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Abstract

This paper presents a case for exploiting the synergy of
dedicated and opportunistic network resources in a dis-
tributed hosting platform for data stream processing ap-
plications. Our previous studies have demonstrated the
benefits of combining dedicated reliable resources with op-
portunistic resources in case of high-throughput comput-
ing applications, where timely allocation of the processing
units is the primary concern. Since distributed stream pro-
cessing applications demand large volume of data trans-
mission between the processing sites at a consistent rate,
adequate control over the network resources is important
here to assure a steady flow of processing. In this paper,
we propose a system model for the hybrid hosting platform
where stream processing servers installed at distributed
sites are interconnected with a combination of dedicated
links and public Internet. Decentralized algorithms have
been developed for allocation of the two classes of net-
work resources among the competing tasks with an objec-
tive towards higher task throughput and better utilization
of expensive dedicated resources. Results from extensive
simulation study show that with proper management, sys-
tems exploiting the synergy of dedicated and opportunistic
resources yield considerably higher task throughput and
thus, higher return on investment over the systems solely
using expensive dedicated resources.

1 Introduction

Many applications on the Internet are creating, manip-
ulating, and consuming data at an astonishing rate. Data
stream processing is one such class of applications where
data is streamed through a network of servers that oper-
ate on the data as they pass through them [16, 17, 7]. De-
pending on the application, the stream processing tasks can
have complex topologies with multiple sources or multi-
ple sinks. Examples of stream processing tasks are found
in many areas including distributed databases, sensor net-

works, and multimedia computing. Some examples in-
clude: (i) multimedia streams of real-time events that are
transcoded into different formats, (ii) insertion of informa-
tion tickers into multimedia streams, (iii) real-time analysis
of network monitoring data streams for malicious activity
detection, and (iv) function computation over data feeds
obtained from sensor networks.

One of the salient characteristics of this class of appli-
cations is the demanding compute and network resource
requirements [8]. Huge volume of data generated at a
high rate need to be processed within real-time constraints.
Moreover, various operations on these data streams are
provided by different servers at distributed geographic lo-
cations [14]. All these factors demand a scalable and adap-
tive architecture for distributed stream processing plat-
form, where fine-grained control over processing and net-
work resources is possible.

Earlier works on stream processing engines [15] re-
sorted to centralized single-server or server-cluster based
solutions where tighter control over available resources
are possible. With possibility of different processing ser-
vices or operations being provided by different providers,
need for distributed stream processing platform arose. Sev-
eral architectures have been proposed to support such dis-
tributed processing of streams [8, 13, 14, 12]. Due to the
stringent rate-requirement for processing and transmission
of data, most researchers have assumed a central resource
controller that can gather the availability status of all re-
sources and map the requested tasks on them. However,
with advent of diverse range of stream processing services,
it is important to allow autonomous providers of services to
collaborate and share their resources. Thus it is important
to develop distributed resource allocation schemes, where
control is available over local resources only.

While it is feasible to have dedicated server resources
and precisely allocate them for processing tasks, dedicated
networks over wide-area installations remain costly. It
is possible to propagate the data streams through the the
distributed servers using the public Internet. However,
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the lack of adequate control over end-to-end bandwidth
in current Internet and the stringent rate requirement of
the stream processing applications demand some dedicated
network resources. In fact, recent advances in optical net-
work technologies such as user-controlled light path [9]
open the possibility of on-demand provisioning of end-to-
end optical links with total control of the bandwidth avail-
able to the user application.

In this paper, we explore a novel approach where a com-
bination of dedicated links and public network to intercon-
nect the servers. The main focus of this paper is to explore
how such a hybrid (denotedbi-modal in this paper) net-
work can be best used for data stream processing tasks.
The hypothesis that drives this work is that the combina-
tion has a synergistic effect that allows better utilization of
the dedicated resources, and yields higher return on invest-
ment. We devised distributed algorithms for allocation of
these hybrid resources to demonstrate the viability of this
synergy hypothesis.

This paper extends some of our previous work [3, 2]
on bi-modal compute platforms where dedicated compute-
clusters were augmented with opportunistically harvested
processing elements to increase work throughput and uti-
lization of dedicated resources. Using data stream process-
ing tasks as a concrete example, this paper demonstrates
the benefit of using bi-modal network infrastructures for
communication-intensive applications.

In Section 2 we present the system model for the data
stream processing and the associated resource allocation
problem. Section 3 discusses the algorithms devised for
managing the resources towards global optimization of
throughput and resource utilization. Section 4 examines
the results from the extensive simulation studies we carried
out to evaluate the algorithms. Section 5 reviews related
literature.

2 System Model and Assumptions
In a stream processing task, the data stream originat-

ing from a data-sourcenode, progresses through several
steps of prcessing, termed asservice components(or ser-
vice in short), before being delivered to thedata-delivery
node. For example, in video streaming, the service com-
ponents may be encoding of video, embedding some real
time tickers and transcoding the video into different for-
mats. Although, in very general terms, the data-flow topol-
ogy could be arbitrary graphs, in this paper, we restrict our
study within linear path topology only.

The distributed stream procesing platform consists of
several autonomous server nodes that serve the service
components. A single server may serve multiple services
and a serve may be available at multiple servers. Several
pairs of servers establish dedicated point-to-point linksbe-
tween them to have the flow of the data streams at a con-
trolled rate. Each server is also connected to the public In-
ternet and end-to-end TCP connection can be established

between any pair of servers. However, end-to-end band-
width of the TCP connections cannot be allocated and the
flow rate cannot be controlled.

The platform is modeled as an asynchronous message
passing distributed system, where there is no centralized
controller to coordinate the resources. The servers have
knowledge of and can precisely allocate the local resources
only, i.e. the processing capacity and the bandwidth of
outgoing links. However, the servers comply with the
global protocol and respond to a predefined set of mes-
sages in a predefined way. The objective of the global pro-
tocol is to ensure adequate resources for each individual
task for its seamless progress, and to maximize the global
work throughput. Other factors such as balancing the load
among different servers and maximizing the utilization of
dedicated resources are also considered. Design and eval-
uation of the protocol constitute the remaining sections of
the paper.
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Figure 1. Stream processing platform

Figure 1 illustrates a scenario of a stream processing
platform containing five servers. The example stream pro-
cessing task shown in the figure requests a data stream
from data sourced2 to be processed through servicesa2,
a3, a4 anda5, and to be delivered toS1. This task may be
served by the serversS4 (servingd2), S3 (servinga2), S2

(servinga3 anda4). Either dedicated link or public net-
work may be used to transmit the data stream between any
two consecutive servers.

For convenience, the resource allocation process is di-
vided into two phases. First, individual tasks with multiple
service components are mapped on the processing servers
fulfilling the processing and transport capacity require-
ments. A cost function is used to select the best among
multiple feasible maps. The second phase re-allocates the
link bandwidths among competing tasks, after the tasks
start execution based on the initial allocation. This is nec-
essary because of the variability of data rate in the end-



to-end TCP connections on public Internet. Both the re-
allocation phases and intial allocation are driven by the
same global optimization goal, namely maximization of
global throughput and resource utilization, subject to ful-
fillment of individual task requirements.

The specification of the stream processing task includes
the ordered sequence of service components, the data
source node, the data delivery node and the desired rate
of data delivery. We assume a rate based model [8, 12] to
specify resource requirement for each service component.
For any service, both the output data rate and the CPU re-
quiremnt are proportional to the input data rate, and are
specified by two factors – thebandwidth shrinkage factor
and theCPU usage factor, respectively. We also assume
a rate based pricing for the services. The task specifica-
tion includes a price per byte of data delivered. This is di-
rectly translated to apportioned prices for each of the ser-
vice components, using the above two factors. The task
specification is aservice level agreement(SLA) between
the user and the platform.

3 Decentralized Management of Server and
Network Resources

A resource manegement engine (denoted as RMS agent)
runs in each server that implements the protocols for coor-
dinated allocation of network and CPU resources. Each
RMS agent has two modules – a map manager and a dy-
namic scheduler, to perform the two phases of recource
allocation described before. This section describes the al-
gorithms that encodes the functions of these two modules
in details.

A user of the distributed platform uses one of the server
nodes as a portal to launch its stream processing task. The
portal node then engages the map manager to initiate the
mapping of the specified requirements on the network.
Through message passing among the map managers in dif-
ferent server nodes, the distributed mapping algorithm re-
sults in a set of feasible maps at the map manager of the
data-source node. Each of the maps defines a path from
the data source node to the delivery node through the server
nodes that serve necessary service components. The best
among the available feasible maps according to a certain
cost metric is selected.

A reservation probe is sent from the data-source node to
the data-delivery node along the path found in the selected
map. The RMS agent at each server node along the path
tries to allocate the server and link resources prescribed
by the map. Because the mapping process for multiple
tasks may be ongoing concurrently, it is possible that the
required resource is no longer available. In such case the
allocation fails, the probe is rolled back and the next fea-
sible map is probed by the data-source node. Once a suc-
cessful probe reaches the data-delivery node at the other
end, a confirmation is sent back to the data-source node to

begin the streaming. The message flow of mapping and
reservation is illustrated in Figure 2.

The dynamic scheduler module in each server node pe-
riodically re-allocates the locally available link resources
among the competing tasks that are using that server node.
The re-allocation process is illustrated in Figure 3. The
re-allocation is done with two objectives – improving the
compliance to the SLA defined data-delivery rate and max-
imizing the global processing throughput. Note that only
link resources are re-allocated while keeping the allocation
of server resources unmodified. This follows from the as-
sumption that servers are dedicated and their processing
rates do not vary over time.

3.1 Distributed Algorithm for Mapping

The problem of mapping a stream processing task spec-
ification on arbitrary network of server nodes subject to
processing capacity and bandwidth constraints is an NP-
Complete problem [4]. Detailed analysis of the problem
and algorithms to solve it in both centralized and dis-
tributed manner can be found in [1, 4]. Algorithm for a
similar mapping problem was also discussed in [14]. How-
ever, the problems discussed in the above references do not
consider bi-modal network links. Here, we adopt the dis-
tributed mapping algorithm presented in [4] with modifi-
cations to accommodate bi-modal network links.

The distributed mapping of the task specification per-
formed by gradually expanding the maps to neighbors in
the server network. The portal server initiates the algo-
rithm by generating the initial map message. ThePro-
cessMapalgorithm described in Algorithm 1 is executed
by the map manager at each server node on receiving a
map message.

The algorithm first extends the received partial map by
mapping next few service components on itself as long
as the service is available and processing capacity per-
mits (line 6–8). Each possible extension is then sent to
neighboring nodes subject to availability of network band-
width (line 11–22). Note that it is possible to extend the
map to the neighbors without having any service compo-
nent mapped on the current server. This allows multi-
hop connection between nodes processing consecutive ser-
vices. This is beneficial in cases where there is no direct
dedicated link between two server nodes.

In case of links through the public network, such multi-
hops are unnecessary, because overlay link can be estab-
lished between any pair of nodes. This case is handled in
lines 16–22. Note that end-to-end bandwidth cannot be al-
located in case of public network links, only uplink band-
width can be controlled. In case of extending through a
public network link, only the nodes that provide the ser-
vice required in the next hop is chosen (line 17). We as-
sume that an underlying gossip like algorithm disseminates
the presence of services in each server across the network.
Thus, for each service type, each node has the knowledge
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of (possibly a subset of) the nodes that hosts that service.
Incorrectness of this information does not cause any incon-
sistent mapping, only some feasible maps are missed.

Cyclic mapping is allowed in the extension in lines 12–
14. Becausex = 0 is allowed, it is possible that the map
grows to an infinite length. In practice, this is avoided by
limiting the growth of the multi-hop mapping using a bud-
get factor. Based on the price-per-byte-processed quoted in
the SLA, the allocated revenue for processing of thej− th

service is limited. When the output of thej-th service is
sent to the server providing(j + 1)th service using a ded-
icated link, host of thej-th service needs to pay and thus
loses revenue. The cost of transmission grows as more ded-
icated links are used in a multi-hop link to send the same
data. Thus the number of hops in such multi-hop links are
limited by the revenue budgeted for the service and cost of
each hop of dedicated connection.

Because the algorithm enumerates all feasible maps, it
generates an exponential number of messages. Some sim-
ple heuristics can limit the complexity without sacrificing
much of optimality. We have used a simple heuristic called
LeastCostMapwhere each node remembers the lowest cost
map it has observed so far for each possible prefix length
(number of components already mapped), and it does not
extend a map with higher cost for the same prefix length.
Evaluation of performance of the heuristic compared to
other possible heuristics can be found in [1].

To devise an appropriate cost metric for choosing the
best mapping among alternative feasible maps, we con-
sidered the following two factors - balancing the service
workload among the servers and minimizing the uncer-
tainty of using public network links where a dedicated link
is available. The load-balance factor for a map (or a partial
map) is computed as an average of the server load-factors
(ratio of used capacity to total capacity) for all the servers
included in the map, and is always a number between0 and
1. A map with lower load-balance factor spreads the com-
ponents of a task on different servers rather than putting all

of them into one, and chooses the under-utilized servers. In
case two maps have almost same load-balance factor, (do
not differ by more than0.1 or 10%), then the one in which
the number of hops (links connecting the processing com-
ponents) assigned to dedicated links is higher is preferred.
If that is also same, the map in which less number of hops
are assigned to public network link is preferred.

3.2 Algorithm for Dynamic Link Re-allocation

The dynamic link scheduler in each server node is in-
voked periodically at regular intervals. Based on current
evaluation of locally observed performance, the scheduler
re-allocates the locally available link resources among the
competing tasks that are using this server node. The overall
policy of the scheduler is to prioritize the tasks for use of
the network links, based on their deviation from target data
rate and the price they would pay for the data processing
service.

The links that carry the stream between two data pro-
cessing servers can be of three different types – i) a direct
dedicated link, ii) a multi-hop dedicated link through one
or more forwarding nodes iii) an overlay link through the
public network. A mapping of a task may contain any com-
bination of these three types of links between the process-
ing nodes. Among them, the direct dedicated links are the
most preferred one, because they provide controlled and
stable data rate. A multi-hop dedicated link provides sim-
ilar control and stability, but it costs more (Section 3.1).
The third possibility is having an overlay link through the
public network. The flow rate is variable over such links,
but there is no additional per-byte cost for sending data
through them. So, the nodes try to opportunistically use
these links when dedicated links are overloaded or not
available.

Algorithm 2 is executed when the scheduler is inviked
at reguler intervals. For allocation of the links, tasks are
grouped according to their next hop server node (Line 2).
While prioritizing among competing tasks for each group



Algorithm 1 ProcessMap(u, m, T)
1: Input: Map messagem containing the mapping of

first j services on a series of server nodes is received
by nodeu. j is called theprefix-lengthof m. T de-
notes the ordered set of services in the task

2: if u is the data-source node and all the services except
the data source is mapped inm then

3: m is a feasible map
4: else
5: for x = 0 to |T | − j − 1 do
6: if servicej+x is provided by nodeu and node ca-

pacity permits the required processing ratethen
7: mx = map found by extending nextx services

in T onu
8: else
9: break

10: end if
11: for each nodev such that there is a dedicated link

(u, v) do
12: if (available bandwidth in(u, v) link ≥ the

bandwidth need for the service hop(j+ x, j+
x+ 1)) and budget allows the extension ofmx

to v then
13: Sendmx to v

14: end if
15: end for
16: if x > 0 then
17: for each nodev such thatv provide the service

j + x+ 1 do
18: if available uplink bandwidth to the Internet

≥ bandwidth need for service hop(j+x, j+
x+ 1) then

19: Sendmx to v

20: end if
21: end for
22: end if
23: end for
24: end if

(Lines 4-5), the scheduler tries to maximize the revenue
earning of the server and prefers the tasks marked with
higher price per unit of processing. On the other hand,
the servers get penalized on the revenue, if they do not de-
liver the processed stream at the agreed upon rate. There-
fore each server tries to fulfill the rate requirements of each
task as much as possible. Thus, the task that requires more
bandwidth to comply with its target gets higher preference.
Hence the scheduler computes the priority of each task as a
product of the apportioned price and the data rate required
in next scheduling epoch.

For each next hop group, highest priority tasks get al-
location from the direct dedicated link, if such link ex-
ist and capacity permits (Lines 6-8). The next prior tasks
are assigned multi-hop dedicated links (Lines 12-14). The

Algorithm 2 Link re-allocation algorithm
1: Invoked for each nodeu periodically
2: Group the tasks that are being processed inu by their

next hop serverv
3: for Each groupv do
4: Compute the priority of each flow competing for a

(u,v) link as -
5: priority← budget per byte of processed data * band-

width required to comply with the target rate
6: if any dedicated link (u,v) existsthen
7: Assign the dedicated link to top priority flows un-

til all capacity is used
8: end if
9: Collect all the unassigned flows

10: end for
11: for All the remaining flowsdo
12: if The budget permitsk-hop (u,v) dedicated link,

k > 1 then
13: Launch a probe search and reserve multi-hop ded-

icated path for the flow with maximumk hops
14: Assign public network bandwidth for the flow

temporarily
15: else
16: Assign public network bandwidth for the flow
17: end if
18: end for

maximum possible hops in such multi-hop links are re-
stricted by the apportioned price for that service accord-
ing to the task specification. The flows of the remaining
tasks from all the groups are allocated bandwidth from the
public overlay links (Lines 15-17).

4 Performance Evaluation and Discussion

4.1 Simulation Model

We constructed a simulation model of the proposed dis-
tributed stream processing platform using Java based dis-
crete event simulator JiST [6]. Each server in the platform
is connected to the Internet using last mile bandwidth be-
tween1 Mbps and2 Mbps, randomly assigned. To model
the variability of data rate on end-to-end Internet paths,
we used the statistics presented by Wallerich and Feld-
mann [18]. From their data collected from packet level
traces from core routers of two major ISPs over 24 hours,
the logarithm of the ratio of the observed transient flow
rate to the mean flow rate over long period is almost a Nor-
mal distribution. In our simulations, all flows on the public
network are perturbed every10 milliseconds according to
this model. With the allocated bandwidth as the mean rate
and the standard deviation of the log-ratio set at1, in 95%
of the cases the observed bandwidth remains between one
fourth (2−2σ) and four time (22σ) of the allocated or mean
bandwidth.



In addition to the public network links, the servers are
interconnected through dedicated links (which may be
leased lines or privately installed links). For the dedi-
cated network, we assume a preferential connectivity based
network growth model similar to the one proposed by
Barabasi et al [5]. The basic premise here is that when
a server attempts to establish a dedicated link, it does so
preferably with the most connected server. This eventually
results in a power law degree distribution in the network.
We assumed that server CPU capacity is proportional to
the number of dedicated links it has. The variety of ser-
vices that a server can host is also proportional to the node
degree or capacity. The dedicated links have much higher
bandwidth than the network links connecting a node to the
public network. Their bandwidths were randomly assigned
between1 Mbps and10 Mbps and the propagation delays
were assumed to be between1 and10 milliseconds. The
propagation delay of an end-to-end connection through the
public network was much higher and assumed to be be-
tween10 and100 milliseconds.

Unless otherwise mentioned, we assumed the platform
to have100 server nodes and99 dedicated links intercon-
necting them. There were25 different types of services.
As the service variety is proportional to the node degree, a
node havingd dedicated links was assumed to host1 + d

different types of services (one added for public network
link). Server CPU capacity was set such that it can exe-
cutek instances of each service concurrently, according to
the mean data delivery rate. We setk = 2. For the task
workload, each task is assumed to have10 service compo-
nents, randomly chosen from25 different types of service.
Mean data delivery rate was1Mbps and total amount of
data to be processed from the source was100MB on av-
erage. Each data point on the results shown below is an
average of100 observations from different experiments on
randomly generated networks with specified parameters.
For each experiment, a synthetic workload trace contain-
ing 500 stream processing tasks were generated. The task
arrival process is assumed to be Poisson, with the arrival
rate varying across the experiments. If not mentioned oth-
erwise, the default arrival rate was60 tasks per hour.

4.2 Benefits of Combining Opportunistic and Dedi-
cated Resources

We performed several sets of experiments to evaluate the
benefits of using bi-modal networks for stream processing
tasks. In the experiments, we compare three possible set-
tings – i) a network with the dedicated links only, ii) public
network only, and iii) a network that combines both.

First argument in favor of a bi-modal network for stream
processing is that combining the public network with
dedicated links, the system achieves much higher work
throughput at the same cost. To examine this, we fed sim-
ilar workload traces under same arrival rates to two sys-
tem set-ups, one with only dedicate link based networks

and the other using the combination of dedicated links and
public network. From Figure 4(a) we observe that for the
same workload, if the platform uses dedicated links only,
it needs more than120 links to get50% acceptance ratio,
whereas the same acceptance ratio can be obtained with
50 dedicated links only, if the public network is utilized
in conjunction. As a result, the bi-modal system yields
much higher work throughput for same number of dedi-
cated links.

The next argument is that utilization of the privately de-
ployed expensive dedicated resources such as servers and
dedicated links is increased, if inexpensive public network
is used in conjunction. From Figure 4(b) we observe that
when a combination of dedicated links and the public net-
work is used, the server utilization is much higher than the
utilization when only one type of link is used. The syn-
ergy of bi-modal links is evident here, because, when suf-
ficiently loaded, the server utilization of bi-modal system
is higher than the sum of utilizations in the two other cases.

Figures 4(c) and 4(d) show another evidence of higher
return on investment. In Figure 4(c), we observe that the
utilization of dedicated links becomes consistently higher
across a wide range of loading scenarios if the public net-
work is used in combination. The lower utilization in case
of a dedicated link only network results from the fact that
the platform has rejected many task requests that would
have been feasible by the augmentation of the public re-
sources. Figure 4(d) shows the variation of utilization of
the dedicated links with the number of dedicated links. We
observe that the difference in utilization diminishes as the
number of installed links increases. This is because when
there is sufficient number of dedicated links to carry the
required traffic of all the tasks, the public resources are not
used at all, and the bi-modal system becomes equivalent to
a dedicated link only system. In both cases, utilization of
the links keeps decreasing when more and more links are
added because the workload is held constant.

Next, we investigate how the bi-modal network helps the
stream processing platform to keep the compliance with
the services contracts it has with individual tasks. We mea-
sure the compliance as follows. Each task request speci-
fies a time windowT that is used to monitor the delivery
rate. We measured the deviation from the required rate as
∑

over all windows
B−B̂

B
, whereB is the desired rate and

B̂ is the observed rate of delivery. In Figure 4(e), we ob-
serve that the deviation in the bi-modal system gets closer
to zero as more and more dedicated links are added to the
network. However, beyond certain number of links, (125
in this particular experiment), the improvement is very
marginal. Note that deviation is counted on the accepted
jobs only. So, even though for a dedicated link only net-
work, the deviation is almost zero, we have seen that such
network is unable to accept enough jobs to fully utilize the
resources.
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(b) Server utilization at different workload
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(c) Link utilization at different workload
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(d) Link utilization vs number of dedicated links

 0

 5

 10

 15

 20

 25

 30

 0  50  100  150  200  250  300

D
ev

ia
tio

n 
(%

)

Number of links

dedicated + public
dedicated only

(e) SLA deviation vs number of dedicated links

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20  40  60  80  100  120  140  160  180  200

T
im

e 
(m

in
ut

es
)

Process arrival per hour

dedicated + public
dedicated only (sp. tree)

public links only

(f) Elongation of task execution time

Figure 4. Comparing bi-modal and uni-modal networks

When we use a combination of dedicated and public
links, it is expected that the completion time of each task
will be slightly elongated compared to a system with only
dedicated links, due to the variability in the public network.
Nevertheless, using the combination contains the elonga-
tion to a small value, compared to the case where only
public network is available. In Figure 4(f), we observe a
10 − 20% increase in the execution time in the bi-modal
system, whereas execution time would be200 − 300%
more in case of a public network only system.

4.3 Necessity of Periodic Re-Scheduling

Another important question in managing the bi-modal
stream processing platform is the importance of dynamic
re-allocation of network links. The main intuition behind
introducing dynamic re-allocation is that the flows that
goes through the public network suffer from the variability
and lag from the target rate, whereas the flows that uses
dedicated links all-through, do not lag from the target at
all. Dynamic scheduling introduces fairness across all the
tasks. So if link assignment is done dynamically, it is ex-
pected to improve the utilization of the resources and in-
crease the overall capacity of the system.

We fed the same workload to two system set-ups con-
taining combinations of dedicated links and public network
links. In one we disabled dynamic re-scheduling of links
and let the tasks complete with the initial assignment of
links and nodes. From Figures 5(a) we observe that overall
system throughput increases with dynamic scheduling, as
an indication of higher task acceptance ratio and higher uti-

lization of the system resources. Figure 5(b) demonstrates
that dynamic scheduling results in much higher utilization
of the dedicated links. CPU utilization remains unchanged
(not shown), because the dynamic re-allocation does not
alter the node assignments. Another rationale behind re-
allocations is to increase fairness and improve compliance
with the target delivery rate. Figure 5(c) shows that irre-
spective of workload, the dynamic scheduling decreases
the deviation from the specified target, having the same
number of dedicated links and same public network band-
width.

5 Related Work
Architectures and resource management schemes for

distributed stream processing platforms have been studied
by many research groups from distributed databases, sen-
sor networks, and multimedia streaming. In database and
sensor network research, the major focus was placing the
query operators to nodes inside the network that carries the
data stream from source to the viewer [16]. In multimedia
streaming problems, similar requirements arise when we
need to perform a series of on-line operations such as trans-
coding or embedding on one or more multimedia streams
and these services are provided by servers in distributed lo-
cations. In both cases, the main problem is to allocate the
node resources where certain processing need to be per-
formed along with the network bandwidths that will carry
the data stream through these nodes.

Finding the optimal solution to this resource allocation
problem is inherently complex. Several heuristics have
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been proposed in the literature to obtain near-optimal so-
lutions. Recursive partitioning of the network of comput-
ing nodes have been proposed in [13] and [17] to map the
stream processing operators on a hierarchy of node-groups.
In [19] and [10], the service requirements for multi-step
processing of multimedia streams have been mapped to
an overlay network of servers after pruning the whole re-
source network into a subset of compatible resources. The
mapping is performed subject to some end-to-end quality
constraints, but the CPU requirements for each individual
service component is not considered. Liang and Nahrstedt
in [14] have proposed solutions to the mapping problem
where both node capacity requirement and bandwidth re-
quirements are fulfilled. However, their proposed solution
requires global knowledge of network topolgy at a single
node.

In all of the abovementioned works, the operator nodes
are assumed to interconnected through an application de-
pendent overlay network using the Internet as underlay.
In [11], Gu and Nahrstedt presented a service overlay net-
work for multimedia stream processing, where they have
shown that dynamic re-allocation of the operator nodes
provides better compliance with the service contracts in
terms of service availability and response time. However,
none of the works have proposed the use of dedicated links
in conjunction with public Internet for improving adher-
ence to the service contracts.

6 Conclusion

In this paper, we investigated the resource management
problem with regard to data stream processing tasks. In
particular, we examined how a hybrid platform made up of
dedicated server resources and bi-modal network resources
(dedicated plus public) can be used for this class of ap-
plications. From the simulation based investigations, we
were able make several interesting observations. First, bi-
modal networks can improve dedicated resource utilization
(server plus dedicated network links). This means higher
return on investment can be obtained by engaging the bi-
modal network. Second, the overall system is able to admit
and process tasks at a higher rate compared to system con-

figurations that do not leverage a bi-modal network. Be-
cause the public network is engaged at zero or very low
cost, this improvement in throughput can be result in sig-
nificant economic gain for institutions that perform data
stream processing workloads. Third, the engagement of bi-
modal network comes at a slight overhead that adds small
delays in stream processing tasks. Compared to public-
only networks the delays provided by the bi-modal net-
work is almost negligible. Fourth, dynamic rescheduling
is essential to cope with varying network conditions – par-
ticularly in the public network. The dynamic reschedul-
ing algorithm switches the flows according to the recom-
puted priority values to achieve the best service level com-
pliances.

In summary, our study highlights the benefits of the
bi-modal architecture for compute and communication-
intensive applications. Moreover, it provides simple dis-
tributed algorithms that allows the effective utilizationof
such a platform for data stream processing applications.
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