
A Pure Nash Equilibrium Guaranteeing Game Theoretical Replica Allocation
Method for Reducing Web Access Time

Samee Ullah Khan and Ishfaq Ahmad
Department of Computer Science and Engineering

University of Texas, Arlington, Texas, USA
{sakhan, iahmad}@cse.uta.edu

Abstract

This paper proposes a non-cooperative game
theoretical replica allocation technique (NCOR) to
reduce user perceived Web access delays. NCOR uses
distributed agents that because of their local
knowledge act in a self-interested manner in order to
enhance the performance of the servers that they
represent. This can lead to some performance gains
for some servers but has the potential to negatively
impact the overall system’s performance. NCOR uses
an effective cost model to guarantee the overall system
performance gain despite the self-interested actions of
these agents. With spontaneous and non-deterministic
strategies, the system can exhibit Nash equilibrium.
However, that may or may not guaranteed system-wide
performance at a given time. Furthermore, their can
be multiple Nash equilibria, making it difficult to
decide which one is the best. Instead, we use the notion
of pure Nash equilibrium, which if achieved is
guaranteed to ensure stable optimal performance.
Pure Nash equilibrium can be only achieved by
deterministic strategies. In general, the existence of a
pure Nash equilibrium is remarkably hard to achieve;
however, we prove the existence of such an
equilibrium in NCOR. Experimental comparisons with
several non-game theoretical techniques reveal that
NCOR maintains superior solution quality, in terms of
lower communication cost and reduced execution time.

1. Introduction

A number of techniques for object-based Web content
replication have been proposed with the underlying
assumption that servers cooperate with one another in
order to layout a replica schema that optimizes the
overall system performance. For instance, almost all
content distribution networks (CDNs) related replica
allocation methods ([5], [6]) rely on a centralized

decision making body which optimizes a given
objective (such as to reduce the communication cost)
regardless of the costs incurred by each server [7]. In
reality, servers aim at maximizing their own benefits,
possibly at the expense of the global optimal [3].

To study this self-interested behavior, we make use
of game theoretical techniques and abstract the Web
(or large scale distributed computing system) as an
agent based model. Each server in the system is
represented by an agent which is a computational
entity that is capable of autonomous behavior in the
sense of being aware of the options available to it
when faced with a decision making task related to its
domain of interest [9]. These agents are motivated by
their individual interests and compete in a non-
cooperative replica allocation game (NCOR). In NCOR
each agent has two possible actions for each object. If
an access is made to an object that is located at a
nearby server, then the agent is better off redirecting
the request to that server. On the other hand if the
object is located at a far off server, then the agent is
better off replicating that object.

The goal of this paper is to see whether these self-
interested agents in NCOR, can layout replica schemas
that converge to global optimum solution(s) targeted
towards reducing the communication cost induced by
accessing the objects. Using game theory, we show
that in the worst-case scenario, the system as a whole
resides in a social optimum domain, i.e., the solution
quality can never be worse than a pareto-optimal
solution. This social optimum domain is used as the
basis to prove that NCOR indeed converges to global
optimum solution(s) that conform to pure Nash
equilibrium(s) when the self-interested agents play
deterministic strategies according to NCOR’s cost
model. Pure Nash equilibrium is different from the
classical Nash equilibrium in the sense that the former
results when the strategies played are deterministic,
while the later results when the strategies played are

non-deterministic. Also, a system will achieve a global
optimum solution throughout the lifespan of the system
once such a pure Nash equilibrium is achieved. This is
certainly not the case when a system exhibits a
classical Nash equilibrium, for the simple reason that
there could be multiple Nash equilibria, making it
difficult to decide which one is the best. An elaborate
discussion on these two types of Nash equilibria, their
properties and differences can be found in [4] and [19].

The proposed NCOR is experimentally compared
against: 1) branch and bound [8], 2) greedy [18] and 3)
genetic algorithm [15] using GT-ITM [20] and Inet [2]
network topology generators and Soccer World Cup
1998 traffic logs [1]. The experimental results reveal
that NCOR maintains superior solution quality with
reduced execution time.

 The remainder of this paper is organized as
follows. In Section 2 we provide a formal description
of the data replication problem. Section 3 concentrates
on modeling the data replication problem as a non-
cooperative replica allocation game. Comparative
experimental results, related work and final concluding
remarks in Sections 4, 5 and 6, respectively.

2. The data replication problem

Consider a distributed system comprising M servers,
with each server having its own processing power,
memory (primary storage) and media (secondary
storage). Let Si and si be the name and the total storage
capacity (in simple data units e.g. blocks), respectively,
of server i where 1 ≤ i ≤ M. The M servers of the
system are connected by a communication network. A
link between two servers Si and Sj (if it exists) has a
positive integer c(i,j) associated with it, giving the
communication cost for transferring a data unit
between servers Si and Sj. If the two servers are not
directly connected by a communication link then the
above cost is given by the sum of the costs of all the
links in a chosen path from server Si to the server Sj.
Without the loss of generality we assume that c(i,j) =
c(j,i). Let there be N objects, each identifiable by a
unique name Ok and size in simple data unites ok where
1 ≤ k ≤ N. Let rk

i and wk
i be the total number of reads

and writes, respectively, initiated from Si for Ok.
Our replication policy assumes the existence of one

primary copy for each object in the network. Let Pk, be
the server which holds the primary copy of Ok, i.e., the
only copy in the network that cannot be de-allocated,
hence referred to as primary server of the k-th object.
Each primary server Pk, contains information about the
whole replication scheme Rk of Ok. This can be done
by maintaining a list of the servers where the k-th

object is replicated at, called from now on the
replicators of Ok. Moreover, every server Si stores a
two-field record for each object. The first field is its
primary server Pk and the second the nearest
neighborhood server NNk

i of server Si which holds a
replica of object k. In other words, NNk

i is the server
for which the reads from Si for Ok, if served there,
would incur the minimum possible communication
cost. It is possible that NNk

i = Si, if Si is a replicator or
the primary server of Ok. Another possibility is that
NNk

i = Pk, if the primary server is the closest one
holding a replica of Ok. When a server Si reads an
object, it does so by addressing the request to the
corresponding NNk

i. For the updates we assume that
every server can update every object. Updates of an
object Ok are performed by sending the updated
version to its primary server Pk, which afterwards
broadcasts it to every server in Rk.

For the DRP under consideration, we are interested
in minimizing the total Object Transfer Cost (OTC)
due to object movement, since the communication cost
of control messages has minor impact to the overall
performance of the system. There are two components
affecting OTC. The first component of OTC is due to
the read requests. Let Rk

i denote the total OTC, due to
Sis’ reading requests for object Ok, addressed to the
nearest server NNk

i. This cost is given by:

(),i i i
k k k kR r o c i NN= , (1)

where NNk
i = {Server j | j∈Rk ^ min c(i,j)}. The second

component of OTC is the cost arising due to the writes.
Let Wk

i be the total OTC, due to Sis’ writing requests
for object Ok, addressed to the primary server Pk. This
cost is given by the following equation:

() ()
,

, ,i i i
k k k k k

j R j ik
W w o c i P c NN j

∀∈ ≠

 
 
 
 

= + ∑ . (2)

Here, we made the indirect assumption that in order
to perform a write we need to ship the whole updated
version of the object. This of course is not always the
case, as we can move only the updated parts of it
(modeling such policies can also be done using our
framework). The cumulative OTC, denoted as Coverall,
due to reads and writes is given by:

 ()1 1
M N i i

overall k ki kC R W= == +∑ ∑ . (3)

Let Xik = 1 if Si holds a replica of object Ok, and 0
otherwise. Xiks define an M×N replication matrix,
named X, with boolean elements. Equation 3 is now
refined to:

() (){ }

() () ()1

1 1

1 min , | 1

, ,

i
ik k k jk

Mi x
k k k ik k k kx

M N
i k

X r o c i j X

w o c i P X w o c i P
X

=

= =

 − = 
 

+ +  

=
∑

∑ ∑ . (4)

Servers which are not the replicators of object Ok
create OTC equal to the communication cost of their
reads from the nearest replicator, plus that of sending
their writes to the primary server of Ok . Servers
belonging to the replication scheme of Ok, are
associated with the cost of sending/receiving all the
updated versions of it. Using the above formulation,
the DRP can be defined as: “Find the assignment of 0,
1 values in the X matrix that minimizes Coverall, subject
to the storage capacity constraint:

 1 (1)N
iik kk X o s i M= ≤ ∀ ≤ ≤∑ , and subject to the primary

copies policy: 1 (1)P kk
X k N= ∀ ≤ ≤ .”

3. Non-cooperative replica allocation game

Before we discuss the exact game structure of NCOR
(the non-cooperative replica allocation game), it is
essential to lay down the basis of NCOR. We start by
defining:
Definition 1 (Feasible Strategies): An agent i’s
strategy is termed feasible, φi, when the two
constraints of the data replication problem (storage
and no de-allocation of the primary copy) are met
before a decision to replicate an object Ok can be
undertaken.

Of all these possibly infinity many feasible
strategies, let ςi∈φi be a strategy chosen by an agent i,
where ςi=1 means object is replicated and ςi=0 means it
is not. (Note that ςi only focus on a specific object Ok.
Therefore it is not necessary to write ςi as ςi,k or any
other notation that would differentiate any two
objects.) Since each agent chooses ςi∈φi independently
(keeping both the constraints at par), we can look at
the replication of each object Ok as a separate game,
and combine the pure Nash equilibrium of these games
to obtain a pure Nash equilibrium of the multi-object
game, NCOR. (This argument would become clearer
when Definition 3 and Lemma 1 are reviewed.)
Definition 2 (Strategy Profile) [16]: A strategy
profile ς=(ς1,…,ςM) is a set of strategies for each agent
which fully specifies all of its actions. A strategy
profile must include one and only one strategy for
every agent.

For convenience we can also write ς as (ςi,ς-i),
where ςi is the strategy of agent i, and ς-i is the set of
strategies of all other agents in NCOR excluding agent
i. Given ς one can easily find out which agents have
opted to replicate Ok.
Definition 3 (Pure Nash Equilibrium) [19]: A
situation in a non-cooperative game in which agents
play using a set of deterministic strategies whereby no
agent can improve its benefit by changing its strategy
unilaterally.

Lemma 1 (Combining Pure Nash Equilibriums) [4]:
If two games are known to have pure Nash
equilibriums, then the union of the games is also
guaranteed to have a pure Nash equilibrium. ■

Thus, if we are able to prove that a given ς
conforms to a pure Nash equilibrium, then ∪ςi also
conforms to a pure Nash equilibrium. Conversely, if
χ(ς) is the cost function associated with ς, then Σχ(ςi)
over all N objects is the cost associated with ∪ςi. Based
on this, we can give a formal mathematical definition
of pure Nash equilibrium as:
Definition 4 (Pure Nash Equilibrium
(Mathematically)): Let (ς,χ) be a game, where ς is the
set of strategy profiles and χ is the cost function. When
each agent i plays ςi then agent i incurs a cost
χi(ς)=χi(ς1,…,ςM). ς* is pure Nash equilibrium if for any
deviation ςi by an agent i is not beneficial, that is
χi(ςi,ς-i

*)≤ χi(ςi
*,ς-i

*).
Definition 5 (Stability of a Pure Nash Equilibrium)
[19]: Equilibrium is stable if an infinitesimal small
change in the strategy of one agent leads to a situation
where the following hold:

(a): The agent who did not change has no better
strategy in the new circumstance.

(b): The agent who did change is now playing with
a strictly worse strategy.

It is also important that we accentuate on the
difference between ς and Rk (replica schema of Ok). If
we are given Rk, we only know which severs hold a
copy of Ok, but if ς is given, we can also find out
which agents have not opted to replicate Ok along with
their corresponding cost functions.
Definition 6 (Replica Schema): A replica schema, Rk,
for object Ok is the set of servers that replicates Ok.

We now proceed with describing the game structure
of NCOR.
The Setup: The Web (or large scale distributed
computing system) described in Section 2 is
considered, where each server is represented by an
agent, i.e., NCOR contains M agents. Although NCOR
is non-cooperative in nature, yet there is no
information hiding. That is, the network topology, the
size of the object and location of replicas are all public
knowledge. The only information that is private to
each agent is the frequency of reads and writes for
each object from its server.
Cost model: We first concentrate on deriving the cost
model for a single object. This will be expanded later
on to fully encapsulate the multi-object data replication
problem as described in Section 2.

Let φi be the set of feasible strategies for an agent i.
For Ok, the agent chooses a strategy ςi∈φi that
describes its desire to replicate or otherwise. Thus,
given a strategy profile ς, we say that an agent i incurs

a cost χi(ς) if it considers replicating object Ok. This
cost is given as:

()

() ()

,
() ,

, ,

k
i i k kk i j R i jk

k k k
i i ik k kk i

w o c P j

r o c i NN w o c i P

ς

ς

χ ς ∈
∀∈ ≠

∉

  
  
  

  
 
  

=

+ +

∑ ∑

∑

, (5)

which implies that if an agent replicates Ok, then the
cost incurred due to reads is 0 = ri

kokc(i,NNi
k) since

NNi
k = i. The cost incurred due to local writes (or

updates) is equal to zero since the copy resides locally,
but whenever Ok is updated anywhere in the network,
agent i has to continuously update Ok’s contents locally
as well. Therefore, the aggregate cost of writes is
equivalent to wi

kok Σ∀(j∈Rk), i≠j c(Pk,j). On the other hand
if an agent does not replicate Ok, then the cost incurred
due to reads is equal to ri

kokc(i,NNi
k), and the cost

incurred due to writes is equal to wi
kokc(i,Pk) since it

only has to send the update to the primary server which
then broadcasts the update based on Rk to the agents
who have replicated the object.

Equation 5 captures the dilemma faced by an agent i
when considering replicating Ok. If agent i replicates
Ok then it brings down the read cost to zero, but now it
has to keep the contents of Ok up to date. If agent i
does not replicate Ok, then it reduces the overhead of
keeping the contents up to date, but now it has to
redirect the read requests to the nearest neighborhood
server which holds a copy of Ok. Keeping these cost
considerations in mind, for an object Ok each agent i
has two strategies: (0) not to replicate or (1) to
replicate; allowing us to rewrite Equation 5 in a
visually appealing form:

()

() () ()

,
,

1 , ,

() k
i i k k

j R i jk

k k k
i i k i i k k

i w o c P j

r o c i NN w o c i P

χ ς ς

ς

∀∈ ≠

  
      

 − + 

=

+

∑
. (6)

Discussion on Cost Model: Each agent i’s cost to
replicate an Ok (or otherwise) sturdily relies on the
access (both read and write) frequencies, the replica
locations, and the size of Ok (ok). Essentially, NCOR
starts with a given (possibly a random) replica schema,
and evolves it into a replica schema that exhibits pure
Nash equilibrium as each agent alters its strategy so as
to minimize its cost. That is, a pure Nash equilibrium
(ς*

i,ς*
-i) for NCOR identifies a replica schema Rk such

that ∀i∈M, i∈Rk if and only if ς*
i=1. Recall that there

can be infinitely many feasible strategies, which in turn
means that there can be infinitely many replica
schemas that are identifiable by a pure Nash
equilibrium. Let Є represent the set of all possible pure
Nash equilibrium replica schemas and we say:
Definition 7 (Pure Nash Equilibrium Replica
Schema): A replica schema belongs to the set of pure

Nash equilibrium replica schemas Rk∈Є if and only if
each agent i∈M chooses a feasible strategy ςi∈φi such
that when each agent i plays ςi, it cannot improve its
cost by changing its strategy unilaterally, that is χi(ςi,ς-

i
*)≤ χi(ςi

*,ς-i
), where ς is a pure Nash equilibrium.

Keeping Definition 7 in mind, for NCOR we can
straightforwardly deduce the following:

Rk∈Є if and only if:
(a) ∀i∈M, ∃j∈Rk such that c(i,j) is minimum. (7)
(b) ∀j∈Rk, ∄ j’∈Rk such that c(j,j’)<c(i,j). (8)

We observe that for an object Ok’s replica schema
to be in a state of pure Nash equilibrium, each agent i
has placed Ok’s replica at a server that incurs minimum
possible communication cost from Si. (That is, if the
replica is not placed at i, then it is replicated at a server
j which has the minimum cost of communication from
Si, compared to any other server in the system.) On the
other hand if agent i, has already replicated object Ok,
then there is no benefit for agent i to drop the replica
since the location incurs a minimal communication
cost to at least one server (which holds the replica).
Note that what we have just discussed above
(Equations 7 and 8) is equivalent to the two conditions
((a) and (b), respectively) of equilibrium stability as
stated in Definition 5. With this said, we now expand
this single object replica allocation cost model to the
multi-object data replication problem. First, let us see
what is the cost incurred by the society (all M agents)
as a whole.
Definition 8 (Social Optimum) [16]: The maximum
net benefits for everybody in society, regardless of who
enjoys the benefits.

Social optimum is the analogous concept of
optimum resource allocation [19]. In this paper since
the resources are replicas, we can say the social
optimum is equivalent to the optimum replica
allocation, and we note that:
Definition 9 (Pareto Optimum) [16]: A pareto
optimum is a situation in which it is not possible to
make any one agent better off without making some
other agent worse off.
Lemma 2 (A Condition for Pareto Optimum) [16]:
A pareto optimum is not possible unless the net
benefits for every agent in society are maximized. ■

In an ideal price based competitive economy,
achieving a social (or pareto) optimum is no big deal
[16]. Every agent maximizes its private benefit, but
since every agent pays for any benefits it receives, and
bears only the corresponding costs, the result of this
private benefit maximization is that social net benefits
are maximized. However, when pricing is not involved
(as is the case in NCOR), it is no longer trivial to
guarantee social optimum. We write the social cost for
NCOR as:

1
() ()

i

M

i
χ ς χ ς

=
=∑ . (9)

Refining Equation 9 using the definition of social
optimum we say:

min min() ()ςχ ς χ ς= . (10)
Equation 10 encapsulates the notion of cooperation

among all agents to layout a replica schema that incurs
minimum communication cost. But the agents are self-
interested, hence we use χ(ςmin) as an important
measure for the solution quality. What the agents are
trying to achieve in conjunction to χ(ςmin) is:

1
minimize() ()

i

M

i
χ ς χ ς

=
= ∑ . (11)

Using Lemma 1 we say that:

1 1
minimize ()()

N M

i
k i

χ ςχ ς
= =

= ∑∑ . (12)

Expanding Equation 12 using Equation 5 we obtain:

()

() ()

,

1 1

,
minimize

, ,

()
k

N M i k k
j R i jk

k i
k k k

i k i i k k

w o c P j

r o c i NN w o c i P

χ ς ∀∈ ≠

= =

   
   +       
  +   

=
∑

∑∑ . (13)

Thus, the pure Nash equilibrium in NCOR may
exist when over the set of all objects N; all M agents
maximize their benefits (by minimizing the
communication costs). A closer look at Equation 13
reveals that it is nothing more than the minimization
problem described by Equation 3. Hence, the
following holds:
Theorem 1 (Equivalence): The data replication
problem and the non-cooperative replica allocation
game are equivalent and have the same objective. ■

Based on the above discussion we describe the
procedure for NCOR in Figure 1.
Description of NCOR Procedure: We maintain a list
Li at each server. This list contains all the objects that
can be replicated by agent i onto server Si. (In other
words Li represents the set of feasible strategies.) We
can obtain this list by examining the two constraints of
the data replication problem. List Li would contain all
the objects that have their size less then the total
available space bi. Moreover, if server Si is the primary
host of some object Ok, then Ok would not be in Li. We
also maintain a list LS containing all servers that can
replicate an object, i.e., Si∈LS if Li≠NULL. The
algorithm works iteratively. In each step the servers
calculate the cost of replicating an object Ok using
Equation 6 (Line 04). This cost is compared to the
current cost incurred by the server. If this new cost is
less or equal to the current cost, then the server opts to
replicate that object. After a decision of replication is
taken, each server updates the server storage capacity
and the nearest neighbor list (Lines 8 and 9). Servers

also evict the object from the list Li since a decision on
it has already been undertaken (Line 12). This
procedure continues till the list Li becomes empty.
When Li becomes empty, a message is sent to the
moderator M (which is a control thread) to evict the
server from the game since it is no longer able to
undertake any further decisions (Line 14). We would
like to clarify that the list Li is dynamically update in
accordance to with the changes of server capacity. For
example, if by replicating an object a server exhausts
all of its storage capacity, then M dynamically adjusts
Li to empty.
Theorem 2 (Existence of Pure Nash Equilibrium): A
pure Nash equilibrium exists for the self-interested
agents, if they play according to the cost model of
single object NCOR.
Proof: Let M denoted the set of agents in the system,
where each agent represents a server. Let c(i,NNi

k)
represent the cost of assessing object Ok from server Si
to replicated at the nearest server from NNi

k. Let M’
represent the set of servers for which a server Si incurs
the minimum communication cost for all servers
m∈M’, i.e., M’={m|c(i,m) ≤ c(i,NNi

k)}. Essentially,
NCOR chooses a server m∈M’ such that c(i,m) ≤
c(i,NNi

k) ∀i∈M to hold the replica. After allocating a
replica at m, it is removed along with all servers m∈M’
from M. This is done because no servers (m) has
incentive to replicate Ok since it can access m’s replica
at a lower or equal cost than NNi

k’s replica. NCOR
iteratively chooses a server m till M=∅. Again, since at
each iteration m is the remaining server with minimum
c(i,m), no other server can be selected to replicate Ok
such that c(i,NNi

k) ≤ c(i,m). Hence, no agent can gain
benefit by unilaterally opting to replicate an object
without disturbing the equilibrium. ■

The NCOR Procedure
Initialize:
LS, Li, χ*

i(ς)=∞, M, ς=NULL
01 WHILE LS ≠ NULL DO
02 PARFOR each Si∈LS DO
03 FOR each Ok∈Li DO
04 Compute χi(ς)=min{χi(ς)|ςi=1, χi(ς)|ςi=0}; /* Eq. 6 */
05 IF χi(ς)≤χ*

i(ς) THEN
06 χ*

i(ς)=χi(ς); /* Update current best cost */
07 ςi=1; /* Replicate object Ok */
08 bi=bi - ok; /* Update capacity */
09 Update NNk

i; /* Update the nearest neighbors */
10 ELSE
11 ςi=0; /* Do not replicate object Ok */
12 Li = Li - Ok; /* Update the list*/
13 IF Li = NULL THEN
14 SEND info to M to update LS = LS - Si;
15 ENDFOR
16 ENDPARFOR /*Social cost achieved Equation 9 */
17 ENDWHILE /* Pure Nash equilibrium achieved Th. 2 and 3 */

Figure 1: The Pseudo-code for NCOR Procedure.

Theorem 3 (NCOR Pure Nash Equilibrium): A pure
Nash equilibrium exists for the multi-object NCOR.
Proof: Follows from Lemma 1 and Theorem 2. ■

4. Experimental results and discussions

We performed experiments on a 440MHz Ultra 10
machine with 512MB memory. The experimental
evaluations were targeted to benchmark the placement
policies. NCOR was implemented using Ada and Ada
GNAT’s distributed systems annex GLADE [17].

To establish diversity in our experimental setups,
the network connectively was changed considerably.
We used GT-ITM [20] for the network topologies, the
procedure for which we explain below.

A random graph G(M,P(edge = p)) with 0 ≤ p ≤ 1
contains all graphs with nodes (servers) M in which the
edges are chosen independently and with a probability
p. The pure random topologies were obtained with p =
{0.4, 0.5, 0.6, 0.7, 0.8}. In each of these topologies the
distance between two serves was reversed mapped to
the communication cost of transmitting a 1kB of data
and the latency on a link was assumed to be equivalent
to that of a copper wire, i.e., 2.8×10-8 m/s.

To evaluate the replica allocation methods under
realistic traffic patterns, we used the access logs
collected at the Soccer World Cup 1998 web server
[1]. Each experimental setup was evaluated thirteen
times, i.e., only the Friday (24 hours) logs from May 1,
1998 to July 24, 1998. (The Friday logs have the
heaviest traffic compared to any other day of the
week.) To process the logs, we wrote a script that
returned: only those objects which were present in all
the logs (25,000 in our case), the total number of
requests from a particular client for an object, the
average and the variance of the object size. From this
log we chose the top five hundred clients (maximum
experimental setup). A random mapping was then
performed of the clients to the nodes of the topologies.
Note that this mapping is not 1-1, rather 1-M. This
gave us enough skewed workload to mimic real world
scenarios. It is also worthwhile to mention that the
total amount of requests entertained for each problem
instance was in the range of 1-2 million. The primary
replicas’ original server was mimicked by choosing
random locations. The capacities of the servers C%
were generated randomly with range from Total
Primary Object Sizes/2 to 1.5×Total Primary Object
Sizes. The variance in the object size collected from
the access logs helped to instill enough miscellanies to
benchmark object updates. The updates were randomly
pushed onto different servers, and the total system
update load was measured in terms of the percentage

update requests U% compared that to the initial
network with no updates.

Since the access logs are of the year 1998, we first
used Inet [2] topology generator to estimate the
number of nodes in the network. This number came up
to be 3718, i.e., there were 3718 AS-level nodes in the
Internet at the time when the Soccer World Cup 1998
was being played. Therefore, we set the upper bound
on the number of servers in the system at M = 3718.
Comparative algorithms: For comparisons, we chose
three types of replica allocation methods. To provide a
fair comparison, the assumptions and system
parameters were kept the same in all the methods. For
the data replication problem, the non-game theoretical
techniques proposed in [8], [13], [15] and [18] are the
only ones that address the problem domain similar to
ours. We select from [18] the greedy approach
(Greedy) for comparison because it is shown to be the
best compared with 4 other approaches (including the
proposed technique in [13]); thus, we indirectly
compare with 4 additional approaches as well.
Algorithms reported in [8] (the efficient branch and
bound based technique Aε-Star) and [15] (the genetic
algorithm based method GRA) are also among the
chosen techniques for comparisons. We encourage the
readers to obtain an insight on the comparative
techniques from the referenced papers.
Performance metric: The solution quality was
measured in terms of network communication cost
(OTC percentage) that was saved under the replica
scheme found by the replica allocation methods,
compared to the initial one, i.e., when only primary
copies exists.
Comparative analysis: First, we observe the effects
of increase in storage capacity. An increase in the
storage capacity means that a large number of objects
can be replicated. Replicating an object that is already
extensively replicated, is unlikely to result in
significant traffic savings as only a small portion of the
servers will be affected overall. Moreover, since
objects are not equally read intensive, increase in the
storage capacity would have a great impact at the
beginning (initial increase in capacity), but has little
effect after a certain point, where the most beneficial
ones are already replicated. This is observable in
Figure 2, which shows the performance of the
algorithms. The performance between all approaches
except GRA was within 15% of each other. NCOR and
Greedy showed an immediate initial increase (the point
after which further replicating objects is inefficient) in
its OTC savings, but afterward showed a near constant
performance. GRA performed the worst, but
observably gained the most OTC savings (49%)
followed by Greedy with 44%. Further experiments

with various read/write ratios (0.90, 0.80, and 0.70)
showed similar plot trends. It is also noteworthy (plots
not shown in this paper due to space restrictions) that
the increase in capacity from 10% to 18%, resulted in
4 times more replicas for all the algorithms.

Next, we observe the effects of increase in the read
and write frequencies. Since these two parameters are
complementary to each other, we describe them
together. To observe the system utilization with
varying read/write frequencies, we kept the number of
servers and objects constant. Increase in the number of
reads in the system would mean that there is a need to
replicate as many object as possible (closer to the
users). However, the increase in the number of updates
in the system requires the replicas be placed as close as
to the primary server as possible (to reduce the update
broadcast). This phenomenon is also interrelated with
the system capacity, as the update ratio sets an upper
bound on the possible traffic reduction through
replication. Thus, if we consider a system with
unlimited capacity, the “replicate everywhere
anything” policy is strictly inadequate. The read and
update parameters indeed help in drawing a line
between good and marginal algorithms. The plot in
Figure 3 shows the results of read/write ratio against
the OTC savings. A clear classification can be made
between the algorithms. NCOR, Aε-Star and Greedy
incorporate the increase in the number of reads by

replicating more objects and thus savings increased up
to 88%, while GRA gained the least of the OTC
savings of up to 42%. To understand why there is such
a gap in the performance between the algorithms, we
should recall that GRA specifically depends on the
initial selection of gene population (for details see
[15]). Moreover, GRA maintains a localized network
perception. Increase in updates result in objects having
decreased local significance (unless the vicinity is in
close proximity to the primary location). On the other
hand, NCOR, Aε-Star and Greedy never tend to
deviate from their global view of the problem.

Lastly, we compare the termination time of the
algorithms. Various problem instances were recorded
with C=20%, 45% and R/W=0.45, 0.85. The entries in
Tables 1(a) and 1(b) made bold represent the fastest
time recorded over the problem instance. NCOR
terminated faster than all the other techniques,
followed by Greedy, Aε-Star and GRA.

5. Related work

In the context of data replication, game theoretical
techniques have not received much attention. We are
aware of only five published articles which directly or
indirectly deal with the data replication problem using
game theoretical techniques. The first work [3] is
mainly on caching and uses an empirical model to

(a): Small problem instances [C=20%, R/W=0.45]
Problem Size Greedy GRA Aε-Star NCOR

M=200, N=500 84.13 111.19 116.61 37.03
M=200, N=1000 91.90 115.68 123.56 43.34
M=200, N=1500 93.91 121.21 136.62 51.85
M=300, N=500 114.28 152.30 168.93 58.81
M=300, N=1000 131.00 150.04 178.59 65.19
M=300, N=1500 162.25 178.30 215.68 70.98
M=400, N=500 151.68 184.95 238.52 76.06
M=400, N=1000 161.58 202.17 284.00 88.27
M=400, N=1500 169.29 245.31 324.75 95.55

Table 1: Running time of the replica placement methods in seconds.

Increase in Server Capacity

O
TC

 S
av

in
gs

 (%
)

M=3718; N=25,000; R/W=0.95

10% 14% 18% 22% 26% 30% 34% 38%
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

Legend
GRA
Aε-Star
Greedy
NCOR

R/W (Ratio)

O
TC

 S
av

in
gs

 (%
)

M=3718; N=25,000; C=45%

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

20%

40%

60%

80%

100%

Legend
GRA
Aε-Star
Greedy
NCOR

Figure 2: OTC savings versus capacity. Figure 3: OTC savings versus read/write ratio.

(b): Large problem instances [C=45%, R/W=0.85]
Problem Size Greedy GRA Aε-Star NCOR

M=2500, N=15,000 310.14 491.00 399.63 188.95
M=2500, N=20,000 330.75 563.25 442.66 205.45
M=2500, N=25,000 357.74 570.02 465.52 233.14
M=3000, N=15,000 452.22 671.68 494.60 286.35
M=3000, N=20,000 467.65 726.75 498.66 290.31
M=3000, N=25,000 469.86 791.26 537.56 303.85
M=3718, N=15,000 613.27 883.71 753.87 372.66
M=3718, N=20,000 630.39 904.20 774.31 390.38
M=3718, N=25,000 646.98 932.38 882.43 401.88

derive Nash equilibrium. The second set of works [9],
[10], and [11] focuses on mechanism design issues and
derives various incentive compatible auctions for
replicating data on the Web. The last work [12] deals
with identifying Nash strategies derived from synthetic
utility functions. Our work differs from all the game
theoretical techniques in: 1) identifying a non-
cooperative non-priced based replica allocation
method to tackle the data replication problem, 2) using
game theoretical techniques to study an environment
where the agents behave in a self-interested manner,
and 3) deriving pure Nash equilibrium and pure
strategies for the agents. Readers are encouraged to
see [14] for a survey on the non-game theoretical
techniques used for the data replication problem.

6. Concluding remarks

A detailed discussion revealed that in a realistic
system, agents have no incentive to cooperate and to
resolve the problem as a community; rather they act in
a self-interested fashion and optimize their own
benefits. To this end, we proposed a non-cooperative
replica allocation game (NCOR), in which agents
competed to host the replicas of different objects in a
self-interested manner. We showed that NCOR
exhibited a pure Nash equilibrium, and the system as a
whole resided in a social optimal domain.

References

[1] M. Arlitt and T. Jin, “Workload Characterization

of the 1998 World Cup Web Server,” Tech.
report, Hewlett Packard Lab, Palo Alto, HPL-
1999-35(R.1), 1999.

[2] H. Chang, R. Govindan, S. Jamin and S. Shenker,
"Towards Capturing Representative AS-Level
Internet Topologies," Computer Networks
Journal, vol. 44, no. 6, pp 737-755, 2004.

[3] B.-G. Chun, K. Chaudhuri, H. Wee, M. Barreno,
C. Papadimitriou and J. Kubiatowicz, “Selfish
Caching in Distributed Systems: A Game-
Theoretic Analysis,” in Proc. of 23rd ACM PoDC,
2004, pp. 21-30.

[4] A. Fabrikant, C. Papadimitriou and K. Talwar,
"The Complexity of Pure Nash Equilibria," in
Proc. of 36th ACM SToC, 2004, pp. 604-612.

[5] S. Hakimi, “Optimum Location of Switching
Centers and the Absolute Centers and Medians of
a Graph,” Operations Research, vol. 12, pp. 450–
459, 1964.

[6] S. Jamin, C. Jin, Y. Jin, D. Riaz, Y. Shavitt and L.
Zhang, “On the Placement of Internet

Instrumentation,” in Proc. of the IEEE
INFOCOM, 2000, pp. 295-304.

[7] M. Karlsson and M. Mahalingam, “Do We Need
Replica Placement Algorithms in Content
Delivery Networks?” in Proc. of WCCD
Workshop, 2002, pp. 117-128.

[8] S. Khan and I. Ahmad, “Heuristic-based
Replication Schemas for Fast Information
Retrieval over the Internet,” in Proc. of 17th ISCA
PDCS, 2004, pp. 278-283.

[9] S. Khan and I. Ahmad, “A Powerful Direct
Mechanism for Optimal WWW Content
Replication,” in Proc. of 19th IEEE IPDPS, 2005.

[10] S.U. Khan and I. Ahmad, "A Game Theoretical
Extended Vickery Auction Mechanism for
Replicating Data in Large-scale Distributed
Computing Systems," in Proc. of PDPTA, 2005,
pp. 904-910.

[11] S.U. Khan and I. Ahmad, "RAMM: A Game
Theoretical Replica Allocation and Management
Mechanism," in Proc. of 8th I-SPAN, 2005, pp.
160-165.

[12] N. Laoutaris, O. Telelis, V. Zissimopoulos and I.
Stavrakakis, “Local Utility Aware Content
Replication,” in Proc. of IFIP Networking
Conference, 2005, pp. 455-468.

[13] B. Li, M. Golin, G. Italiano and X. Deng, “On the
Optimal Placement of Web Proxies in the
Internet,” in Proc. of the IEEE INFOCOM, 2000,
pp. 1282-1290.

[14] T. Loukopoulos, I. Ahmad, and D. Papadias, “An
Overview of Data Replication on the Internet,” in
Proc. of ISPAN, 2002, pp. 31-36.

[15] T. Loukopoulos, and I. Ahmad, “Static and
Adaptive Distributed Data Replication using
Genetic Algorithms,” Journal of Parallel and
Distributed Computing, 64(11), pp. 1270-1285,
2004.

[16] M. Osborne and A. Rubinstein, A Course in Game
Theory, MIT Press, 1994.

[17] L. Pautet and S. Tardieu, “GLADE: A Framework
for Building Large Object-Oriented Real-Time
Distributed Systems,” in 3rd International
Symposium on Object-Oriented Real-Time
Distributed Systems, 2000, pp. 244-251.

[18] L. Qiu, V. Padmanabhan and G. Voelker, “On the
Placement of Web Server Replicas,” in Proc. of
the IEEE INFOCOM, 2001, pp. 1587-1596.

[19] E. van Damme, Stability and Perfection of Nash
Equilibia, Springer-Verlag, 1996.

[20] E. Zegura, K. Calvert and M. Donahoo, “A
Quantitative Comparison of Graph-based Models
for Internet Topology,” IEEE/ACM Trans. On
Networking, 5(6), pp. 770-783, 1997.

