 0.7, 0.8}. In each of these topologies the 
distance between two serves was reversed mapped to 
the communication cost of transmitting a 1kB of data 
and the latency on a link was assumed to be equivalent 
to that of a copper wire, i.e., 2.8×10-8 m/s.  

To evaluate the replica allocation methods under 
realistic traffic patterns, we used the access logs 
collected at the Soccer World Cup 1998 web server 
[1]. Each experimental setup was evaluated thirteen 
times, i.e., only the Friday (24 hours) logs from May 1, 
1998 to July 24, 1998. (The Friday logs have the 
heaviest traffic compared to any other day of the 
week.) To process the logs, we wrote a script that 
returned: only those objects which were present in all 
the logs (25,000 in our case), the total number of 
requests from a particular client for an object, the 
average and the variance of the object size. From this 
log we chose the top five hundred clients (maximum 
experimental setup). A random mapping was then 
performed of the clients to the nodes of the topologies. 
Note that this mapping is not 1-1, rather 1-M. This 
gave us enough skewed workload to mimic real world 
scenarios. It is also worthwhile to mention that the 
total amount of requests entertained for each problem 
instance was in the range of 1-2 million. The primary 
replicas’ original server was mimicked by choosing 
random locations. The capacities of the servers C% 
were generated randomly with range from Total 
Primary Object Sizes/2 to 1.5×Total Primary Object 
Sizes. The variance in the object size collected from 
the access logs helped to instill enough miscellanies to 
benchmark object updates. The updates were randomly 
pushed onto different servers, and the total system 
update load was measured in terms of the percentage 

update requests U% compared that to the initial 
network with no updates. 

Since the access logs are of the year 1998, we first 
used Inet [2] topology generator to estimate the 
number of nodes in the network. This number came up 
to be 3718, i.e., there were 3718 AS-level nodes in the 
Internet at the time when the Soccer World Cup 1998 
was being played. Therefore, we set the upper bound 
on the number of servers in the system at M = 3718.  
Comparative algorithms: For comparisons, we chose 
three types of replica allocation methods. To provide a 
fair comparison, the assumptions and system 
parameters were kept the same in all the methods. For 
the data replication problem, the non-game theoretical 
techniques proposed in [8], [13], [15] and [18] are the 
only ones that address the problem domain similar to 
ours. We select from [18] the greedy approach 
(Greedy) for comparison because it is shown to be the 
best compared with 4 other approaches (including the 
proposed technique in [13]); thus, we indirectly 
compare with 4 additional approaches as well. 
Algorithms reported in [8] (the efficient branch and 
bound based technique Aε-Star) and [15] (the genetic 
algorithm based method GRA) are also among the 
chosen techniques for comparisons. We encourage the 
readers to obtain an insight on the comparative 
techniques from the referenced papers. 
Performance metric: The solution quality was 
measured in terms of network communication cost 
(OTC percentage) that was saved under the replica 
scheme found by the replica allocation methods, 
compared to the initial one, i.e., when only primary 
copies exists.  
Comparative analysis: First, we observe the effects 
of increase in storage capacity. An increase in the 
storage capacity means that a large number of objects 
can be replicated. Replicating an object that is already 
extensively replicated, is unlikely to result in 
significant traffic savings as only a small portion of the 
servers will be affected overall. Moreover, since 
objects are not equally read intensive, increase in the 
storage capacity would have a great impact at the 
beginning (initial increase in capacity), but has little 
effect after a certain point, where the most beneficial 
ones are already replicated. This is observable in 
Figure 2, which shows the performance of the 
algorithms. The performance between all approaches 
except GRA was within 15% of each other. NCOR and 
Greedy showed an immediate initial increase (the point 
after which further replicating objects is inefficient) in 
its OTC savings, but afterward showed a near constant 
performance. GRA performed the worst, but 
observably gained the most OTC savings (49%) 
followed by Greedy with 44%. Further experiments 



 
 

 
with various read/write ratios (0.90, 0.80, and 0.70) 
showed similar plot trends. It is also noteworthy (plots 
not shown in this paper due to space restrictions) that 
the increase in capacity from 10% to 18%, resulted in 
4 times more replicas for all the algorithms.  

Next, we observe the effects of increase in the read 
and write frequencies. Since these two parameters are 
complementary to each other, we describe them 
together. To observe the system utilization with 
varying read/write frequencies, we kept the number of 
servers and objects constant. Increase in the number of 
reads in the system would mean that there is a need to 
replicate as many object as possible (closer to the 
users). However, the increase in the number of updates 
in the system requires the replicas be placed as close as 
to the primary server as possible (to reduce the update 
broadcast). This phenomenon is also interrelated with 
the system capacity, as the update ratio sets an upper 
bound on the possible traffic reduction through 
replication. Thus, if we consider a system with 
unlimited capacity, the “replicate everywhere 
anything” policy is strictly inadequate. The read and 
update parameters indeed help in drawing a line 
between good and marginal algorithms. The plot in 
Figure 3 shows the results of read/write ratio against 
the OTC savings. A clear classification can be made 
between the algorithms. NCOR, Aε-Star and Greedy 
incorporate the increase in the number of reads by 

replicating more objects and thus savings increased up 
to 88%, while GRA gained the least of the OTC 
savings of up to 42%. To understand why there is such 
a gap in the performance between the algorithms, we 
should recall that GRA specifically depends on the 
initial selection of gene population (for details see 
[15]). Moreover, GRA maintains a localized network 
perception. Increase in updates result in objects having 
decreased local significance (unless the vicinity is in 
close proximity to the primary location). On the other 
hand, NCOR, Aε-Star and Greedy never tend to 
deviate from their global view of the problem. 

Lastly, we compare the termination time of the 
algorithms. Various problem instances were recorded 
with C=20%, 45% and R/W=0.45, 0.85. The entries in 
Tables 1(a) and 1(b) made bold represent the fastest 
time recorded over the problem instance. NCOR 
terminated faster than all the other techniques, 
followed by Greedy, Aε-Star and GRA.   
 
5. Related work 
 
In the context of data replication, game theoretical 
techniques have not received much attention. We are 
aware of only five published articles which directly or 
indirectly deal with the data replication problem using 
game theoretical techniques. The first work [3] is 
mainly on caching and uses an empirical model to 

(a): Small problem instances [C=20%, R/W=0.45] 
Problem Size Greedy GRA Aε-Star NCOR

M=200, N=500 84.13 111.19 116.61 37.03
M=200, N=1000 91.90 115.68 123.56 43.34
M=200, N=1500 93.91 121.21 136.62 51.85
M=300, N=500 114.28 152.30 168.93 58.81
M=300, N=1000 131.00 150.04 178.59 65.19
M=300, N=1500 162.25 178.30 215.68 70.98
M=400, N=500 151.68 184.95 238.52 76.06
M=400, N=1000 161.58 202.17 284.00 88.27
M=400, N=1500 169.29 245.31 324.75 95.55

Table 1: Running time of the replica placement methods in seconds. 
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Figure 2: OTC savings versus capacity.  Figure 3: OTC savings versus read/write ratio. 

(b): Large problem instances [C=45%, R/W=0.85]
Problem Size Greedy GRA Aε-Star NCOR

M=2500, N=15,000 310.14 491.00 399.63 188.95
M=2500, N=20,000 330.75 563.25 442.66 205.45
M=2500, N=25,000 357.74 570.02 465.52 233.14
M=3000, N=15,000 452.22 671.68 494.60 286.35
M=3000, N=20,000 467.65 726.75 498.66 290.31
M=3000, N=25,000 469.86 791.26 537.56 303.85
M=3718, N=15,000 613.27 883.71 753.87 372.66
M=3718, N=20,000 630.39 904.20 774.31 390.38
M=3718, N=25,000 646.98 932.38 882.43 401.88



derive Nash equilibrium. The second set of works [9], 
[10], and [11] focuses on mechanism design issues and 
derives various incentive compatible auctions for 
replicating data on the Web. The last work [12] deals 
with identifying Nash strategies derived from synthetic 
utility functions. Our work differs from all the game 
theoretical techniques in: 1) identifying a non-
cooperative non-priced based replica allocation 
method to tackle the data replication problem, 2) using 
game theoretical techniques to study an environment 
where the agents behave in a self-interested manner, 
and 3) deriving pure Nash equilibrium and pure 
strategies for the agents.  Readers are encouraged to 
see [14] for a survey on the non-game theoretical 
techniques used for the data replication problem.  
 
6. Concluding remarks 
 
A detailed discussion revealed that in a realistic 
system, agents have no incentive to cooperate and to 
resolve the problem as a community; rather they act in 
a self-interested fashion and optimize their own 
benefits. To this end, we proposed a non-cooperative 
replica allocation game (NCOR), in which agents 
competed to host the replicas of different objects in a 
self-interested manner. We showed that NCOR 
exhibited a pure Nash equilibrium, and the system as a 
whole resided in a social optimal domain. 
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