
On Incorporating an On-line Strip Packing Algorithm
into Elastic Grid Reservation-based Systems

Anthony Sulistio, Kyong Hoon Kim and Rajkumar Buyya
Dept. of Computer Science and Software Engineering

The University of Melbourne, Australia
{anthony, jysh, raj}@csse.unimelb.edu.au

Abstract

In Grid systems, users may require assurance for com-
pleting their jobs on shared resources. Such guarantees
can only be provided by reserving resources in advance. In
this paper, we introduce an elastic reservation model, where
users can query about a resource availability on a given
time interval. They can also provide a reservation duration
time and/or number of compute nodes needed as soft con-
straints to the query. Next, we provide an adapted version
of an on-line strip packing algorithm, that takes into a con-
sideration of resource utilization when processing reserva-
tion requests. We evaluate our algorithm with a real work-
load trace and show that the proposed algorithm manages a
higher resource utilization and number of acceptance com-
pared to an ad-hoc rigid approach.

1 Introduction

Grid [11] and peer-to-peer (P2P) [20] network tech-
nologies enable the aggregation of distributed resources for
solving large-scale and computationally-intensive applica-
tions. These technologies are well-suited for Bag-of-Tasks
(BoT) applications [8], wherein each application consists
of independent tasks or jobs [1]. Some projects such as
Nimrod-G [6], Gridbus Broker [28], and SETI@home [2]
utilize these technologies to schedule compute-intensive
parameter-sweep applications on available resources [25].

Managing various resources and applications scheduled
in highly dynamic Grid environments is a complex and chal-
lenging process. Resource management is not only about
scheduling large and compute-intensive applications, but
also the manner in which resources are allocated, assigned,
and accessed. In most scheduling systems, submitted jobs
are initially placed into a queue if there are no available re-
sources. Therefore, there is no guarantee as to when these
jobs will be executed. This causes problems in time-critical

or parallel applications, such as task graph, where jobs may
have interdependencies.

Advance Reservation (AR) is the process of requesting
resources for use at specific times in the future [24]. Com-
mon resources that can be reserved or requested are com-
pute nodes and network bandwidth. AR in a scheduling
system solves the above problem by allowing users to gain
simultaneous and concurrent access to adequate resources
for the execution of such applications [27]. Currently, sev-
eral Grid systems are able to provide AR functionalities,
such as GARA [12] and ICENI [18].

In order to reserve the available resources in such AR
systems, a user must first submit a request by specifying a
series of parameters such as number of resources needed,
and start time and duration of his/her jobs [16]. Then, the
system checks for the feasibility of this request. If one or
more parameters can not be satisfied, then the request is
rejected. Hence, this approach is known as an inelastic or
rigid method, because these parameters are hard constraints
that do not permit the system any modifications.

Consequently, the user may resubmit new requests with
modified existing parameters, such as a different start time
and/or duration until available resources can be found.
However, this approach will have a negative impact in in-
creasing the communication overheads between users and
the resource. Moreover, it will also degrade the perfor-
mance of the resource in managing many incoming requests
due to previously rejected ones. Finally, if such a solution
is found, it might not be a good one since it only looks for
the first available resources. As a result, it will cause frag-
mentations of AR jobs, which leave behind many gaps of
idle time among them. Hence, resource utilization will be
significantly lowered.

To overcome the above problem, we introduce an elas-
tic reservation model, which takes into a consideration of
resource utilization when processing reservation requests.
With this model, users can query about the resource avail-
ability on a given time interval. They can also provide a
reservation duration time and/or number of compute nodes

(CNs) needed as soft constraints to the query. Then, the re-
source will give the users an offer and/or a list of alternative
ones if these constraints can not be met. This approach al-
lows a flexibility to the users to self-select or choose the best
option in reserving their jobs according to their Quality of
Service (QoS) parameters. We adapted an existing on-line
strip packing algorithm [9, 17] for this approach.

The rest of the paper is organized as follows. Section 2
describes an overview of the proposed elastic AR model.
Section 3 explains the on-line strip packing algorithm in
more details. This algorithm is then evaluated in Section 4
on a real workload trace. Section 5 mentions related work
whereas Section 6 concludes the paper and suggests some
further work to be done.

2 Elastic Advance Reservation Model

2.1 User

In order to reserve compute nodes (CNs) in a resource, a
user needs to submit a reservation request. However, before
making a request, the user can query about it to increase
the chance of getting accepted. This query operation is de-
fined as queryReserv(tis, tie, dur?, numCN?), where
tis denotes the earliest starting time interval, tie denotes the
latest ending time interval, dur denotes the reservation du-
ration time, numCN denotes the number of CNs to be re-
served respectively. The “?” sign indicates that this attribute
is optional one.

Upon receiving the queryReserv() operation, the re-
source will find a solution or an offer that satisfies both
dur and numCN constraints. Otherwise, these parame-
ters are treated as soft constraints and a list of alternative
offers are given. The list is defined as offerList[] =
{ offer(ts, te, numCN)+ }, where ts denotes start time,
te denotes end time, and + denotes one or more occurrences
of this tuple. These offers are temporary results generated
from this queryReserv() operation. Hence, the user needs
to select an offer and to send a reserv(ts, te, numCN)
operation for a guarantee. Note that in this paper, we solely
focus on reserving CNs as the type of resource. Moreover,
? and + signs are borrowed from a W3C recommendation
on XML [4].

Figure 1 shows an example of existing reserva-
tions, represented as a time-space diagram, in a re-
source. When a new query from User5 arrives, i.e.
queryReserv(11, 16, 2, 2), the resource checks for any
available nodes within [11, 16] time interval. It founds a
solution, which is offer(13, 15, 2), that satisfies both dur

and numCN constraints. Then, the user sends a reserva-
tion request, i.e. reserv(13, 15, 2), to accept this offer.

1 0 1 1 1 2 1 3 1 4 1 5 1 6
T i m e (S l o t)

N o d e 0

N o d e 1

N o d e 2

U s e r 3 U s e r 4

U s e r 5

U s e r 1

U s e r 2

r e s e r v (1 3 , 1 5 , 2)

a n e w r e q u e s t

q u e r y R e s e r v (1 1 , 1 6 , 2 , 2)

Figure 1. An example of elastic AR with 3
nodes. A dotted box denotes a new request.

R e s o u r c e
S c h e d u l e r

N o d e 0

N o d e 1

N o d e P - 1

T a s k q u e u e

A R q u e u e

R e s o u r c e

T a s k

D a t a
S t r u c t u r e

A R

R e s e r v a t i o n
S y s t e m

Figure 2. Overall resource model that sup-
ports elastic reservation model.

2.2 Resource

Figure 2 shows an open queueing network model of a
resource applied to our work. In this model, there are two
queues: one is reserved for AR jobs while the other one is
for parallel and independent jobs. Each queue stores jobs
waiting to be executed by one of P independent CNs. All
CNs are connected by a high-speed network. The CNs in
the resource can be homogeneous or heterogeneous. In this
paper, we assume that a resource has homogeneous CNs,
each having same processing power, memory and hard disk.

In this model, each resource has a Reservation System
(RS), which is responsible for handling reservation queries
and requests. When a resource receives a reservation query
or request, it searches for availability. More specifically, the
RS checks the data structure for this request. Therefore, the
primary role of the data structure is to store and to update
the information about CNs’ availability as time progresses.
Then, a resource scheduler is responsible for managing in-
coming jobs and assigning them to available CNs.

2.3 Data Structure

A well-designed data structure provides the flexibility
and easiness in implementing various algorithms. Hence,
some data structures are tailored to specific applications,
e.g. a tree-based data structure is commonly used for ad-

8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6
T i m e (S l o t)

r v = 0

1 0 U s e r 11 1 2

1 0 U s e r 21 3 1

1 1 U s e r 31 4 1 1 4 U s e r 41 5 1

r v = 0 r v = 1r v = 1r v = 2r v = 2r v = 3 r v = 0

Figure 3. A representation of storing reserva-
tions with a sorted queue and δ = 1.

mission control in network bandwidth reservation [5, 29].
For our model, we use an array-based structure for ad-

ministering reservations efficiently, as shown in Figure 3.
It is a time-slotted structure, where each slot contains rv,
the number of already reserved CNs, and a linked list for
storing reservations that start at this time. Thus, it parti-
tions dur into slots based on a fixed time interval δ. If dur

spans multiple slots, rv on each of them is updated accord-
ingly. Figure 3 shows how reservations are stored with a
sorted queue and δ = 1 time interval, by using the example
described in Figure 1. For enabling a fast O(1) access to a
particular slot, we use the following formula:

i =

⌈

t

δ

⌉

mod M (1)

where i is the slot index, t is the request time (in minutes),
and M is the number of slots in the data structure. Note that
in order not to overlap reservation from different months,
we assume that no reservations are made more than one
month in advance. As a result, the data structure can be
reused for the next month interval. Hence, it is only going
to be built once in the beginning.

2.4 Cost

As mentioned previously, in this model we differentiate
jobs based on whether they are using AR or not. Therefore,
the costs for executing these jobs would also be different.
For non-AR jobs, we calculate the running cost as

Cost = dur ∗ numCN ∗ bcost (2)

where bcost is the base cost of running a job at one time
unit. Intuitively, the cost for jobs that use AR will incur
higher due to the privilege of having guaranteed resources
at a future time. Hence, the running cost for AR jobs is
charged based on the number of reserved slots in the data
structure. More precisely,

CostAR = numSlot ∗ numCN ∗ bcostAR (3)

where numSlot is the total number of reserved slots, and
bcostAR is the cost of running the AR job at one time slot.
Thus, bcostAR = τ ∗ bcost ∗ δ, where τ is a constant factor
(τ ≥ 1) to differentiate the pricing.

3 On-line Strip Packing Algorithm

In this section, we describe how to generate suitable of-
fers for AR requests, by using an adapted on-line strip pack-
ing (OSP) algorithm for our elastic model. Since no prior
knowledge of AR arrivals is given, the proposed OSP algo-
rithm focuses on finding a solution or alternative offers for
each request. Hence, OSP aims to increase resource utiliza-
tion and to reduce fragmentations. This problem is similar
to a strip packing problem, where rectangles are coming in
and it is trying to minimize the height of rectangles packed
on one bin. Applying this problem to our model, an AR re-
quest represents a rectangle of which width and height are
numCN and dur respectively.

Algorithm 1 shows the proposed OSP algorithm for each
AR request. If the request does not specify any duration
time, then OSP sets the dur parameter to be δ by default
(line 4). Similarly, numCN = 1 if the value of numCN is
not given (line 5). If both parameters are specified in the re-
quest, the OSP algorithm considers them as hard constraints
and aims to find a solution. Otherwise, dur and numCN

are treated as soft constraints and OSP only gives a list of
suitable offers. The boolean variable needSol is used to
notify such a case (line 1–3).

After getting these constraints, OSP obtains a list of con-
secutive slots from the data structure within [tis, tie] in-
terval (line 8). We define a consecutive slot to be a se-
quence of slots with the same number of freeCN , i.e.
maxCN − slot.rv, where maxCN with the maximum
number of CNs. Thus, it reduces the total number of slots
needed for searching available CNs. Then, OSP ranks
them in an increasing order of freeCN (line 10), so that
indexRank[i] indicates the index of a slot with the (i + 1)-
th low freeCN in slotList. It follows such that

slotList[iA].freeCN ≤ slotList[iB].freeCN

where iA = indexRank[i], iB = indexRank[i + 1], and
i = 0, . . . , size− 1.

Since OSP searches for a possible reservation based on
indexRank[] (line 12–13), it targets at a slot which rep-
resents a local minima, such that freeCN at this point be-
comes all busy in a best scenario. However, the local min-
ima still needs to pass the numCN parameter (line 14).
Then, OSP tests for the dur or ts (total slots needed) con-
straint (line 15–42). The current slot is expanded to the
left as long as previous slots satisfy the numCN constraint
(line 19–27). Likewise, the slot is expanded to the right side
if more slots are needed (line 28–36). Next, this slot and the
expanded ones are grouped to become a new offer. Subse-
quently, this offer is added to offerList (line 37–38).

This offer is within [head, tail] slot interval in the data
structure and has minCN free CNs. If the total number of

Algorithm 1: The OSP algorithm for an elastic AR model.

Input: queryReserv(tis, tie, dur, numCN)
Output: offerList[] or a list of offers, including a

solution (if found)

if (dur 6= φ) and (numCN 6= φ) then1
needSol ← true;2

else needSol ← false;3
// initialize with a default value
if (dur == φ) then dur ← δ;4
if (numCN == φ) then numCN ← 1;5
offerList[] ← φ;6
ts← get total slot(dur); // total slots needed7
slotList[] ← find consecutive slot(tis, tie);8
size ← get size(slotList); // size of list9

// rank slotList[] in the increasing order
// of freeCN and returns its indices
indexRank[] ← get sorted index(slotList[]);10

// a loop to search for offers
for (i = 0) to (size− 1) do11

index← indexRank[i]; // current index12
slot← slotList[index]; // current slot13
// skips the rest and increments i
if (slot.freeCN < numCN) then continue;14

head← indexRank[i]; // starting index15
tail← indexRank[i]; // ending index16
totSlot← slot.numSlot; // total slot found17
minCN ← slot.freeCN ; // lowest freeCN18
// look at previous slots (left side)
for (l = index− 1) to (l ≥ 0) do // decrement19

freeCN ← slotList[l].freeCN ;20
if (freeCN < numCN) or (totSlot ≥ ts) then21

break;22
end23
head ← l; // starts from this slot24
totSlot← totSlot + slotList[l].numSlot;25
minCN ← min(freeCN, minCN);26

end27
// look at next slots (right side)
for (r = index + 1) to (r ≤ size− 1) do28

freeCN ← slotList[r].freeCN ;29
if (freeCN < numCN) or (totSlot ≥ ts) then30

break;31
end32
tail ← r; // ends until this slot33
totSlot← totSlot + slotList[r].numSlot;34
minCN ← min(freeCN, minCN);35

end36
offer ← make offer(head, tail, totSlot, minCN);37
offerList[] ← add offer(offerList[], offer);38
// found a solution
if (totSlot ≥ ts) and (needSol == true) then39

offerList[] ← found sol(offer, offerList[]);40
needSol ← false; break;41

end42

end43
offerList[] ← set cost(offerList[]);44
return offerList[];45

slots, totSlot, from this offer meets the ts and needSol ob-
jectives, then it is marked as a solution (line 39–42). More-
over, the found sol() function moves this offer to the top
of the list to become the first choice (line 40). The order of
offers in the list can be sorted based on policies of the re-
source. Once all offers have been created, OSP applies the
total cost to them (line 44).

As a result, the OSP algorithm returns a solution and/or
a list of offers for the given reservation request. Then, the
user decides or self-selects one of these offers according to
his/her QoS parameters. Moreover, the user is given the
flexibility to reduce dur and/or numCN of an offer. Over-
all, the time complexity for this OSP algorithm is O(n2)
where n is the number of consecutive slots.

4 Performance Evaluation

In order to evaluate the performance of our proposed al-
gorithm, i.e. an On-line Strip Packing (OSP) algorithm, we
compare it to a First Fit (FF) algorithm. Moreover, we intro-
duce a Rigid algorithm as a base comparison. The FF algo-
rithm only looks for the first available CNs within a given
time interval, whereas the Rigid algorithm treats tis, dur

and numCN as hard constraints. Therefore, if no solution
is found, then the Rigid algorithm will reject the request.
Note that only the OSP algorithm provides a list of offers
for this experiment.

For scheduling and running jobs, we incorporate First
Come First Serve (FCFS) and Easy Backfilling (BF) [19]
policy into the above algorithms. Hence, we combine FF
and Rigid algorithm with both FCFS and BF respectively,
and OSP algorithm with BF only. Moreover, all of them use
the same data structure with δ = 5 minutes, and has a fixed
interval length of 30 days. Finally, we set bcost = $0.05 per
minute and τ = 4.

We carried out the performance evaluation by using sim-
ulation, because we need to conduct repeatable and con-
trolled experiments that would otherwise be difficult to per-
form in real Grid testbeds. Therefore, we use GridSim
toolkit [26] by simulating a cluster with maxCN = 64.

4.1 Experimental Setup

We use a workload trace of the San Diego Supercom-
puter Center (SDSC) Blue Horizon obtained from the Par-
allel Workload Archive [10]. This trace is chosen because it
represents a large number of jobs and contains a mixture of
single and parallel jobs. Note that we only simulate the first
2-weeks period of the trace, which is approximately 3200
jobs, since the original trace was recorded over a two-year
period. We selected 30% of these jobs to use reservation.
Several modifications have also been made to this trace, as
mentioned below:

• If a job requires more than the total CNs of a resource,
we set this job to the maximum number of CNs.

• A request’s starting time is rounding up to the nearest
time interval. For example, if a job requests to start
at time 01:03:05 (hh:mm:ss), then it will be moved to
time 01:05:00.

• A job duration time is within [4 minutes, 28 days]. We
limit the maximum duration time to prevent overlap-
ping reservations from different months. Hence, the
data structure can be reused and built only once.

For the evaluation, we are investigating: (i) the effects
of having an elastic AR model, which include the average
resource utilization, the average revenue generated for run-
ning AR jobs, and the number of rejection for reserving
these jobs; (ii) the impact of such model to non-AR jobs,
where we measure the average waiting time they spent in a
queue; and (iii) the degree of such flexibility offered to AR
jobs, where we vary the following parameters:

• book-ahead time, bt, where it is the time difference be-
tween tis and the job starting time ts as stated in the
trace. In the experiment, we use bt ∈ {1, 5, 10} hours
prior to ts.

• search limit time, slt, where it is the time added to
the ending time interval. In the experiment, we use
slt ∈ {0, 1, 2, 4, 6, 8, 10, 12} hours.

• time interval, ti, where it is the time period where a
job needs to be reserved. We define the starting time
interval, tis = bt + ts, and the ending time interval,
tie = tis + dur + slt.

4.2 The User’s Selection Policy

As mentioned earlier, a user sends a reservation query
to a resource, and receives a list of offers, offerList[].
Algorithm 2 shows a selection policy of the user when no
solutions are found (line 1–8). The user is willing to accept
an offer by reducing the initial dur and numCN values, by
up to a half or δ and 1 respectively (line 1–2). Hence, the
list is sorted in decreasing order based on the duration time,
i.e. from the longest to the shortest duration time (line 3).
Then, each offer in the list is checked against minDur and
minCN (line 4–7). If no suitable offers are found, then the
user rejects all of them (line 8).

Note that this selection policy is overly simplified and
might not be feasible in real Grid applications. However, we
do this in order to demonstrate the elasticity of the proposed
model and the effectiveness of the OSP algorithm.

Algorithm 2: The selection policy of a user.

Input: offerList[] or a list of offers

minDur ← max(dur / 2, δ);1
minCN ← max(numCN / 2, 1);2
offerList[] ← sort decreasing(offerList[]);3
for (i = 0) to (size− 1) do4

offer ← offerList[i];5
if is suitable(offer, minCN, minDur) == true6
then return offer;

end7
return φ; // no suitable offers found8

4.3 Experimental Results

Figure 4 shows the effects of having an elastic AR model
on the average resource utilization. The result of this fig-
ure is influenced by the choice of a good scheduling pol-
icy, where BF manages to perform much better than FCFS.
Moreover, having a degree of flexibility in reservation re-
quests allows an additional improvement in most cases.
As expected, Rigid+BF performs worse than FF+BF and
OSP+BF overall, because it treats the input parameters as
hard constraints. Hence, bt and slt do not have any effects
on the Rigid+BF algorithm.

OSP behaves slightly worse to FF for bt = 1 hour since
the starting time interval tis is too short to make any im-
provements for the resource utilization. However, when
slt ≥ 6 hours, the performance of OSP is improving, and
on average OSP performs better than FF for bt = {5, 10}.

Figure 5 looks at the resource utilization in more details,
as it shows the total consumption of CNs for the entire du-
ration. FF+BF and Rigid+FCFS, as shown in Figure 5 (a)
and (c) respectively, fluctuate frequently throughout. This
condition can be interpreted as having too many fragmenta-
tions. In contrast, OSP+BF manages fragmentations better
since AR jobs are assigned to slots within a local minima of
free CNs, as displayed in Figure 5 (b).

As a result, jobs that require many CNs have a higher
probability of being accepted compare to FF+BF and
Rigid+FCFS. Moreover, with an elastic model, users can re-
duce numCN and/or dur values according to Algorithm 2.
Thus, OSP has the lowest number of rejection as slt in-
creases, as mentioned in Figure 6.

Figure 7 shows that by allowing users to select an al-
ternative offer if no solutions are found, this approach
reduces the total number of rejection around 13.50%
(bt = 5, slt = 0) to 77.22% (bt = 10, slt = 12). Hence,
this result translates to more revenue being generated.

Figure 8 shows the average revenue for running AR jobs.
The Rigid algorithm has the lowest revenue due to high
number of rejections as expected. Since AR jobs is charged
higher to run than normal ones, the elastic model has a ma-

 50

 55

 60

 65

 70

 75

0 1 2 4 6 8 10 12

R
es

ou
rc

e
U

til
iz

at
io

n
(%

)

Search Limit (hours)

Book-ahead time of 1 hour

FF+FCFS
FF+BF

OSP+BF
Rigid+FCFS

Rigid+BF

 50

 55

 60

 65

 70

 75

 80

 85

0 1 2 4 6 8 10 12

R
es

ou
rc

e
U

til
iz

at
io

n
(%

)

Search Limit (hours)

Book-ahead time of 5 hours

FF+FCFS
FF+BF

OSP+BF
Rigid+FCFS

Rigid+BF

 50

 55

 60

 65

 70

 75

0 1 2 4 6 8 10 12

R
es

ou
rc

e
U

til
iz

at
io

n
(%

)

Search Limit (hours)

Book-ahead time of 10 hours

FF+FCFS
FF+BF

OSP+BF
Rigid+FCFS

Rigid+BF

Figure 4. Average resource utilization.

 0

 10

 20

 30

 40

 50

 60

 70

 0 1000 2000 3000 4000 5000 6000

N
um

be
r o

f C
N

s

Time (slot)

(a) Resource Utilization using FF+BF

maximum CN

 0

 10

 20

 30

 40

 50

 60

 70

 0 1000 2000 3000 4000 5000 6000

N
um

be
r o

f C
N

s

Time (slot)

(b) Resource Utilization using OSP+BF

maximum CN

 0

 10

 20

 30

 40

 50

 60

 70

 0 1000 2000 3000 4000 5000 6000

N
um

be
r o

f C
N

s

Time (slot)

(c) Resource Utilization using Rigid+BF

maximum CN

Figure 5. Total number of busy CNs over a two-week period, with δ = 5 minutes, bt = 5 hours and
slt = 8 hours.

 0

 50

 100

 150

 200

 250

 300

 350

0 1 2 4 6 8 10 12

To
ta

l N
um

be
r o

f R
ej

ec
tio

n

Search Limit (hours)

Book-ahead time of 1 hour

FF+FCFS
FF+BF

OSP+BF
Rigid+FCFS

Rigid+BF
 0

 50

 100

 150

 200

 250

 300

 350

0 1 2 4 6 8 10 12

To
ta

l N
um

be
r o

f R
ej

ec
tio

n

Search Limit (hours)

Book-ahead time of 5 hours

FF+FCFS
FF+BF

OSP+BF
Rigid+FCFS

Rigid+BF
 0

 50

 100

 150

 200

 250

 300

0 1 2 4 6 8 10 12

To
ta

l N
um

be
r o

f R
ej

ec
tio

n

Search Limit (hours)

Book-ahead time of 10 hours

FF+FCFS
FF+BF

OSP+BF
Rigid+FCFS

Rigid+BF

Figure 6. Total Number of Rejection (lower is better).

 0

 50

 100

 150

 200

 250

 300

 350

0 1 2 4 6 8 10 12

To
ta

l

Search Limit (hours)

Book-ahead time of 1 hour

No Solutions Found
Number of Rejection

Alternative Offers

 0

 50

 100

 150

 200

 250

 300

 350

0 1 2 4 6 8 10 12

To
ta

l

Search Limit (hours)

Book-ahead time of 5 hours

No Solutions Found
Number of Rejection

Alternative Offers

 0

 50

 100

 150

 200

 250

 300

 350

0 1 2 4 6 8 10 12

To
ta

l

Search Limit (hours)

Book-ahead time of 10 hours

No Solutions Found
Number of Rejection

Alternative Offers

Figure 7. Degree of flexibility in reserving AR jobs for the OSP + BF algorithm.

 130
 140
 150
 160
 170
 180
 190
 200
 210
 220
 230
 240

0 1 2 4 6 8 10 12A
ve

ra
ge

 R
ev

en
ue

 fo
r r

un
ni

ng
 A

R
 jo

bs
 ($

)

Search Limit (hours)

Book-ahead time of 1 hour

FF+FCFS
FF+BF

OSP+BF
Rigid+FCFS

Rigid+BF

 140

 160

 180

 200

 220

 240

 260

0 1 2 4 6 8 10 12A
ve

ra
ge

 R
ev

en
ue

 fo
r r

un
ni

ng
 A

R
 jo

bs
 ($

)

Search Limit (hours)

Book-ahead time of 5 hours

FF+FCFS
FF+BF

OSP+BF
Rigid+FCFS

Rigid+BF

 140

 160

 180

 200

 220

 240

 260

0 1 2 4 6 8 10 12A
ve

ra
ge

 R
ev

en
ue

 fo
r r

un
ni

ng
 A

R
 jo

bs
 ($

)

Search Limit (hours)

Book-ahead time of 10 hours

FF+FCFS
FF+BF

OSP+BF
Rigid+FCFS

Rigid+BF

Figure 8. Average revenue for running AR jobs.

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 9500

0 1 2 4 6 8 10 12

A
ve

ra
ge

 W
ai

tin
g

Ti
m

e
(m

in
ut

es
)

Search Limit (hours)

Book-ahead time of 1 hour

FF+FCFS
FF+BF

OSP+BF
Rigid+FCFS

Rigid+BF
 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 9000

0 1 2 4 6 8 10 12

A
ve

ra
ge

 W
ai

tin
g

Ti
m

e
(m

in
ut

es
)

Search Limit (hours)

Book-ahead time of 5 hours

FF+FCFS
FF+BF

OSP+BF
Rigid+FCFS

Rigid+BF
 3000

 4000

 5000

 6000

 7000

 8000

 9000

0 1 2 4 6 8 10 12

A
ve

ra
ge

 W
ai

tin
g

Ti
m

e
(m

in
ut

es
)

Search Limit (hours)

Book-ahead time of 10 hours

FF+FCFS
FF+BF

OSP+BF
Rigid+FCFS

Rigid+BF

Figure 9. Average waiting time for non-AR jobs (lower is better).

jor advantage in generating more revenues, as mentioned
earlier. This is because, although a solution might not be
found, the user can self-select the given offers.

Figure 9 shows the impact of reservation for non-AR
jobs, in terms of the average waiting time. The impact is
worse when a request has a short time interval, hence no
room for flexibility. As bt becomes larger, OSP+BF man-
ages to minimize the waiting time significantly. If bt is
constant, the waiting time is reduced further if slt becomes
larger in some cases. However, this result is influenced by
the frequency of jobs arrival rate and the choice of a good
scheduling policy, where BF performs better than FCFS.

5 Related Work

Strip packing is a generalization of bin packing [15]. Bin
packing is an NP-hard problem, where it aims to minimize
the number of bins used to store a set of rectangles. Many
variants of bin packing have been proposed by several re-
searchers [3, 21] to find a solution.

A flexible method for reserving jobs in Grids has been
presented [7, 13, 14], where they talk about extending the
reservation time interval or window in order to increase the
success rate. However, they do no provide alternative offers
if the reservation is rejected. On the other hand, the work
done by [22, 23] provides this important functionality.

The fuzzy model introduced by [22] provides a set of pa-

rameters when requesting a reservation and applies speedup
models for finding the alternative solutions. However, no
optimization on the resource utilization is considered.

The model proposed by [23] uses a 3-layered negotia-
tion protocol, where the allocation layer deals with flexi-
ble reservations on a particular Grid resource. In this layer,
the authors also used a strip packing method, but the re-
sources are partitioned into different shelves, and each shelf
is associated with a fixed time length, number of CNs and
cost. Hence, the reservation request is placed or offered into
an adjacent shelf that is more suitable. This will lead into
higher resource fragmentations. In contrast, our algorithm
aims at reducing these fragmentations, as shown in Figure 5.

6 Conclusion and Future Work

Advance Reservation (AR) in Grid computing is an im-
portant research area as it allows users to gain concurrent
access to resources by allowing their applications to be ex-
ecuted in parallel. It also provides guarantees on the avail-
ability of resources at the specified times in the future.

In this paper, we introduce an elastic model, which takes
into a consideration of resource utilization when processing
reservation requests. With this model, users can query about
the resource availability on a given time interval. They
can also provide a reservation duration time and/or number
of compute nodes needed as soft constraints to the query.

Then, the resource will give a solution and/or a list of alter-
native options if these constraints can not be met, by using
an adapted on-line strip packing (OSP) algorithm. This ap-
proach enables a degree of flexibility to the users for choos-
ing the best option in reserving their jobs according to their
Quality of Service (QoS) parameters.

We evaluate the performance of the OSP algorithm us-
ing a workload trace from San Diego Supercomputer Cen-
ter. The results showed that OSP accepts more reservations
than First Fit and Rigid, which translate to generating more
revenue for the resource. In addition, OSP maintains a good
level of resource utilization, which is not too far from First
Fit. Finally, the impact of reservations to local jobs can be
minimized significantly by using OSP and receiving queries
with a larger time interval or a higher degree of flexibility.

An extension to this work is to consider a runtime esti-
mation and heterogeneous resources with fault tolerance in
the model. In addition, a further work is needed to imple-
ment and to evaluate our algorithm in a real Grid system.

References

[1] D. Abramson, J. Giddy, and L. Kotler. High performance
parametric modeling with Nimrod/G: Killer application for
the global grid? In Proc. of the 14th Intl. Symposium on
Parallel and Distributed Processing, Mexico, May 1–5 2000.

[2] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky,
and D. Werthimer. SETI@home: an experiment in
public-resource computing. Communications of the ACM,
45(11):56–61, 2002.

[3] J. O. Berkey and P. Y. Wang. Two-dimensional finite
bin-packing algorithms. Operational Research Society,
38(5):423–429, 1987.

[4] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and
F. Yergeau, editors. Extensible Markup Language (XML) 1.0
(Fourth Edition). W3C, 2006. http://www.w3c.org/TR/xml.

[5] A. Brodnik and A. Nilsson. A static data structure for dis-
crete advance bandwidth reservations on the internet. In
Proc. of Swedish National Computer Networking Workshop
(SNCNW), Stockholm, Sweden, September 2003.

[6] R. Buyya, D. Abramson, and J. Giddy. Nimrod-G: An archi-
tecture for a resource management and scheduling system in
a global computational grid. In Proc. of the 4th Intl. Confer-
ence & Exhibition on High Performance Computing in Asia-
Pacific Region (HPC Asia), Beijing, China, May 2000.

[7] M. Caramia, S. Giordani, and A. Iovanella. Grid schedul-
ing by on-line rectangle packing. Network, 44(2):106–119,
2004.

[8] W. Cirne, F. Brasileiro, J. Sauve, N. Andrade, D. Paranhos,
E. Santos-Neto, and R. Medeiros. Grid computing for bag
of tasks applications. In Proc. of the 3rd IFIP Conference on
E-Commerce, E-Business and E-Government, Sep 2003.

[9] W. F. de la Vega and V. Zissimopoulos. An approximation
scheme for strip packing of rectangles with bounded dimen-
sions. Discrete Appl. Math., 82(1-3):93–101, 1998.

[10] D. Feitelson. Parallel workloads archive.
http://www.cs.huji.ac.il/labs/parallel/workload, 2007.

[11] I. Foster and C. Kesselman, editors. The Grid: Blueprint
for a Future Computing Infrastructure. Morgan Kaufmann
Publishers, 1999.

[12] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and
A. Roy. A distributed resource management architecture that
supports advance reservations and co-allocation. In Proc. of
the 7th IWQoS, London, UK, 1999.

[13] C. Hu, J. Huai, and T. Wo. Flexible resource reservation
using slack time for service grid. In Proc. of the 12th Intl.
Conference on Parallel and Distributed Systems (ICPADS),
Minneapolis, USA, July 12–15 2006.

[14] N. R. Kaushik, S. M. Figueira, and S. A. Chiappari. Flexible
time-windows for advance reservation scheduling. In Proc.
of the 14th Intl. Symposium on Modeling, Analysis, and Sim-
ulation (MASCOTS), California, USA, Sep. 11-13 2006.

[15] C. C. Lee and D. T. Lee. A simple on-line bin-packing algo-
rithm. J. ACM, 32(3):562–572, 1985.

[16] J. MacLaren, editor. Advance Reservations: State of the Art
(draft). GWD-I, Global Grid Forum (GGF), June 2003.

[17] S. Martello, M. Monaci, and D. Vigo. An exact approach
to the strip-packing problem. INFORMS J. on Computing,
15(3):310–319, 2003.

[18] S. McGough, L. Young, A. Afzal, S. Newhouse, and J. Dar-
lington. Workflow enactment in ICENI. UK e-Science All
Hands Meeting, pages 894–900, September 2004.

[19] A. W. Mu’alem and D. G. Feitelson. Utilization, predictabil-
ity, workloads, and user runtime estimates in scheduling the
IBM SP2 with backfilling. IEEE Transactions on Parallel
and Distributed Systems, 12(6):529–543, 2001.

[20] A. Oram, editor. Peer-to-peer: Harnessing the Power of Dis-
ruptive Technologies. O’Reilly Press, 2001.

[21] W. T. Rhee. Optimal bin packing with items of random sizes.
Math. Oper. Res., 13(1):140–151, 1988.

[22] T. Roeblitz, F. Schintke, and A. Reinefeld. Resource reserva-
tions with fuzzy requests. Concurr. Comput. : Pract. Exper.,
18(13):1681–1703, 2006.

[23] M. Siddiqui, A. Villazon, and T. Fahringer. Grid capacity
planning with negotiation-based advance reservation for op-
timized QoS. In Proc. of the 2006 ACM/IEEE conference on
Supercomputing (SC’06), Florida, USA, November 2006.

[24] W. Smith, I. Foster, and V. Taylor. Scheduling with advanced
reservations. In Proc. of the Intl. Parallel and Distributed
Processing Symposium, Cancun, Mexico, May 1–5 2000.

[25] A. Sulistio and R. Buyya. A time optimization algorithm for
scheduling bag-of-task applications in auction-based propor-
tional share systems. In Proc. of the 17th Intl. Symposium
on Computer Architecture on High Performance Computing
(SBAC-PAD), Rio de Janeiro, Brazil, October 24–27 2005.

[26] A. Sulistio, G. Poduval, R. Buyya, and C.-K. Tham. On
incorporating differentiated levels of network service into
GridSim. FGCS, 23(4):606–615, May 2007.

[27] A. Sulistio, W. Schiffmann, and R. Buyya. Advanced
reservation-based scheduling of task graphs on clusters. In
Proc. of the 13th Intl. Conference on High Performance
Computing (HiPC), Bangalore, India, Dec. 18–21 2006.

[28] S. Venugopal, R. Buyya, and L. Winton. A grid service
broker for scheduling e-science applications on global data
grids. Concurrency and Computation: Practice and Experi-
ence (CCPE), 18(6):685–699, 2006.

[29] T. Wang and J. Chen. Bandwidth tree – a data structure for
routing in networks with advanced reservations. In Proc. of
the 21st Intl. Performance, Computing, and Communications
Conference, pages 37–44, Phoenix, USA, 2002.

