
Scheduling multiple divisible loads on a linear processor network

Matthieu Gallet, Yves Robert, and Frédéric Vivien
LIP, CNRS-ENS Lyon-INRIA-UCBL

École normale supérieure de Lyon, France
{Matthieu.Gallet, Yves.Robert, Frederic.Vivien}@ens-lyon.fr

Abstract

Min, Veeravalli, and Barlas have recently proposed
strategies to minimize the overall execution time of one or
several divisible loads on a heterogeneous linear network,
using one or more installments [18, 19]. We show on a very
simple example that their approach does not always pro-
duce a solution and that, when it does, the solution is often
suboptimal. We also show how to find an optimal schedul-
ing for any instance, once the number of installments per
load is given. Then, we formally prove that any optimal
schedule has an infinite number of installments under a lin-
ear cost model as the one assumed in [18, 19]. Such a cost
model cannot be used to design practical multi-installment
strategies. Finally, through extensive simulations we con-
firmed that the best solution is always produced by the lin-
ear programming approach.

1 Introduction

Efficiently scheduling the tasks of a parallel application
onto the resources of a distributed computing platform is
critical for achieving high performance. This scheduling
problem has been studied for a variety of application mod-
els. Some popular models consider a set of independent
tasks without task synchronization nor inter-task commu-
nications. Among these models some focus on the case in
which the number of tasks and the task sizes can be chosen
arbitrarily. This corresponds to the case when the appli-
cation consists of an amount of computation, or load, that
can be arbitrarily divided into any number of independent
pieces of arbitrary sizes. This corresponds to a perfectly
parallel job: any sub-task can itself be processed in parallel,
and on any number of workers. In practice, this model is
an approximation of an application that consists of (very)
large numbers of identical, low-granularity computations.
This divisible load model has been widely studied in the
last several years, and Divisible Load Theory (DLT) has
been popularized by the landmark book written in 1996 by

Bharadwaj, Ghose, Mani and Robertazzi [4]. DLT has been
applied to a large spectrum of scientific problems, includ-
ing linear algebra [6], image processing [11, 14], video and
multimedia broadcasting [1, 2], database searching [5], bi-
ological pattern-matching [13], and the processing of large
distributed files [17].

Divisible load theory provides a practical framework for
the mapping of independent tasks onto heterogeneous plat-
forms. From a theoretical standpoint, the success of the di-
visible load model is mostly due to its analytical tractabil-
ity. Optimal algorithms and closed-form formulas exist
for the simplest instances of the divisible load problem.
We are aware of only one NP-completeness result in the
DLT [20]. This is in sharp contrast with the theory of task
graph scheduling, which abounds in NP-completeness the-
orems and in inapproximability results.

Several papers in the Divisible Load Theory field con-
sider master-worker platforms [4, 7, 3]. However, in
communication-bound situations, a linear network of pro-
cessors can lead to better performance: on such a plat-
form, several communications can take place simultane-
ously, thereby enabling a pipelined approach. Recently,
Min, Veeravalli, and Barlas have proposed strategies to min-
imize the overall execution time of one or several divisi-
ble loads on a heterogeneous linear network [18, 19]. Ini-
tially, the authors targeted single-installment strategies, that
is strategies under which a processor receives in a single
communication all its share of the load. But for cases where
their approach failed to design single-installment strategies,
they also considered multi-installment solutions.

In this paper, we first show on a very simple example
(Section 3) that the approach proposed in [19] does not al-
ways produce a solution and that, when it does, the solution
is often suboptimal. The fundamental flaw of the approach
of [19] is that the authors are optimizing the scheduling
load by load, instead of attempting a global optimization.
The load by load approach is suboptimal and unduly over-
constrains the problem.

On the contrary, we show (Section 4) how to find an op-
timal scheduling for any instance, once the number of in-

1978-1-4244-1890-9/07/$25.00 ©2007 IEEE

stallments per load is given. In particular, our approach
always find the optimal solution in the single-installment
case. We also formally prove (Section 5) that under a lin-
ear cost model for communication and communication, as
in [18, 19], an optimal schedule has an infinite number of
installments. Such a cost model can therefore not be used
to design practical multi-installment strategies. Finally, in
Section 6, we report the simulations that we performed
in order to assess the actual efficiency of the different ap-
proaches. We now start by introducing the framework.

2 Problem and Notations

We use a framework similar to that of [18, 19]. The
target architecture is a linear chain of m processors
(P1, P2, . . . , Pm). Processor Pi is available from time τi.
It is connected to processor Pi+1 by the communication
link li (see Figure 1). The target application is composed
of N loads (or tasks, or jobs), which are divisible, which
means that each load can be split into an arbitrary number
of chunks of any size, and these chunks can be processed
independently. All the loads are initially available on pro-
cessor P1, which processes a fraction of them and delegates
(sends) the remaining fraction to P2 in parallel. In turn, P2

executes part of the load that it receives from P1 and sends
the rest to P3, and so on along the processor chain. Com-
munications can be overlapped with (independent) compu-
tations, but a given processor can be active in at most a sin-
gle communication at any time-step: sends and receives are
serialized (this is the full one-port model).

Since the last processor Pm cannot start computing be-
fore having received its first message, it is useful for P1 to
distribute the loads in several installments: the idle time of
remote processors in the chain will be reduced due to the
fact that communications are smaller in the first steps of the
overall execution.

The objective is to minimize the makespan, i.e., the time
at which all loads are completed. For the sake of conve-
nience, all notations are summarized in Table 1.

We deal with the general case in which the nth load is
distributed in Qn installments of different sizes. For the jth
installment of load n, processor Pi takes a fraction γnj (i),
and sends the remaining part to the next processor while
processing its own fraction.

Loads have different characteristics: load n (with 1 ≤
n ≤ N) is defined by a volume of data Vcomm(n) and a
quantity of computation Vcomp(n). Moreover, processors
and links are not identical either. We let wi be the time
taken by Pi to compute a unit load (1 ≤ i ≤ m), and zi be
the time taken by Pi to send a unit load to Pi+1 (over link
li, 1 ≤ i ≤ m − 1). Note that we assume a linear model
for computations and communications, as in the original ar-
ticles [18, 19], and as is often the case in divisible load liter-

L1 L2

lm−1l2l1

Pm−1 PmP1 P2 P3

Figure 1. Linear network, with m processors
and m− 1 links.

ature [16, 8] (we will discuss this hypothesis in Section 5).
For the jth installment of the nth load, let Commstart

i,n,j

denote the starting time of the communication between Pi
and Pi+1, and let Commend

i,n,j denote its completion time;
similarly, Compstarti,n,j denotes the start time of the compu-
tation on Pi for this installment, and Compendi,n,j denotes its
completion time. Following [18, 19], we make the assump-
tion that processor Pi sends the relevant fraction of the jth
installment of the nth load to processor Pi+1 before it starts
to receive another fraction of load from Pi−1. Similarly,
we suppose that the order in which the different application
loads are sent is fixed. Although very natural, these assump-
tions do reduce the solution space, and it might be useful to
relax them in some special cases.

3 Motivating example

We first recall the algorithms presented in [19]. We then
introduce our motivating example and use it to assess the
performance of these algorithms.

3.1 The existing algorithms

It is often stated that, when scheduling a single load un-
der the divisible load model, in an optimal solution “all
participating processors stop computing at the same time
instant” [19]. This property has been formally proved for
some particular settings [3, 7] but is used far more gener-
ally and some existing proofs are even flawed (see [7] for
examples).

Min, Veeravalli, and Barlas use this optimality princi-
ple to build their algorithm. They assume that all proces-
sors participate in the processing of each load and all com-
plete simultaneously the processing of any given load. The
strict application of this principle leads to what we call the
SINGLEINST algorithm. In order to further optimize the
processing of the loads, they force each processor to stay
busy from the first time it starts processing a load to the
overall completion. When such a solution does not exist

2

m Number of processors in the system.
Pi Processor i, where i = 1, . . . ,m.
wi Time taken by processor Pi to compute a unit load.
zi Time taken by Pi to transmit a unit load to Pi+1.
τi Availability date of Pi (time at which it becomes available for processing the loads).
N Total number of loads to process in the system.
Qn Total number of installments for nth load.
Vcomm(n) Volume of data for nth load.
Vcomp(n) Volume of computation for nth load.
γji (n) Fraction of nth load computed on processor Pi during the jth installment.
Commstart

i,n,j Start time of communication from processor Pi to processor Pi+1

for jth installment of nth load.
Commend

i,n,j End time of communication from processor Pi to processor Pi+1

for jth installment of nth load.
Compstarti,n,j Start time of computation on processor Pi

for jth installment of nth load.
Compendi,n,j End time of computation on processor Pi

for jth installment of nth load.

Table 1. Summary of notations.

with a single-installment strategy, that is when a proces-
sor receives in a single communication all its share of a
given load, they resort to multi-installment strategies where
each installment is the largest possible satisfying all the con-
straints (all processors complete simultaneously an install-
ment processing). This defines their main algorithm, that
we call MULTIINST. The idea is to fully overlap commu-
nications by computations (which is obviously not always
possible when communications are far more expensive than
computations). Both algorithms optimize the schedule load
by load, instead of attempting a global optimization.

3.2 The example

Our motivating example uses 2 identical processors P1

and P2 with w1 = w2 = λ, and z1 = 1. We con-
sider N = 2 identical divisible loads to process, with
Vcomm(1) = Vcomm(2) = 1 and Vcomp(1) = Vcomp(2) =
1. Note that when λ is large, communications become neg-
ligible and each processor is expected to process around
half of both loads. But when λ is close to 0, communi-
cations are very important, and the solution is not obvious.
As both processors have the same computational power, un-
der MULTIINST they will process the same fraction of any
given installment of any given load, except for the first in-
stallment of the first load.

To ease the reading, we only give a short (intuitive) de-
scription of the schedules, and we provide the different
makespans without justification; all details can be found in
the research report [15].

t

0 3
5

T (1)t1,2 T (2)

7
10

2
5

3
10

t1,1

P1

P2

l1

γ1
2(1) γ1

2(2)

λγ1
2(1) λγ1

2(2)

Figure 2. A possible schedule when λ = 1
2 .

We first consider a simple schedule which uses a single
installment for each load, as illustrated in Figure 2. Pro-
cessor P1 computes a fraction γ1

1(1) = 2λ2+1
2λ2+2λ+1 of the

first load, and a fraction γ1
1(2) = 2λ+1

2λ2+2λ+1 of the sec-
ond load. Then the second processor computes a fraction
γ1
2(1) = 2λ

2λ2+2λ+1 of the first load, and a fraction γ1
2(2) =

2λ2

2λ2+2λ+1 of the second load. The makespan achieved by

this schedule is equal to makespan1 =
2λ(λ2+λ+1)
2λ2+2λ+1 .

3.3 Case λ ≥
√

3+1
2 : single-installment

Under the algorithms of [19], P1 and P2 have to simul-
taneously complete the processing of their share of the first

3

t

T (2)

11
5

T (1)t1,1

0 6
5

7
10

2
5

t1,2

P2

P1

l1

γ1
2(1) γ1

2(2) λ(1− γ1
2(2))

λγ1
2(1) λγ1

2(2)

Figure 3. The schedule of [19] for λ = 2.

load. The same holds true for the second load. We are in
the one-installment case when P1 is fast enough to send the
second load to P2 while it is computing the first load (hence
SINGLEINST and MULTIINST have the same output). This
condition writes λ ≥

√
3+1
2 ≈ 1.366. Then, P1 processes

a fraction γ1
1(1) = λ+1

2λ+1 of the first load, and a fraction
γ1
1(2) = 1

2 of the second one. The makespan achieved by
this schedule is makespan2 = λ(4λ+3)

2(2λ+1) .
Comparing both makespans, we have 0 ≤ makespan2−

makespan1 ≤ 1
4 , the solution of [19] having a strictly larger

makespan, except when λ =
√

3+1
2 . A visual representation

of this case is given in Figure 3 for λ = 2.

3.4 Case λ <
√

3+1
2 : multi-installment

The solution of [19] is a multi-installment strategy when
λ <

√
3+1
2 , i.e., when communications tend to be impor-

tant compared to computations. More precisely, this case
happens when P1 does not have enough time to completely
send the second load to P2 before the end of the computa-
tion of the first load on both processors.

The way to proceed in [19] is to send the second load
using a multi-installment strategy. Q2 denote the number
of installments for this second load. We can easily compute
the size of each fraction distributed to P1 and P2. Processor
P1 has to process a fraction γ1

1(1) = λ+1
2λ+1 of the first load,

and fractions γ1
1(2), γ2

1(2), . . . , γQ2
1 (2) of the second one.

Moreover, for 1 ≤ k < Q2, due to all the assumptions, we
have γk1 (2) = λkγ1

2(1). And for k = Q2 (the last install-
ment), we have γQ2

1 (2) ≤ λQ2γ1
2(1). We can then establish

an upper bound on the portion of the second load distributed
in Q2 installments:

Q2∑
k=1

(
2γk1 (2)

)
≤ 2

Q2∑
k=1

(
γ1
2(1)λk

)
=

2
(
λQ2 − 1

)
λ2

2λ2 − λ− 1

if λ 6= 1, and Q2 = 2 otherwise. We have three cases to
discuss:

0

t1,1

t

λ
2

γ1
2(1)

3
8

1
4

1
2

5
8

t2,2

t1,2 T (1) t3,2

P2

P1

l1

γ1
2(2) γ2

2(2)γ3
2(2)

λγ1
2(1) λγ1

2(2) λγ2
2(2)

Figure 4. The schedule of [19] for λ = 1
2 .

1. 0 < λ <
√

17+1
8 ≈ 0.64: Since λ < 1, we can write

for any nonnegative integer Q2:

Q2∑
k=1

(2βk) <
∞∑
k=1

(2βi) =
2λ2

(1− λ)(2λ+ 1)

2λ2

(1−λ)(2λ+1) < 1 when λ <
√

17+1
8 . So, an infinite

number of installments do not suffice to completely
process the second load. In other words, no solution
is found in [19] for this case. A visual representation
of this case is given in Figure 4 with λ = 0.5.

2. λ =
√

17+1
8 : Then 2λ2

(1−λ)(2λ+1) = 1, and an infinite
number of installments is required to completely pro-
cess the second load. This solution is unrealistic.

3.
√

17+1
8 < λ <

√
3+1
2 : The solution of [19] is then a

multi-installment solution which is better than any so-
lution using a single installment per load. (A visual
representation of this case is given in Figure 5 with
λ = 1.) However this solution may require a very large
number of installments and is not always optimal. In-
deed, consider the case λ = 3

4 . The algorithm of [19]
achieves a makespan equal to

(
1− γ1

2(1)
)
λ+ λ

2 = 9
10 .

The first load is sent in one installment and the second
one is sent in 3 installments, as the number of install-

ments is set in [19] as Q2 =
⌈

ln(4λ2−λ−1
2λ2)

ln(λ)

⌉
. However,

we can come up with a better schedule, maybe sub-
optimal but still valid, by splitting both loads into two
installments, and distributing them as follows:

• Load 1, first round: P1 processes 0 unit;
• Load 1, first round: P2 processes 192

653 unit;
• Load 1, second round: P1 processes 317

653 unit;
• Load 1, second round: P2 processes 144

653 unit;
• Load 2, first round: P1 processes 0 unit;
• Load 2, first round: P2 processes 108

653 unit;
• Load 2, second round: P1 processes 464

653 unit;
• Load 2, second round: P2 processes 81

653 unit.

4

t

γ2
2(2)

7
6

1
3

2
3

γ2
2(2)γ1

2(2)γ1
2(1)

t1,1 t1,2 T (1) t2,2 T (1, 2) T (2) = T (2, 2)

0 15
6

P2

P1

l1

γ1
2(1) γ1

2(2)

Figure 5. The schedule of [19] for λ = 1.

This scheme gives us a total makespan equal to
781
653

3
4 ≈ 0.897, which is (slightly) better than 0.9. This

shows that among the schedules having a total number
of four installments, the solution of [19] is suboptimal.

3.5 Conclusion

Despite its simplicity (two identical processors and two
identical loads), out motivating example clearly outlines the
limitations of the approach of [19]: this approach does not
always return a feasible solution and, when it does, this so-
lution is not always optimal. In the next section, we show
how to compute an optimal schedule when dividing each
load into any prescribed number of installments. Our sim-
ulations will later show that the gap between MULTIINST
and the optimal schedule can be very important.

4 Optimal solution

We now show how to compute an optimal schedule,
when dividing each load into any prescribed number of in-
stallments. Therefore, when this number of installment is
set to 1 for each load (i.e., Qn = 1, for any n in [1, N]), the
following approach solves the problem originally targeted
by Min, Veeravalli, and Barlas.

To build our solution we use a linear programming ap-
proach. In fact, we only have to list all the (linear) con-
straints that must be fulfilled by a schedule, and write that
we want to minimize the makespan. All these constraints
are captured by the linear program in Figure 6. The optimal-
ity of the solution comes from the fact that the constraints
are exactly all the constraints that any schedule must ful-
fill under the assumptions of Section 2, and a solution to
the linear program is obviously always feasible. This linear
program simply encodes the following constraints (a con-
straint has the same number below and in Figure 6):

1. Pi cannot start a new communication to Pi before the
end of the corresponding communication from Pi−1 to

Pi,
2. Pi cannot start to receive the next installment of the
nth load before having finished to send the current one
to Pi+1,

3. Pi cannot start to receive the first installment of the
next load before having finished to send the last in-
stallment of the current load to Pi+1,

4. any transfer has to begin at a nonnegative time,
5. the duration of any transfer is equal to the product of

the time taken to transmit a unit load by the volume of
data to transfer,

6. processor Pi cannot start to compute the jth install-
ment of the nth load before having finished to receive
the corresponding data,

7. the duration of any computation is equal to the product
of the time taken to compute a unit load by the volume
of computations,

8. processor Pi cannot start to compute the first install-
ment of the next load before it has completed the com-
putation of the last installment of the current load,

9. processor Pi cannot start to compute the next install-
ment of a load before it has completed the computation
of the current installment of that load,

10. processor Pi cannot start to compute the first install-
ment of the first load before its availability date,

11. the portion of a load dedicated to a processor is neces-
sarily nonnegative,

12. any load has to be completely processed,
13. the makespan is no smaller than the completion time

of the last installment of the last load on any processor.
Altogether, we have a linear program to be solved over

the rationals, hence a solution in polynomial time [10]. In
practice, packages like GLPK [9] will return the optimal so-
lution for all reasonable problem sizes. Note that the linear
program gives the optimal solution for a prescribed number
of installments for each load. In the next section we discuss
the problem of the number of installments.

5 Possible extensions

Several of the model restrictions can be alleviated. First
the model uses uniform machines, meaning that the speed
of a processor does not depend on the task that it executes.
It is easy to extend the linear program for unrelated parallel
machines, introducing wni to denote the time taken by Pi
to process a unit load of type n. Also, all processors and
loads are assumed to be available from the beginning. In
our linear program, we have introduced availability dates
for processors. The same way, we could have introduced
release dates for loads. Furthermore, instead of minimizing
the makespan, we could have targeted any other objective
function which is an affine combination of the loads com-
pletion time and of the problem characteristics, like the av-

5

∀i < m− 1, n ≤ N, j ≤ Qn Commstart
i+1,n,j ≥ Commend

i,n,j (1)

∀i < m− 1, n ≤ N, j < Qn Commstart
i,n,j+1 ≥ Commend

i+1,n,j (2)

∀i < m− 1, n < N Commstart
i,n+1,1 ≥ Commend

i+1,n,Qn (3)

∀i ≤ m− 1, n ≤ N, j ≤ Qn Commstart
i,n,j ≥ 0 (4)

∀i ≤ m− 1, n ≤ N, j ≤ Qn Commend
i,n,j = Commstart

i,n,j + ziVcomm(n)

mX
k=i+1

γjk(n) (5)

∀i ≥ 2, n ≤ N, j ≤ Qn Compstarti,n,j ≥ Commend
i,n,j (6)

∀i ≤ m,n ≤ N, j ≤ Qn Compendi,n,j = Compstarti,n,j + wiγ
j
i (n)Vcalc(n) (7)

∀i ≤ m,n < N Compstarti,n+1,1 ≥ Compendi,n,Qn (8)

∀i ≤ m,n ≤ N, j < Qn Compstarti,n,j+1 ≥ Compendi,n,j (9)

∀i ≤ m Compstarti,1,1 ≥ τi (10)

∀i ≤ m,n ≤ N, j ≤ Qn γji (n) ≥ 0 (11)

∀n ≤ N
Pm
i=1

PQ
j=1 γ

j
i (n) = 1 (12)

∀i ≤ m makespan ≥ Compendi,N,Q (13)

Figure 6. The complete linear program.

erage completion time, the maximum or average (weighted)
flow, etc.

The formulation of the problem does not allow any piece
of the n′th load to be processed before the nth load is com-
pletely processed, if n′ > n. We can easily extend our solu-
tion to allow for N rounds of the N loads, each load being
still divided into several installments. This would allow to
interleave the processing of the different loads.

The divisible load model is linear, which causes major
problems for multi-installment approaches. Indeed, once
we have a way to find an optimal solution when the number
of installments per load is given, the question is: what is the
optimal number of installments? Under a linear model for
communications and computations, the optimal number of
installments is infinite, as the following theorem states:

Theorem 1. Assuming a linear cost model for communica-
tions and computations, consider any problem problem with
one or more loads and at least two processors. Then, any
schedule using a finite number of installments is suboptimal
for makespan minimization.

This theorem is proved by building, from any sched-
ule, another schedule with a strictly smaller makespan. The
proof is available in the research report [15].

An infinite number of installments obviously does not
define a feasible solution. Moreover, in practice, when the
number of installments becomes too large, the model is in-
accurate, as acknowledged in [4, pp. 224 and 276]. Any
communication incurs a startup cost K, which we express
in bytes. Consider the nth load, whose communication

volume is Vcomm(n): it is split into Qn installments, and
each installment requires m− 1 communications. The ratio
between the actual and estimated communication costs is
roughly equal to ρ = (m−1)QnK+Vcomm(n)

Vcomm(n) > 1. Since K,
m, and Vcomm are known values, we can choose Qn such
that ρ is relatively small, and so such that the model remains
valid for the target application. Another, and more accurate
solution, would be to introduce latencies in the model, as
in [3]. This latter article shows how to design asymptoti-
cally optimal multi-installment strategies for star networks.
A similar approach could be used for linear networks.

6 Experiments

Using simulations, we assess the relative performance of
our linear programming approach, of the solutions of [18,
19], and of simpler heuristics. We first describe the experi-
mental protocol and then analyze the results.

Experimental protocol. We use Simgrid [12] to simulate
linear processor networks. Schedules are computed by a
Perl script, and their validity and theoretical makespan are
checked before running them in the simulator.

We study the following algorithms and heuristics:
• The naive heuristic SIMPLE distributes each load in a

single installment and proportionally to the processor
speeds.

• The strategy for a single load, SINGLELOAD, pre-
sented by Min and Veeravalli in [18]. For each load,

6

we set the time origin to the availability date of the
first communication link (in order to prevent commu-
nication contentions).

• The SINGLEINST strategy described in Section 3.1.
• The MULTIINST n strategy. This is a slightly modi-

fied version of MULTIINST which ensures that a load
is not distributed in more than n installments, the nth
installment distributing all the load remaining work.

• The HEURISTIC B presented by Min, Veeravalli and
Barlas in [19].

• LP n: the solution of our linear program where each
load is distributed in n installments.

We measure the relative performance of each heuristic on
each instance: we divide the makespan obtained by a given
heuristic on a given instance by the smallest makespan ob-
tained, on that instance, among all heuristics. Considering
the relative performance enables us to obtain meaningful
statistics among instances with very different makespans.

Instances. We emulate a heterogeneous linear network
with m = 10 processors. We consider two distribution
types for processing powers: homogeneous where each
processor Pi has a processing power 1

wi
= 100 MFLOPS,

and heterogeneous where processing powers are uniformly
picked between 10 and 100 MFLOPS. Communication
link li has a speed 1

zi
uniformly chosen between 10

Mb/s and 100 Mb/s. Latencies are between 0.1 ms (for
the fastest links) and 1 ms (for the slowest ones). For
homogeneous and heterogeneous platforms, simulation
tasks have their computation volumes either all uniformly
distributed between 6 GFLOPS and 4 TFLOPS, or all
uniformly distributed between 6 and 60 GFLOPS. For each
combination of processing power distribution and task
size, we fix the communication to computation volume
of all tasks to either 0.01, 0.05, 0.1, 0.5, 1.0, 5., 10, 50, or
100 (bytes per FLOPS). Each instance contains 50 loads.
Finally, we randomly built 100 instances per combination
of the different parameters, hence a total of 3,600 instances
simulated and reported in Table 2. The code and the
experimental results can be downloaded from: http:
//graal.ens-lyon.fr/~mgallet/downloads/
DivisibleLoadsLinearNetwork.tar.gz.

We fixed an upper-bound for the number of installments
per load used by the different heuristics : MULTIINST to
either 100 or 300, SINGLELOAD to 100, and LP n to either
1, 2, 3, or 6.

Discussions of the results. We first remark that the lin-
ear program approach always reaches the best makespan.
LP 1, LP 2, LP 3, and LP 6 achieve equivalent perfor-
mance, always less than 5‰ away from the optimal. This
may seem counter-intuitive but can be readily explained:
multi-installment strategies mainly reduce the idle time in-

Heuristic Average Std dev. Max
SIMPLE 1150.428871 1587.291171 8385.941631
SINGLELOAD 100 1462.658417 2001.397914 10714.417531
SINGLEINST 1.063072 0.080003 1.523246
MULTIINST 100 1.139619 0.184372 1.987124
MULTIINST 300 1.139628 0.184385 1.987124
HEURISTIC B 1.132682 0.174658 2.018659
LP 1 1.000472 0.000850 1.004988
LP 2 1.000049 0.000096 1.001967
LP 3 1.000024 0.000047 1.000981
LP 6 1.000000 0.000000 1.000013

Table 2. Summary of results.

curred on each processor before it starts processing the first
task, and the room for improvement is thus quite small in
our batches of 50 tasks. The strict one-port communication
model forbids the overlapping of some communications due
to different installments, and further limits the room for per-
formance enhancement. Except in some peculiar cases, dis-
tributing the loads in multi-installments do not induce sig-
nificant gains. In very special cases, LP 6 does not achieve
the best performance during the simulations, but this fact
can be explained by the latencies existing in simulations.

The bad performance of SIMPLE, which can have
makespans 8000 greater than the optimal, justify the use
of sophisticated scheduling strategies. SINGLEINST has
tremendously better performance than SINGLELOAD as it
far better takes into account communication link availabil-
ities: the huge difference of performance is due to the
instances with expensive communications. SINGLEINST
achieves very good average performance, within 6% of the
optimal. It also achieves significantly better performance
than MULTIINST, and HEURISTIC B. This may also be
due to the fact that multi-installment strategies are not effi-
cient in our experimental context. The slight difference per-
formance between MULTIINST 100 and MULTIINST 300
shows that MULTIINST sometimes uses a large amount
of installments for an insignificant negative gain (certainly
due to the latencies). When communication links are slow
and when computations dominate communications, MUL-
TIINST and HEURISTIC B can have makespans 98% higher
than the optimal.

7 Conclusion

We have shown that a linear programming approach al-
lows to solve all instances of the scheduling problem ad-
dressed in [18, 19]. In contrast, the original approach was
providing a solution only for particular problem instances.
Moreover, the linear programming approach returns an opti-
mal solution for any number of installments, while the orig-

7

inal approach was empirically limited to very special strate-
gies, and was often sub-optimal.

Intuitively, the solution of [19] is less efficient than the
schedule of Section 3.2 because it aims at locally optimiz-
ing the makespan for the first load, and then optimizing
the makespan for the second one, and so on, instead of di-
rectly searching for a global optimum. We were not able
to provide closed-form expressions characterizing optimal
solutions, but owing to the power of linear programming,
we were able to derive an optimal schedule for any prob-
lem instance. We validated this approach through simula-
tions which confirmed that the best solution is always pro-
duced by the linear programming approach, while solutions
of [19] can be far away from the optimal. The simulations
also show that, in our settings, the multi-installment strate-
gies rarely lead to significant gains.

References

[1] D. Altilar and Y. Paker. An optimal scheduling algo-
rithm for parallel video processing. In IEEE Int. Con-
ference on Multimedia Computing and Systems. IEEE
Computer Society Press, 1998.

[2] D. Altilar and Y. Paker. Optimal scheduling algo-
rithms for communication constrained parallel pro-
cessing. In Euro-Par 2002, LNCS 2400, pages 197–
206. Springer Verlag, 2002.

[3] O. Beaumont, H. Casanova, A. Legrand, Y. Robert,
and Y. Yang. Scheduling divisible loads on star and
tree networks: results and open problems. IEEE Trans.
Parallel Distributed Systems, 16(3):207–218, 2005.

[4] V. Bharadwaj, D. Ghose, V. Mani, and T. Rober-
tazzi. Scheduling Divisible Loads in Parallel and Dis-
tributed Systems. IEEE Computer Society Press, 1996.

[5] J. Blazewicz, M. Drozdowski, and M. Markiewicz.
Divisible task scheduling - concept and verification.
Parallel Computing, 25:87–98, 1999.

[6] S. Chan, V. Bharadwaj, and D. Ghose. Large matrix-
vector products on distributed bus networks with com-
munication delays using the divisible load paradigm:
performance and simulation. Mathematics and Com-
puters in Simulation, 58:71–92, 2001.

[7] S. Genaud, A. Giersch, and F. Vivien. Load-balancing
scatter operations for grid computing. Parallel Com-
puting, 30(8):923–946, 2004.

[8] D. Ghose and T. Robertazzi, editors. Special issue on
Divisible Load Scheduling. Cluster Computing, 6, 1,
2003.

[9] GLPK: GNU Linear Programming Kit. http://
www.gnu.org/software/glpk/.

[10] N. Karmarkar. A new polynomial-time algorithm
for linear programming. In Proceedings of the 16th
ACM symposium on Theory of Computing (STOC’84),
pages 302–311. ACM Press, 1984.

[11] C. Lee and M. Hamdi. Parallel image processing
applications on a network of workstations. Parallel
Computing, 21:137–160, 1995.

[12] A. Legrand, L.Marchal, and H. Casanova. Schedul-
ing Distributed Applications: The SIMGRID Simula-
tion Framework. In Proceedings of CCGrid’03, pages
138–145, May 2003.

[13] A. Legrand, A. Su, and F. Vivien. Minimizing the
stretch when scheduling flows of biological requests.
In Proceedings of SPAA ’06, pages 103–112. ACM
Press, 2006.

[14] X. Li, V. Bharadwaj, and C. Ko. Distributed image
processing on a network of workstations. Int. J. Com-
puters and Applications (ACTA Press), 25(2):1–10,
2003.

[15] F. V. Matthieu Gallet, Yves Robert. Comments on
“design and performance evaluation of load distribu-
tion strategies for multiple loads on heterogeneous
linear daisy chain networks”. Research report RR-
6123, INRIA, 2007. http://hal.inria.fr/
inria-00130294.

[16] T. Robertazzi. Ten reasons to use divisible load theory.
IEEE Computer, 36(5):63–68, 2003.

[17] R. Wang, A. Krishnamurthy, R. Martin, T. Ander-
son, and D. Culler. Modeling communication pipeline
latency. In Measurement and Modeling of Com-
puter Systems (SIGMETRICS’98), pages 22–32. ACM
Press, 1998.

[18] H. M. Wong and B. Veeravalli. Scheduling divisible
loads on heterogeneous linear daisy chain networks
with arbitrary processor release times. IEEE Trans.
Parallel Distributed Systems, 15(3):273–288, 2004.

[19] H. M. Wong, B. Veeravalli, and G. Barlas. Design and
performance evaluation of load distribution strategies
for multiple divisible loads on heterogeneous linear
daisy chain networks. J. Parallel Distributed Com-
puting, 65(12):1558–1577, 2005.

[20] Y. Yang, H. Casanova, M. Drozdowski, M. Lawenda,
and A. Legrand. On the complexity of multi-
round divisible load scheduling. Research report RR-
6096, INRIA, 2007. http://hal.inria.fr/
inria-00123711.

8

